linux-next/drivers/iio/gyro/adxrs290.c
Jonathan Cameron eca8523a38 iio:trigger: rename try_reenable() to reenable() plus return void
As we no longer support a try again if we cannot reenable the trigger
rename the function to reflect this.   Also we don't do anything with
the value returned so stop it returning anything.  For the few drivers
that didn't already print an error message in this patch, add such
a print.

Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Lars-Peter Clausen <lars@metafoo.de>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Christian Oder <me@myself5.de>
Cc: Eugen Hristev <eugen.hristev@microchip.com>
Cc: Nishant Malpani <nish.malpani25@gmail.com>
Cc: Daniel Baluta <daniel.baluta@oss.nxp.com>
Link: https://lore.kernel.org/r/20200920132548.196452-3-jic23@kernel.org
2020-12-03 19:40:26 +00:00

709 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* ADXRS290 SPI Gyroscope Driver
*
* Copyright (C) 2020 Nishant Malpani <nish.malpani25@gmail.com>
* Copyright (C) 2020 Analog Devices, Inc.
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spi/spi.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#define ADXRS290_ADI_ID 0xAD
#define ADXRS290_MEMS_ID 0x1D
#define ADXRS290_DEV_ID 0x92
#define ADXRS290_REG_ADI_ID 0x00
#define ADXRS290_REG_MEMS_ID 0x01
#define ADXRS290_REG_DEV_ID 0x02
#define ADXRS290_REG_REV_ID 0x03
#define ADXRS290_REG_SN0 0x04 /* Serial Number Registers, 4 bytes */
#define ADXRS290_REG_DATAX0 0x08 /* Roll Rate o/p Data Regs, 2 bytes */
#define ADXRS290_REG_DATAY0 0x0A /* Pitch Rate o/p Data Regs, 2 bytes */
#define ADXRS290_REG_TEMP0 0x0C
#define ADXRS290_REG_POWER_CTL 0x10
#define ADXRS290_REG_FILTER 0x11
#define ADXRS290_REG_DATA_RDY 0x12
#define ADXRS290_READ BIT(7)
#define ADXRS290_TSM BIT(0)
#define ADXRS290_MEASUREMENT BIT(1)
#define ADXRS290_DATA_RDY_OUT BIT(0)
#define ADXRS290_SYNC_MASK GENMASK(1, 0)
#define ADXRS290_SYNC(x) FIELD_PREP(ADXRS290_SYNC_MASK, x)
#define ADXRS290_LPF_MASK GENMASK(2, 0)
#define ADXRS290_LPF(x) FIELD_PREP(ADXRS290_LPF_MASK, x)
#define ADXRS290_HPF_MASK GENMASK(7, 4)
#define ADXRS290_HPF(x) FIELD_PREP(ADXRS290_HPF_MASK, x)
#define ADXRS290_READ_REG(reg) (ADXRS290_READ | (reg))
#define ADXRS290_MAX_TRANSITION_TIME_MS 100
enum adxrs290_mode {
ADXRS290_MODE_STANDBY,
ADXRS290_MODE_MEASUREMENT,
};
enum adxrs290_scan_index {
ADXRS290_IDX_X,
ADXRS290_IDX_Y,
ADXRS290_IDX_TEMP,
ADXRS290_IDX_TS,
};
struct adxrs290_state {
struct spi_device *spi;
/* Serialize reads and their subsequent processing */
struct mutex lock;
enum adxrs290_mode mode;
unsigned int lpf_3db_freq_idx;
unsigned int hpf_3db_freq_idx;
struct iio_trigger *dready_trig;
/* Ensure correct alignment of timestamp when present */
struct {
s16 channels[3];
s64 ts __aligned(8);
} buffer;
};
/*
* Available cut-off frequencies of the low pass filter in Hz.
* The integer part and fractional part are represented separately.
*/
static const int adxrs290_lpf_3db_freq_hz_table[][2] = {
[0] = {480, 0},
[1] = {320, 0},
[2] = {160, 0},
[3] = {80, 0},
[4] = {56, 600000},
[5] = {40, 0},
[6] = {28, 300000},
[7] = {20, 0},
};
/*
* Available cut-off frequencies of the high pass filter in Hz.
* The integer part and fractional part are represented separately.
*/
static const int adxrs290_hpf_3db_freq_hz_table[][2] = {
[0] = {0, 0},
[1] = {0, 11000},
[2] = {0, 22000},
[3] = {0, 44000},
[4] = {0, 87000},
[5] = {0, 175000},
[6] = {0, 350000},
[7] = {0, 700000},
[8] = {1, 400000},
[9] = {2, 800000},
[10] = {11, 300000},
};
static int adxrs290_get_rate_data(struct iio_dev *indio_dev, const u8 cmd, int *val)
{
struct adxrs290_state *st = iio_priv(indio_dev);
int ret = 0;
int temp;
mutex_lock(&st->lock);
temp = spi_w8r16(st->spi, cmd);
if (temp < 0) {
ret = temp;
goto err_unlock;
}
*val = temp;
err_unlock:
mutex_unlock(&st->lock);
return ret;
}
static int adxrs290_get_temp_data(struct iio_dev *indio_dev, int *val)
{
const u8 cmd = ADXRS290_READ_REG(ADXRS290_REG_TEMP0);
struct adxrs290_state *st = iio_priv(indio_dev);
int ret = 0;
int temp;
mutex_lock(&st->lock);
temp = spi_w8r16(st->spi, cmd);
if (temp < 0) {
ret = temp;
goto err_unlock;
}
/* extract lower 12 bits temperature reading */
*val = temp & 0x0FFF;
err_unlock:
mutex_unlock(&st->lock);
return ret;
}
static int adxrs290_get_3db_freq(struct iio_dev *indio_dev, u8 *val, u8 *val2)
{
const u8 cmd = ADXRS290_READ_REG(ADXRS290_REG_FILTER);
struct adxrs290_state *st = iio_priv(indio_dev);
int ret = 0;
short temp;
mutex_lock(&st->lock);
temp = spi_w8r8(st->spi, cmd);
if (temp < 0) {
ret = temp;
goto err_unlock;
}
*val = FIELD_GET(ADXRS290_LPF_MASK, temp);
*val2 = FIELD_GET(ADXRS290_HPF_MASK, temp);
err_unlock:
mutex_unlock(&st->lock);
return ret;
}
static int adxrs290_spi_write_reg(struct spi_device *spi, const u8 reg,
const u8 val)
{
u8 buf[2];
buf[0] = reg;
buf[1] = val;
return spi_write_then_read(spi, buf, ARRAY_SIZE(buf), NULL, 0);
}
static int adxrs290_find_match(const int (*freq_tbl)[2], const int n,
const int val, const int val2)
{
int i;
for (i = 0; i < n; i++) {
if (freq_tbl[i][0] == val && freq_tbl[i][1] == val2)
return i;
}
return -EINVAL;
}
static int adxrs290_set_filter_freq(struct iio_dev *indio_dev,
const unsigned int lpf_idx,
const unsigned int hpf_idx)
{
struct adxrs290_state *st = iio_priv(indio_dev);
u8 val;
val = ADXRS290_HPF(hpf_idx) | ADXRS290_LPF(lpf_idx);
return adxrs290_spi_write_reg(st->spi, ADXRS290_REG_FILTER, val);
}
static int adxrs290_set_mode(struct iio_dev *indio_dev, enum adxrs290_mode mode)
{
struct adxrs290_state *st = iio_priv(indio_dev);
int val, ret;
if (st->mode == mode)
return 0;
mutex_lock(&st->lock);
ret = spi_w8r8(st->spi, ADXRS290_READ_REG(ADXRS290_REG_POWER_CTL));
if (ret < 0)
goto out_unlock;
val = ret;
switch (mode) {
case ADXRS290_MODE_STANDBY:
val &= ~ADXRS290_MEASUREMENT;
break;
case ADXRS290_MODE_MEASUREMENT:
val |= ADXRS290_MEASUREMENT;
break;
default:
ret = -EINVAL;
goto out_unlock;
}
ret = adxrs290_spi_write_reg(st->spi, ADXRS290_REG_POWER_CTL, val);
if (ret < 0) {
dev_err(&st->spi->dev, "unable to set mode: %d\n", ret);
goto out_unlock;
}
/* update cached mode */
st->mode = mode;
out_unlock:
mutex_unlock(&st->lock);
return ret;
}
static void adxrs290_chip_off_action(void *data)
{
struct iio_dev *indio_dev = data;
adxrs290_set_mode(indio_dev, ADXRS290_MODE_STANDBY);
}
static int adxrs290_initial_setup(struct iio_dev *indio_dev)
{
struct adxrs290_state *st = iio_priv(indio_dev);
struct spi_device *spi = st->spi;
int ret;
ret = adxrs290_spi_write_reg(spi, ADXRS290_REG_POWER_CTL,
ADXRS290_MEASUREMENT | ADXRS290_TSM);
if (ret < 0)
return ret;
st->mode = ADXRS290_MODE_MEASUREMENT;
return devm_add_action_or_reset(&spi->dev, adxrs290_chip_off_action,
indio_dev);
}
static int adxrs290_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask)
{
struct adxrs290_state *st = iio_priv(indio_dev);
unsigned int t;
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
switch (chan->type) {
case IIO_ANGL_VEL:
ret = adxrs290_get_rate_data(indio_dev,
ADXRS290_READ_REG(chan->address),
val);
if (ret < 0)
break;
ret = IIO_VAL_INT;
break;
case IIO_TEMP:
ret = adxrs290_get_temp_data(indio_dev, val);
if (ret < 0)
break;
ret = IIO_VAL_INT;
break;
default:
ret = -EINVAL;
break;
}
iio_device_release_direct_mode(indio_dev);
return ret;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ANGL_VEL:
/* 1 LSB = 0.005 degrees/sec */
*val = 0;
*val2 = 87266;
return IIO_VAL_INT_PLUS_NANO;
case IIO_TEMP:
/* 1 LSB = 0.1 degrees Celsius */
*val = 100;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
switch (chan->type) {
case IIO_ANGL_VEL:
t = st->lpf_3db_freq_idx;
*val = adxrs290_lpf_3db_freq_hz_table[t][0];
*val2 = adxrs290_lpf_3db_freq_hz_table[t][1];
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
switch (chan->type) {
case IIO_ANGL_VEL:
t = st->hpf_3db_freq_idx;
*val = adxrs290_hpf_3db_freq_hz_table[t][0];
*val2 = adxrs290_hpf_3db_freq_hz_table[t][1];
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
return -EINVAL;
}
static int adxrs290_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct adxrs290_state *st = iio_priv(indio_dev);
int ret, lpf_idx, hpf_idx;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
switch (mask) {
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
lpf_idx = adxrs290_find_match(adxrs290_lpf_3db_freq_hz_table,
ARRAY_SIZE(adxrs290_lpf_3db_freq_hz_table),
val, val2);
if (lpf_idx < 0) {
ret = -EINVAL;
break;
}
/* caching the updated state of the low-pass filter */
st->lpf_3db_freq_idx = lpf_idx;
/* retrieving the current state of the high-pass filter */
hpf_idx = st->hpf_3db_freq_idx;
ret = adxrs290_set_filter_freq(indio_dev, lpf_idx, hpf_idx);
break;
case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
hpf_idx = adxrs290_find_match(adxrs290_hpf_3db_freq_hz_table,
ARRAY_SIZE(adxrs290_hpf_3db_freq_hz_table),
val, val2);
if (hpf_idx < 0) {
ret = -EINVAL;
break;
}
/* caching the updated state of the high-pass filter */
st->hpf_3db_freq_idx = hpf_idx;
/* retrieving the current state of the low-pass filter */
lpf_idx = st->lpf_3db_freq_idx;
ret = adxrs290_set_filter_freq(indio_dev, lpf_idx, hpf_idx);
break;
default:
ret = -EINVAL;
break;
}
iio_device_release_direct_mode(indio_dev);
return ret;
}
static int adxrs290_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
*vals = (const int *)adxrs290_lpf_3db_freq_hz_table;
*type = IIO_VAL_INT_PLUS_MICRO;
/* Values are stored in a 2D matrix */
*length = ARRAY_SIZE(adxrs290_lpf_3db_freq_hz_table) * 2;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
*vals = (const int *)adxrs290_hpf_3db_freq_hz_table;
*type = IIO_VAL_INT_PLUS_MICRO;
/* Values are stored in a 2D matrix */
*length = ARRAY_SIZE(adxrs290_hpf_3db_freq_hz_table) * 2;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int adxrs290_reg_access_rw(struct spi_device *spi, unsigned int reg,
unsigned int *readval)
{
int ret;
ret = spi_w8r8(spi, ADXRS290_READ_REG(reg));
if (ret < 0)
return ret;
*readval = ret;
return 0;
}
static int adxrs290_reg_access(struct iio_dev *indio_dev, unsigned int reg,
unsigned int writeval, unsigned int *readval)
{
struct adxrs290_state *st = iio_priv(indio_dev);
if (readval)
return adxrs290_reg_access_rw(st->spi, reg, readval);
else
return adxrs290_spi_write_reg(st->spi, reg, writeval);
}
static int adxrs290_data_rdy_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct adxrs290_state *st = iio_priv(indio_dev);
int ret;
u8 val;
val = state ? ADXRS290_SYNC(ADXRS290_DATA_RDY_OUT) : 0;
ret = adxrs290_spi_write_reg(st->spi, ADXRS290_REG_DATA_RDY, val);
if (ret < 0)
dev_err(&st->spi->dev, "failed to start data rdy interrupt\n");
return ret;
}
static void adxrs290_reset_trig(struct iio_trigger *trig)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
int val;
/*
* Data ready interrupt is reset after a read of the data registers.
* Here, we only read the 16b DATAY registers as that marks the end of
* a read of the data registers and initiates a reset for the interrupt
* line.
*/
adxrs290_get_rate_data(indio_dev,
ADXRS290_READ_REG(ADXRS290_REG_DATAY0), &val);
}
static const struct iio_trigger_ops adxrs290_trigger_ops = {
.set_trigger_state = &adxrs290_data_rdy_trigger_set_state,
.validate_device = &iio_trigger_validate_own_device,
.reenable = &adxrs290_reset_trig,
};
static irqreturn_t adxrs290_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct adxrs290_state *st = iio_priv(indio_dev);
u8 tx = ADXRS290_READ_REG(ADXRS290_REG_DATAX0);
int ret;
mutex_lock(&st->lock);
/* exercise a bulk data capture starting from reg DATAX0... */
ret = spi_write_then_read(st->spi, &tx, sizeof(tx), st->buffer.channels,
sizeof(st->buffer.channels));
if (ret < 0)
goto out_unlock_notify;
iio_push_to_buffers_with_timestamp(indio_dev, &st->buffer,
pf->timestamp);
out_unlock_notify:
mutex_unlock(&st->lock);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
#define ADXRS290_ANGL_VEL_CHANNEL(reg, axis) { \
.type = IIO_ANGL_VEL, \
.address = reg, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \
BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \
.info_mask_shared_by_type_available = \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \
BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY), \
.scan_index = ADXRS290_IDX_##axis, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
}
static const struct iio_chan_spec adxrs290_channels[] = {
ADXRS290_ANGL_VEL_CHANNEL(ADXRS290_REG_DATAX0, X),
ADXRS290_ANGL_VEL_CHANNEL(ADXRS290_REG_DATAY0, Y),
{
.type = IIO_TEMP,
.address = ADXRS290_REG_TEMP0,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.scan_index = ADXRS290_IDX_TEMP,
.scan_type = {
.sign = 's',
.realbits = 12,
.storagebits = 16,
.endianness = IIO_LE,
},
},
IIO_CHAN_SOFT_TIMESTAMP(ADXRS290_IDX_TS),
};
static const unsigned long adxrs290_avail_scan_masks[] = {
BIT(ADXRS290_IDX_X) | BIT(ADXRS290_IDX_Y) | BIT(ADXRS290_IDX_TEMP),
0
};
static const struct iio_info adxrs290_info = {
.read_raw = &adxrs290_read_raw,
.write_raw = &adxrs290_write_raw,
.read_avail = &adxrs290_read_avail,
.debugfs_reg_access = &adxrs290_reg_access,
};
static int adxrs290_probe_trigger(struct iio_dev *indio_dev)
{
struct adxrs290_state *st = iio_priv(indio_dev);
int ret;
if (!st->spi->irq) {
dev_info(&st->spi->dev, "no irq, using polling\n");
return 0;
}
st->dready_trig = devm_iio_trigger_alloc(&st->spi->dev, "%s-dev%d",
indio_dev->name,
indio_dev->id);
if (!st->dready_trig)
return -ENOMEM;
st->dready_trig->dev.parent = &st->spi->dev;
st->dready_trig->ops = &adxrs290_trigger_ops;
iio_trigger_set_drvdata(st->dready_trig, indio_dev);
ret = devm_request_irq(&st->spi->dev, st->spi->irq,
&iio_trigger_generic_data_rdy_poll,
IRQF_ONESHOT, "adxrs290_irq", st->dready_trig);
if (ret < 0)
return dev_err_probe(&st->spi->dev, ret,
"request irq %d failed\n", st->spi->irq);
ret = devm_iio_trigger_register(&st->spi->dev, st->dready_trig);
if (ret) {
dev_err(&st->spi->dev, "iio trigger register failed\n");
return ret;
}
indio_dev->trig = iio_trigger_get(st->dready_trig);
return 0;
}
static int adxrs290_probe(struct spi_device *spi)
{
struct iio_dev *indio_dev;
struct adxrs290_state *st;
u8 val, val2;
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
st->spi = spi;
indio_dev->name = "adxrs290";
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = adxrs290_channels;
indio_dev->num_channels = ARRAY_SIZE(adxrs290_channels);
indio_dev->info = &adxrs290_info;
indio_dev->available_scan_masks = adxrs290_avail_scan_masks;
mutex_init(&st->lock);
val = spi_w8r8(spi, ADXRS290_READ_REG(ADXRS290_REG_ADI_ID));
if (val != ADXRS290_ADI_ID) {
dev_err(&spi->dev, "Wrong ADI ID 0x%02x\n", val);
return -ENODEV;
}
val = spi_w8r8(spi, ADXRS290_READ_REG(ADXRS290_REG_MEMS_ID));
if (val != ADXRS290_MEMS_ID) {
dev_err(&spi->dev, "Wrong MEMS ID 0x%02x\n", val);
return -ENODEV;
}
val = spi_w8r8(spi, ADXRS290_READ_REG(ADXRS290_REG_DEV_ID));
if (val != ADXRS290_DEV_ID) {
dev_err(&spi->dev, "Wrong DEV ID 0x%02x\n", val);
return -ENODEV;
}
/* default mode the gyroscope starts in */
st->mode = ADXRS290_MODE_STANDBY;
/* switch to measurement mode and switch on the temperature sensor */
ret = adxrs290_initial_setup(indio_dev);
if (ret < 0)
return ret;
/* max transition time to measurement mode */
msleep(ADXRS290_MAX_TRANSITION_TIME_MS);
ret = adxrs290_get_3db_freq(indio_dev, &val, &val2);
if (ret < 0)
return ret;
st->lpf_3db_freq_idx = val;
st->hpf_3db_freq_idx = val2;
ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
&iio_pollfunc_store_time,
&adxrs290_trigger_handler, NULL);
if (ret < 0)
return dev_err_probe(&spi->dev, ret,
"iio triggered buffer setup failed\n");
ret = adxrs290_probe_trigger(indio_dev);
if (ret < 0)
return ret;
return devm_iio_device_register(&spi->dev, indio_dev);
}
static const struct of_device_id adxrs290_of_match[] = {
{ .compatible = "adi,adxrs290" },
{ }
};
MODULE_DEVICE_TABLE(of, adxrs290_of_match);
static struct spi_driver adxrs290_driver = {
.driver = {
.name = "adxrs290",
.of_match_table = adxrs290_of_match,
},
.probe = adxrs290_probe,
};
module_spi_driver(adxrs290_driver);
MODULE_AUTHOR("Nishant Malpani <nish.malpani25@gmail.com>");
MODULE_DESCRIPTION("Analog Devices ADXRS290 Gyroscope SPI driver");
MODULE_LICENSE("GPL");