mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-12 08:48:48 +00:00
72cf90124e
This fix ensures that we never meet an integer overflow while adding 255 while parsing a variable length encoding. It works differently from commit 206a81c ("lzo: properly check for overruns") because instead of ensuring that we don't overrun the input, which is tricky to guarantee due to many assumptions in the code, it simply checks that the cumulated number of 255 read cannot overflow by bounding this number. The MAX_255_COUNT is the maximum number of times we can add 255 to a base count without overflowing an integer. The multiply will overflow when multiplying 255 by more than MAXINT/255. The sum will overflow earlier depending on the base count. Since the base count is taken from a u8 and a few bits, it is safe to assume that it will always be lower than or equal to 2*255, thus we can always prevent any overflow by accepting two less 255 steps. This patch also reduces the CPU overhead and actually increases performance by 1.1% compared to the initial code, while the previous fix costs 3.1% (measured on x86_64). The fix needs to be backported to all currently supported stable kernels. Reported-by: Willem Pinckaers <willem@lekkertech.net> Cc: "Don A. Bailey" <donb@securitymouse.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Willy Tarreau <w@1wt.eu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
269 lines
5.7 KiB
C
269 lines
5.7 KiB
C
/*
|
|
* LZO1X Decompressor from LZO
|
|
*
|
|
* Copyright (C) 1996-2012 Markus F.X.J. Oberhumer <markus@oberhumer.com>
|
|
*
|
|
* The full LZO package can be found at:
|
|
* http://www.oberhumer.com/opensource/lzo/
|
|
*
|
|
* Changed for Linux kernel use by:
|
|
* Nitin Gupta <nitingupta910@gmail.com>
|
|
* Richard Purdie <rpurdie@openedhand.com>
|
|
*/
|
|
|
|
#ifndef STATIC
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#endif
|
|
#include <asm/unaligned.h>
|
|
#include <linux/lzo.h>
|
|
#include "lzodefs.h"
|
|
|
|
#define HAVE_IP(x) ((size_t)(ip_end - ip) >= (size_t)(x))
|
|
#define HAVE_OP(x) ((size_t)(op_end - op) >= (size_t)(x))
|
|
#define NEED_IP(x) if (!HAVE_IP(x)) goto input_overrun
|
|
#define NEED_OP(x) if (!HAVE_OP(x)) goto output_overrun
|
|
#define TEST_LB(m_pos) if ((m_pos) < out) goto lookbehind_overrun
|
|
|
|
/* This MAX_255_COUNT is the maximum number of times we can add 255 to a base
|
|
* count without overflowing an integer. The multiply will overflow when
|
|
* multiplying 255 by more than MAXINT/255. The sum will overflow earlier
|
|
* depending on the base count. Since the base count is taken from a u8
|
|
* and a few bits, it is safe to assume that it will always be lower than
|
|
* or equal to 2*255, thus we can always prevent any overflow by accepting
|
|
* two less 255 steps. See Documentation/lzo.txt for more information.
|
|
*/
|
|
#define MAX_255_COUNT ((((size_t)~0) / 255) - 2)
|
|
|
|
int lzo1x_decompress_safe(const unsigned char *in, size_t in_len,
|
|
unsigned char *out, size_t *out_len)
|
|
{
|
|
unsigned char *op;
|
|
const unsigned char *ip;
|
|
size_t t, next;
|
|
size_t state = 0;
|
|
const unsigned char *m_pos;
|
|
const unsigned char * const ip_end = in + in_len;
|
|
unsigned char * const op_end = out + *out_len;
|
|
|
|
op = out;
|
|
ip = in;
|
|
|
|
if (unlikely(in_len < 3))
|
|
goto input_overrun;
|
|
if (*ip > 17) {
|
|
t = *ip++ - 17;
|
|
if (t < 4) {
|
|
next = t;
|
|
goto match_next;
|
|
}
|
|
goto copy_literal_run;
|
|
}
|
|
|
|
for (;;) {
|
|
t = *ip++;
|
|
if (t < 16) {
|
|
if (likely(state == 0)) {
|
|
if (unlikely(t == 0)) {
|
|
size_t offset;
|
|
const unsigned char *ip_last = ip;
|
|
|
|
while (unlikely(*ip == 0)) {
|
|
ip++;
|
|
NEED_IP(1);
|
|
}
|
|
offset = ip - ip_last;
|
|
if (unlikely(offset > MAX_255_COUNT))
|
|
return LZO_E_ERROR;
|
|
|
|
offset = (offset << 8) - offset;
|
|
t += offset + 15 + *ip++;
|
|
}
|
|
t += 3;
|
|
copy_literal_run:
|
|
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
|
|
if (likely(HAVE_IP(t + 15) && HAVE_OP(t + 15))) {
|
|
const unsigned char *ie = ip + t;
|
|
unsigned char *oe = op + t;
|
|
do {
|
|
COPY8(op, ip);
|
|
op += 8;
|
|
ip += 8;
|
|
COPY8(op, ip);
|
|
op += 8;
|
|
ip += 8;
|
|
} while (ip < ie);
|
|
ip = ie;
|
|
op = oe;
|
|
} else
|
|
#endif
|
|
{
|
|
NEED_OP(t);
|
|
NEED_IP(t + 3);
|
|
do {
|
|
*op++ = *ip++;
|
|
} while (--t > 0);
|
|
}
|
|
state = 4;
|
|
continue;
|
|
} else if (state != 4) {
|
|
next = t & 3;
|
|
m_pos = op - 1;
|
|
m_pos -= t >> 2;
|
|
m_pos -= *ip++ << 2;
|
|
TEST_LB(m_pos);
|
|
NEED_OP(2);
|
|
op[0] = m_pos[0];
|
|
op[1] = m_pos[1];
|
|
op += 2;
|
|
goto match_next;
|
|
} else {
|
|
next = t & 3;
|
|
m_pos = op - (1 + M2_MAX_OFFSET);
|
|
m_pos -= t >> 2;
|
|
m_pos -= *ip++ << 2;
|
|
t = 3;
|
|
}
|
|
} else if (t >= 64) {
|
|
next = t & 3;
|
|
m_pos = op - 1;
|
|
m_pos -= (t >> 2) & 7;
|
|
m_pos -= *ip++ << 3;
|
|
t = (t >> 5) - 1 + (3 - 1);
|
|
} else if (t >= 32) {
|
|
t = (t & 31) + (3 - 1);
|
|
if (unlikely(t == 2)) {
|
|
size_t offset;
|
|
const unsigned char *ip_last = ip;
|
|
|
|
while (unlikely(*ip == 0)) {
|
|
ip++;
|
|
NEED_IP(1);
|
|
}
|
|
offset = ip - ip_last;
|
|
if (unlikely(offset > MAX_255_COUNT))
|
|
return LZO_E_ERROR;
|
|
|
|
offset = (offset << 8) - offset;
|
|
t += offset + 31 + *ip++;
|
|
NEED_IP(2);
|
|
}
|
|
m_pos = op - 1;
|
|
next = get_unaligned_le16(ip);
|
|
ip += 2;
|
|
m_pos -= next >> 2;
|
|
next &= 3;
|
|
} else {
|
|
m_pos = op;
|
|
m_pos -= (t & 8) << 11;
|
|
t = (t & 7) + (3 - 1);
|
|
if (unlikely(t == 2)) {
|
|
size_t offset;
|
|
const unsigned char *ip_last = ip;
|
|
|
|
while (unlikely(*ip == 0)) {
|
|
ip++;
|
|
NEED_IP(1);
|
|
}
|
|
offset = ip - ip_last;
|
|
if (unlikely(offset > MAX_255_COUNT))
|
|
return LZO_E_ERROR;
|
|
|
|
offset = (offset << 8) - offset;
|
|
t += offset + 7 + *ip++;
|
|
NEED_IP(2);
|
|
}
|
|
next = get_unaligned_le16(ip);
|
|
ip += 2;
|
|
m_pos -= next >> 2;
|
|
next &= 3;
|
|
if (m_pos == op)
|
|
goto eof_found;
|
|
m_pos -= 0x4000;
|
|
}
|
|
TEST_LB(m_pos);
|
|
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
|
|
if (op - m_pos >= 8) {
|
|
unsigned char *oe = op + t;
|
|
if (likely(HAVE_OP(t + 15))) {
|
|
do {
|
|
COPY8(op, m_pos);
|
|
op += 8;
|
|
m_pos += 8;
|
|
COPY8(op, m_pos);
|
|
op += 8;
|
|
m_pos += 8;
|
|
} while (op < oe);
|
|
op = oe;
|
|
if (HAVE_IP(6)) {
|
|
state = next;
|
|
COPY4(op, ip);
|
|
op += next;
|
|
ip += next;
|
|
continue;
|
|
}
|
|
} else {
|
|
NEED_OP(t);
|
|
do {
|
|
*op++ = *m_pos++;
|
|
} while (op < oe);
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
unsigned char *oe = op + t;
|
|
NEED_OP(t);
|
|
op[0] = m_pos[0];
|
|
op[1] = m_pos[1];
|
|
op += 2;
|
|
m_pos += 2;
|
|
do {
|
|
*op++ = *m_pos++;
|
|
} while (op < oe);
|
|
}
|
|
match_next:
|
|
state = next;
|
|
t = next;
|
|
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
|
|
if (likely(HAVE_IP(6) && HAVE_OP(4))) {
|
|
COPY4(op, ip);
|
|
op += t;
|
|
ip += t;
|
|
} else
|
|
#endif
|
|
{
|
|
NEED_IP(t + 3);
|
|
NEED_OP(t);
|
|
while (t > 0) {
|
|
*op++ = *ip++;
|
|
t--;
|
|
}
|
|
}
|
|
}
|
|
|
|
eof_found:
|
|
*out_len = op - out;
|
|
return (t != 3 ? LZO_E_ERROR :
|
|
ip == ip_end ? LZO_E_OK :
|
|
ip < ip_end ? LZO_E_INPUT_NOT_CONSUMED : LZO_E_INPUT_OVERRUN);
|
|
|
|
input_overrun:
|
|
*out_len = op - out;
|
|
return LZO_E_INPUT_OVERRUN;
|
|
|
|
output_overrun:
|
|
*out_len = op - out;
|
|
return LZO_E_OUTPUT_OVERRUN;
|
|
|
|
lookbehind_overrun:
|
|
*out_len = op - out;
|
|
return LZO_E_LOOKBEHIND_OVERRUN;
|
|
}
|
|
#ifndef STATIC
|
|
EXPORT_SYMBOL_GPL(lzo1x_decompress_safe);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("LZO1X Decompressor");
|
|
|
|
#endif
|