linux-next/fs/nfs/nfs4proc.c
Trond Myklebust 2135e5d562 NFSv4/pnfs: Fix a use-after-free bug in open
If someone cancels the open RPC call, then we must not try to free
either the open slot or the layoutget operation arguments, since they
are likely still in use by the hung RPC call.

Fixes: 6949493884fe ("NFSv4: Don't hold the layoutget locks across multiple RPC calls")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
2022-08-02 16:04:29 -04:00

10727 lines
286 KiB
C

/*
* fs/nfs/nfs4proc.c
*
* Client-side procedure declarations for NFSv4.
*
* Copyright (c) 2002 The Regents of the University of Michigan.
* All rights reserved.
*
* Kendrick Smith <kmsmith@umich.edu>
* Andy Adamson <andros@umich.edu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/ratelimit.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/sunrpc/clnt.h>
#include <linux/nfs.h>
#include <linux/nfs4.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_page.h>
#include <linux/nfs_mount.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/module.h>
#include <linux/xattr.h>
#include <linux/utsname.h>
#include <linux/freezer.h>
#include <linux/iversion.h>
#include "nfs4_fs.h"
#include "delegation.h"
#include "internal.h"
#include "iostat.h"
#include "callback.h"
#include "pnfs.h"
#include "netns.h"
#include "sysfs.h"
#include "nfs4idmap.h"
#include "nfs4session.h"
#include "fscache.h"
#include "nfs42.h"
#include "nfs4trace.h"
#define NFSDBG_FACILITY NFSDBG_PROC
#define NFS4_BITMASK_SZ 3
#define NFS4_POLL_RETRY_MIN (HZ/10)
#define NFS4_POLL_RETRY_MAX (15*HZ)
/* file attributes which can be mapped to nfs attributes */
#define NFS4_VALID_ATTRS (ATTR_MODE \
| ATTR_UID \
| ATTR_GID \
| ATTR_SIZE \
| ATTR_ATIME \
| ATTR_MTIME \
| ATTR_CTIME \
| ATTR_ATIME_SET \
| ATTR_MTIME_SET)
struct nfs4_opendata;
static int _nfs4_recover_proc_open(struct nfs4_opendata *data);
static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
static void nfs_fixup_referral_attributes(struct nfs_fattr *fattr);
static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fattr *fattr, struct inode *inode);
static int nfs4_do_setattr(struct inode *inode, const struct cred *cred,
struct nfs_fattr *fattr, struct iattr *sattr,
struct nfs_open_context *ctx, struct nfs4_label *ilabel);
#ifdef CONFIG_NFS_V4_1
static struct rpc_task *_nfs41_proc_sequence(struct nfs_client *clp,
const struct cred *cred,
struct nfs4_slot *slot,
bool is_privileged);
static int nfs41_test_stateid(struct nfs_server *, nfs4_stateid *,
const struct cred *);
static int nfs41_free_stateid(struct nfs_server *, const nfs4_stateid *,
const struct cred *, bool);
#endif
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
static inline struct nfs4_label *
nfs4_label_init_security(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, struct nfs4_label *label)
{
int err;
if (label == NULL)
return NULL;
if (nfs_server_capable(dir, NFS_CAP_SECURITY_LABEL) == 0)
return NULL;
err = security_dentry_init_security(dentry, sattr->ia_mode,
&dentry->d_name, NULL,
(void **)&label->label, &label->len);
if (err == 0)
return label;
return NULL;
}
static inline void
nfs4_label_release_security(struct nfs4_label *label)
{
if (label)
security_release_secctx(label->label, label->len);
}
static inline u32 *nfs4_bitmask(struct nfs_server *server, struct nfs4_label *label)
{
if (label)
return server->attr_bitmask;
return server->attr_bitmask_nl;
}
#else
static inline struct nfs4_label *
nfs4_label_init_security(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, struct nfs4_label *l)
{ return NULL; }
static inline void
nfs4_label_release_security(struct nfs4_label *label)
{ return; }
static inline u32 *
nfs4_bitmask(struct nfs_server *server, struct nfs4_label *label)
{ return server->attr_bitmask; }
#endif
/* Prevent leaks of NFSv4 errors into userland */
static int nfs4_map_errors(int err)
{
if (err >= -1000)
return err;
switch (err) {
case -NFS4ERR_RESOURCE:
case -NFS4ERR_LAYOUTTRYLATER:
case -NFS4ERR_RECALLCONFLICT:
return -EREMOTEIO;
case -NFS4ERR_WRONGSEC:
case -NFS4ERR_WRONG_CRED:
return -EPERM;
case -NFS4ERR_BADOWNER:
case -NFS4ERR_BADNAME:
return -EINVAL;
case -NFS4ERR_SHARE_DENIED:
return -EACCES;
case -NFS4ERR_MINOR_VERS_MISMATCH:
return -EPROTONOSUPPORT;
case -NFS4ERR_FILE_OPEN:
return -EBUSY;
case -NFS4ERR_NOT_SAME:
return -ENOTSYNC;
default:
dprintk("%s could not handle NFSv4 error %d\n",
__func__, -err);
break;
}
return -EIO;
}
/*
* This is our standard bitmap for GETATTR requests.
*/
const u32 nfs4_fattr_bitmap[3] = {
FATTR4_WORD0_TYPE
| FATTR4_WORD0_CHANGE
| FATTR4_WORD0_SIZE
| FATTR4_WORD0_FSID
| FATTR4_WORD0_FILEID,
FATTR4_WORD1_MODE
| FATTR4_WORD1_NUMLINKS
| FATTR4_WORD1_OWNER
| FATTR4_WORD1_OWNER_GROUP
| FATTR4_WORD1_RAWDEV
| FATTR4_WORD1_SPACE_USED
| FATTR4_WORD1_TIME_ACCESS
| FATTR4_WORD1_TIME_METADATA
| FATTR4_WORD1_TIME_MODIFY
| FATTR4_WORD1_MOUNTED_ON_FILEID,
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
FATTR4_WORD2_SECURITY_LABEL
#endif
};
static const u32 nfs4_pnfs_open_bitmap[3] = {
FATTR4_WORD0_TYPE
| FATTR4_WORD0_CHANGE
| FATTR4_WORD0_SIZE
| FATTR4_WORD0_FSID
| FATTR4_WORD0_FILEID,
FATTR4_WORD1_MODE
| FATTR4_WORD1_NUMLINKS
| FATTR4_WORD1_OWNER
| FATTR4_WORD1_OWNER_GROUP
| FATTR4_WORD1_RAWDEV
| FATTR4_WORD1_SPACE_USED
| FATTR4_WORD1_TIME_ACCESS
| FATTR4_WORD1_TIME_METADATA
| FATTR4_WORD1_TIME_MODIFY,
FATTR4_WORD2_MDSTHRESHOLD
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
| FATTR4_WORD2_SECURITY_LABEL
#endif
};
static const u32 nfs4_open_noattr_bitmap[3] = {
FATTR4_WORD0_TYPE
| FATTR4_WORD0_FILEID,
};
const u32 nfs4_statfs_bitmap[3] = {
FATTR4_WORD0_FILES_AVAIL
| FATTR4_WORD0_FILES_FREE
| FATTR4_WORD0_FILES_TOTAL,
FATTR4_WORD1_SPACE_AVAIL
| FATTR4_WORD1_SPACE_FREE
| FATTR4_WORD1_SPACE_TOTAL
};
const u32 nfs4_pathconf_bitmap[3] = {
FATTR4_WORD0_MAXLINK
| FATTR4_WORD0_MAXNAME,
0
};
const u32 nfs4_fsinfo_bitmap[3] = { FATTR4_WORD0_MAXFILESIZE
| FATTR4_WORD0_MAXREAD
| FATTR4_WORD0_MAXWRITE
| FATTR4_WORD0_LEASE_TIME,
FATTR4_WORD1_TIME_DELTA
| FATTR4_WORD1_FS_LAYOUT_TYPES,
FATTR4_WORD2_LAYOUT_BLKSIZE
| FATTR4_WORD2_CLONE_BLKSIZE
| FATTR4_WORD2_CHANGE_ATTR_TYPE
| FATTR4_WORD2_XATTR_SUPPORT
};
const u32 nfs4_fs_locations_bitmap[3] = {
FATTR4_WORD0_CHANGE
| FATTR4_WORD0_SIZE
| FATTR4_WORD0_FSID
| FATTR4_WORD0_FILEID
| FATTR4_WORD0_FS_LOCATIONS,
FATTR4_WORD1_OWNER
| FATTR4_WORD1_OWNER_GROUP
| FATTR4_WORD1_RAWDEV
| FATTR4_WORD1_SPACE_USED
| FATTR4_WORD1_TIME_ACCESS
| FATTR4_WORD1_TIME_METADATA
| FATTR4_WORD1_TIME_MODIFY
| FATTR4_WORD1_MOUNTED_ON_FILEID,
};
static void nfs4_bitmap_copy_adjust(__u32 *dst, const __u32 *src,
struct inode *inode, unsigned long flags)
{
unsigned long cache_validity;
memcpy(dst, src, NFS4_BITMASK_SZ*sizeof(*dst));
if (!inode || !nfs4_have_delegation(inode, FMODE_READ))
return;
cache_validity = READ_ONCE(NFS_I(inode)->cache_validity) | flags;
/* Remove the attributes over which we have full control */
dst[1] &= ~FATTR4_WORD1_RAWDEV;
if (!(cache_validity & NFS_INO_INVALID_SIZE))
dst[0] &= ~FATTR4_WORD0_SIZE;
if (!(cache_validity & NFS_INO_INVALID_CHANGE))
dst[0] &= ~FATTR4_WORD0_CHANGE;
if (!(cache_validity & NFS_INO_INVALID_MODE))
dst[1] &= ~FATTR4_WORD1_MODE;
if (!(cache_validity & NFS_INO_INVALID_OTHER))
dst[1] &= ~(FATTR4_WORD1_OWNER | FATTR4_WORD1_OWNER_GROUP);
}
static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
struct nfs4_readdir_arg *readdir)
{
unsigned int attrs = FATTR4_WORD0_FILEID | FATTR4_WORD0_TYPE;
__be32 *start, *p;
if (cookie > 2) {
readdir->cookie = cookie;
memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
return;
}
readdir->cookie = 0;
memset(&readdir->verifier, 0, sizeof(readdir->verifier));
if (cookie == 2)
return;
/*
* NFSv4 servers do not return entries for '.' and '..'
* Therefore, we fake these entries here. We let '.'
* have cookie 0 and '..' have cookie 1. Note that
* when talking to the server, we always send cookie 0
* instead of 1 or 2.
*/
start = p = kmap_atomic(*readdir->pages);
if (cookie == 0) {
*p++ = xdr_one; /* next */
*p++ = xdr_zero; /* cookie, first word */
*p++ = xdr_one; /* cookie, second word */
*p++ = xdr_one; /* entry len */
memcpy(p, ".\0\0\0", 4); /* entry */
p++;
*p++ = xdr_one; /* bitmap length */
*p++ = htonl(attrs); /* bitmap */
*p++ = htonl(12); /* attribute buffer length */
*p++ = htonl(NF4DIR);
p = xdr_encode_hyper(p, NFS_FILEID(d_inode(dentry)));
}
*p++ = xdr_one; /* next */
*p++ = xdr_zero; /* cookie, first word */
*p++ = xdr_two; /* cookie, second word */
*p++ = xdr_two; /* entry len */
memcpy(p, "..\0\0", 4); /* entry */
p++;
*p++ = xdr_one; /* bitmap length */
*p++ = htonl(attrs); /* bitmap */
*p++ = htonl(12); /* attribute buffer length */
*p++ = htonl(NF4DIR);
p = xdr_encode_hyper(p, NFS_FILEID(d_inode(dentry->d_parent)));
readdir->pgbase = (char *)p - (char *)start;
readdir->count -= readdir->pgbase;
kunmap_atomic(start);
}
static void nfs4_fattr_set_prechange(struct nfs_fattr *fattr, u64 version)
{
if (!(fattr->valid & NFS_ATTR_FATTR_PRECHANGE)) {
fattr->pre_change_attr = version;
fattr->valid |= NFS_ATTR_FATTR_PRECHANGE;
}
}
static void nfs4_test_and_free_stateid(struct nfs_server *server,
nfs4_stateid *stateid,
const struct cred *cred)
{
const struct nfs4_minor_version_ops *ops = server->nfs_client->cl_mvops;
ops->test_and_free_expired(server, stateid, cred);
}
static void __nfs4_free_revoked_stateid(struct nfs_server *server,
nfs4_stateid *stateid,
const struct cred *cred)
{
stateid->type = NFS4_REVOKED_STATEID_TYPE;
nfs4_test_and_free_stateid(server, stateid, cred);
}
static void nfs4_free_revoked_stateid(struct nfs_server *server,
const nfs4_stateid *stateid,
const struct cred *cred)
{
nfs4_stateid tmp;
nfs4_stateid_copy(&tmp, stateid);
__nfs4_free_revoked_stateid(server, &tmp, cred);
}
static long nfs4_update_delay(long *timeout)
{
long ret;
if (!timeout)
return NFS4_POLL_RETRY_MAX;
if (*timeout <= 0)
*timeout = NFS4_POLL_RETRY_MIN;
if (*timeout > NFS4_POLL_RETRY_MAX)
*timeout = NFS4_POLL_RETRY_MAX;
ret = *timeout;
*timeout <<= 1;
return ret;
}
static int nfs4_delay_killable(long *timeout)
{
might_sleep();
freezable_schedule_timeout_killable_unsafe(
nfs4_update_delay(timeout));
if (!__fatal_signal_pending(current))
return 0;
return -EINTR;
}
static int nfs4_delay_interruptible(long *timeout)
{
might_sleep();
freezable_schedule_timeout_interruptible_unsafe(nfs4_update_delay(timeout));
if (!signal_pending(current))
return 0;
return __fatal_signal_pending(current) ? -EINTR :-ERESTARTSYS;
}
static int nfs4_delay(long *timeout, bool interruptible)
{
if (interruptible)
return nfs4_delay_interruptible(timeout);
return nfs4_delay_killable(timeout);
}
static const nfs4_stateid *
nfs4_recoverable_stateid(const nfs4_stateid *stateid)
{
if (!stateid)
return NULL;
switch (stateid->type) {
case NFS4_OPEN_STATEID_TYPE:
case NFS4_LOCK_STATEID_TYPE:
case NFS4_DELEGATION_STATEID_TYPE:
return stateid;
default:
break;
}
return NULL;
}
/* This is the error handling routine for processes that are allowed
* to sleep.
*/
static int nfs4_do_handle_exception(struct nfs_server *server,
int errorcode, struct nfs4_exception *exception)
{
struct nfs_client *clp = server->nfs_client;
struct nfs4_state *state = exception->state;
const nfs4_stateid *stateid;
struct inode *inode = exception->inode;
int ret = errorcode;
exception->delay = 0;
exception->recovering = 0;
exception->retry = 0;
stateid = nfs4_recoverable_stateid(exception->stateid);
if (stateid == NULL && state != NULL)
stateid = nfs4_recoverable_stateid(&state->stateid);
switch(errorcode) {
case 0:
return 0;
case -NFS4ERR_BADHANDLE:
case -ESTALE:
if (inode != NULL && S_ISREG(inode->i_mode))
pnfs_destroy_layout(NFS_I(inode));
break;
case -NFS4ERR_DELEG_REVOKED:
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_EXPIRED:
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_PARTNER_NO_AUTH:
if (inode != NULL && stateid != NULL) {
nfs_inode_find_state_and_recover(inode,
stateid);
goto wait_on_recovery;
}
fallthrough;
case -NFS4ERR_OPENMODE:
if (inode) {
int err;
err = nfs_async_inode_return_delegation(inode,
stateid);
if (err == 0)
goto wait_on_recovery;
if (stateid != NULL && stateid->type == NFS4_DELEGATION_STATEID_TYPE) {
exception->retry = 1;
break;
}
}
if (state == NULL)
break;
ret = nfs4_schedule_stateid_recovery(server, state);
if (ret < 0)
break;
goto wait_on_recovery;
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_STALE_CLIENTID:
nfs4_schedule_lease_recovery(clp);
goto wait_on_recovery;
case -NFS4ERR_MOVED:
ret = nfs4_schedule_migration_recovery(server);
if (ret < 0)
break;
goto wait_on_recovery;
case -NFS4ERR_LEASE_MOVED:
nfs4_schedule_lease_moved_recovery(clp);
goto wait_on_recovery;
#if defined(CONFIG_NFS_V4_1)
case -NFS4ERR_BADSESSION:
case -NFS4ERR_BADSLOT:
case -NFS4ERR_BAD_HIGH_SLOT:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
case -NFS4ERR_DEADSESSION:
case -NFS4ERR_SEQ_FALSE_RETRY:
case -NFS4ERR_SEQ_MISORDERED:
/* Handled in nfs41_sequence_process() */
goto wait_on_recovery;
#endif /* defined(CONFIG_NFS_V4_1) */
case -NFS4ERR_FILE_OPEN:
if (exception->timeout > HZ) {
/* We have retried a decent amount, time to
* fail
*/
ret = -EBUSY;
break;
}
fallthrough;
case -NFS4ERR_DELAY:
nfs_inc_server_stats(server, NFSIOS_DELAY);
fallthrough;
case -NFS4ERR_GRACE:
case -NFS4ERR_LAYOUTTRYLATER:
case -NFS4ERR_RECALLCONFLICT:
exception->delay = 1;
return 0;
case -NFS4ERR_RETRY_UNCACHED_REP:
case -NFS4ERR_OLD_STATEID:
exception->retry = 1;
break;
case -NFS4ERR_BADOWNER:
/* The following works around a Linux server bug! */
case -NFS4ERR_BADNAME:
if (server->caps & NFS_CAP_UIDGID_NOMAP) {
server->caps &= ~NFS_CAP_UIDGID_NOMAP;
exception->retry = 1;
printk(KERN_WARNING "NFS: v4 server %s "
"does not accept raw "
"uid/gids. "
"Reenabling the idmapper.\n",
server->nfs_client->cl_hostname);
}
}
/* We failed to handle the error */
return nfs4_map_errors(ret);
wait_on_recovery:
exception->recovering = 1;
return 0;
}
/* This is the error handling routine for processes that are allowed
* to sleep.
*/
int nfs4_handle_exception(struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
{
struct nfs_client *clp = server->nfs_client;
int ret;
ret = nfs4_do_handle_exception(server, errorcode, exception);
if (exception->delay) {
ret = nfs4_delay(&exception->timeout,
exception->interruptible);
goto out_retry;
}
if (exception->recovering) {
if (exception->task_is_privileged)
return -EDEADLOCK;
ret = nfs4_wait_clnt_recover(clp);
if (test_bit(NFS_MIG_FAILED, &server->mig_status))
return -EIO;
goto out_retry;
}
return ret;
out_retry:
if (ret == 0)
exception->retry = 1;
return ret;
}
static int
nfs4_async_handle_exception(struct rpc_task *task, struct nfs_server *server,
int errorcode, struct nfs4_exception *exception)
{
struct nfs_client *clp = server->nfs_client;
int ret;
ret = nfs4_do_handle_exception(server, errorcode, exception);
if (exception->delay) {
rpc_delay(task, nfs4_update_delay(&exception->timeout));
goto out_retry;
}
if (exception->recovering) {
if (exception->task_is_privileged)
return -EDEADLOCK;
rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL);
if (test_bit(NFS4CLNT_MANAGER_RUNNING, &clp->cl_state) == 0)
rpc_wake_up_queued_task(&clp->cl_rpcwaitq, task);
goto out_retry;
}
if (test_bit(NFS_MIG_FAILED, &server->mig_status))
ret = -EIO;
return ret;
out_retry:
if (ret == 0) {
exception->retry = 1;
/*
* For NFS4ERR_MOVED, the client transport will need to
* be recomputed after migration recovery has completed.
*/
if (errorcode == -NFS4ERR_MOVED)
rpc_task_release_transport(task);
}
return ret;
}
int
nfs4_async_handle_error(struct rpc_task *task, struct nfs_server *server,
struct nfs4_state *state, long *timeout)
{
struct nfs4_exception exception = {
.state = state,
};
if (task->tk_status >= 0)
return 0;
if (timeout)
exception.timeout = *timeout;
task->tk_status = nfs4_async_handle_exception(task, server,
task->tk_status,
&exception);
if (exception.delay && timeout)
*timeout = exception.timeout;
if (exception.retry)
return -EAGAIN;
return 0;
}
/*
* Return 'true' if 'clp' is using an rpc_client that is integrity protected
* or 'false' otherwise.
*/
static bool _nfs4_is_integrity_protected(struct nfs_client *clp)
{
rpc_authflavor_t flavor = clp->cl_rpcclient->cl_auth->au_flavor;
return (flavor == RPC_AUTH_GSS_KRB5I) || (flavor == RPC_AUTH_GSS_KRB5P);
}
static void do_renew_lease(struct nfs_client *clp, unsigned long timestamp)
{
spin_lock(&clp->cl_lock);
if (time_before(clp->cl_last_renewal,timestamp))
clp->cl_last_renewal = timestamp;
spin_unlock(&clp->cl_lock);
}
static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
{
struct nfs_client *clp = server->nfs_client;
if (!nfs4_has_session(clp))
do_renew_lease(clp, timestamp);
}
struct nfs4_call_sync_data {
const struct nfs_server *seq_server;
struct nfs4_sequence_args *seq_args;
struct nfs4_sequence_res *seq_res;
};
void nfs4_init_sequence(struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res, int cache_reply,
int privileged)
{
args->sa_slot = NULL;
args->sa_cache_this = cache_reply;
args->sa_privileged = privileged;
res->sr_slot = NULL;
}
static void nfs40_sequence_free_slot(struct nfs4_sequence_res *res)
{
struct nfs4_slot *slot = res->sr_slot;
struct nfs4_slot_table *tbl;
tbl = slot->table;
spin_lock(&tbl->slot_tbl_lock);
if (!nfs41_wake_and_assign_slot(tbl, slot))
nfs4_free_slot(tbl, slot);
spin_unlock(&tbl->slot_tbl_lock);
res->sr_slot = NULL;
}
static int nfs40_sequence_done(struct rpc_task *task,
struct nfs4_sequence_res *res)
{
if (res->sr_slot != NULL)
nfs40_sequence_free_slot(res);
return 1;
}
#if defined(CONFIG_NFS_V4_1)
static void nfs41_release_slot(struct nfs4_slot *slot)
{
struct nfs4_session *session;
struct nfs4_slot_table *tbl;
bool send_new_highest_used_slotid = false;
if (!slot)
return;
tbl = slot->table;
session = tbl->session;
/* Bump the slot sequence number */
if (slot->seq_done)
slot->seq_nr++;
slot->seq_done = 0;
spin_lock(&tbl->slot_tbl_lock);
/* Be nice to the server: try to ensure that the last transmitted
* value for highest_user_slotid <= target_highest_slotid
*/
if (tbl->highest_used_slotid > tbl->target_highest_slotid)
send_new_highest_used_slotid = true;
if (nfs41_wake_and_assign_slot(tbl, slot)) {
send_new_highest_used_slotid = false;
goto out_unlock;
}
nfs4_free_slot(tbl, slot);
if (tbl->highest_used_slotid != NFS4_NO_SLOT)
send_new_highest_used_slotid = false;
out_unlock:
spin_unlock(&tbl->slot_tbl_lock);
if (send_new_highest_used_slotid)
nfs41_notify_server(session->clp);
if (waitqueue_active(&tbl->slot_waitq))
wake_up_all(&tbl->slot_waitq);
}
static void nfs41_sequence_free_slot(struct nfs4_sequence_res *res)
{
nfs41_release_slot(res->sr_slot);
res->sr_slot = NULL;
}
static void nfs4_slot_sequence_record_sent(struct nfs4_slot *slot,
u32 seqnr)
{
if ((s32)(seqnr - slot->seq_nr_highest_sent) > 0)
slot->seq_nr_highest_sent = seqnr;
}
static void nfs4_slot_sequence_acked(struct nfs4_slot *slot, u32 seqnr)
{
nfs4_slot_sequence_record_sent(slot, seqnr);
slot->seq_nr_last_acked = seqnr;
}
static void nfs4_probe_sequence(struct nfs_client *client, const struct cred *cred,
struct nfs4_slot *slot)
{
struct rpc_task *task = _nfs41_proc_sequence(client, cred, slot, true);
if (!IS_ERR(task))
rpc_put_task_async(task);
}
static int nfs41_sequence_process(struct rpc_task *task,
struct nfs4_sequence_res *res)
{
struct nfs4_session *session;
struct nfs4_slot *slot = res->sr_slot;
struct nfs_client *clp;
int status;
int ret = 1;
if (slot == NULL)
goto out_noaction;
/* don't increment the sequence number if the task wasn't sent */
if (!RPC_WAS_SENT(task) || slot->seq_done)
goto out;
session = slot->table->session;
clp = session->clp;
trace_nfs4_sequence_done(session, res);
status = res->sr_status;
if (task->tk_status == -NFS4ERR_DEADSESSION)
status = -NFS4ERR_DEADSESSION;
/* Check the SEQUENCE operation status */
switch (status) {
case 0:
/* Mark this sequence number as having been acked */
nfs4_slot_sequence_acked(slot, slot->seq_nr);
/* Update the slot's sequence and clientid lease timer */
slot->seq_done = 1;
do_renew_lease(clp, res->sr_timestamp);
/* Check sequence flags */
nfs41_handle_sequence_flag_errors(clp, res->sr_status_flags,
!!slot->privileged);
nfs41_update_target_slotid(slot->table, slot, res);
break;
case 1:
/*
* sr_status remains 1 if an RPC level error occurred.
* The server may or may not have processed the sequence
* operation..
*/
nfs4_slot_sequence_record_sent(slot, slot->seq_nr);
slot->seq_done = 1;
goto out;
case -NFS4ERR_DELAY:
/* The server detected a resend of the RPC call and
* returned NFS4ERR_DELAY as per Section 2.10.6.2
* of RFC5661.
*/
dprintk("%s: slot=%u seq=%u: Operation in progress\n",
__func__,
slot->slot_nr,
slot->seq_nr);
goto out_retry;
case -NFS4ERR_RETRY_UNCACHED_REP:
case -NFS4ERR_SEQ_FALSE_RETRY:
/*
* The server thinks we tried to replay a request.
* Retry the call after bumping the sequence ID.
*/
nfs4_slot_sequence_acked(slot, slot->seq_nr);
goto retry_new_seq;
case -NFS4ERR_BADSLOT:
/*
* The slot id we used was probably retired. Try again
* using a different slot id.
*/
if (slot->slot_nr < slot->table->target_highest_slotid)
goto session_recover;
goto retry_nowait;
case -NFS4ERR_SEQ_MISORDERED:
nfs4_slot_sequence_record_sent(slot, slot->seq_nr);
/*
* Were one or more calls using this slot interrupted?
* If the server never received the request, then our
* transmitted slot sequence number may be too high. However,
* if the server did receive the request then it might
* accidentally give us a reply with a mismatched operation.
* We can sort this out by sending a lone sequence operation
* to the server on the same slot.
*/
if ((s32)(slot->seq_nr - slot->seq_nr_last_acked) > 1) {
slot->seq_nr--;
if (task->tk_msg.rpc_proc != &nfs4_procedures[NFSPROC4_CLNT_SEQUENCE]) {
nfs4_probe_sequence(clp, task->tk_msg.rpc_cred, slot);
res->sr_slot = NULL;
}
goto retry_nowait;
}
/*
* RFC5661:
* A retry might be sent while the original request is
* still in progress on the replier. The replier SHOULD
* deal with the issue by returning NFS4ERR_DELAY as the
* reply to SEQUENCE or CB_SEQUENCE operation, but
* implementations MAY return NFS4ERR_SEQ_MISORDERED.
*
* Restart the search after a delay.
*/
slot->seq_nr = slot->seq_nr_highest_sent;
goto out_retry;
case -NFS4ERR_BADSESSION:
case -NFS4ERR_DEADSESSION:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
goto session_recover;
default:
/* Just update the slot sequence no. */
slot->seq_done = 1;
}
out:
/* The session may be reset by one of the error handlers. */
dprintk("%s: Error %d free the slot \n", __func__, res->sr_status);
out_noaction:
return ret;
session_recover:
nfs4_schedule_session_recovery(session, status);
dprintk("%s ERROR: %d Reset session\n", __func__, status);
nfs41_sequence_free_slot(res);
goto out;
retry_new_seq:
++slot->seq_nr;
retry_nowait:
if (rpc_restart_call_prepare(task)) {
nfs41_sequence_free_slot(res);
task->tk_status = 0;
ret = 0;
}
goto out;
out_retry:
if (!rpc_restart_call(task))
goto out;
rpc_delay(task, NFS4_POLL_RETRY_MAX);
return 0;
}
int nfs41_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res)
{
if (!nfs41_sequence_process(task, res))
return 0;
if (res->sr_slot != NULL)
nfs41_sequence_free_slot(res);
return 1;
}
EXPORT_SYMBOL_GPL(nfs41_sequence_done);
static int nfs4_sequence_process(struct rpc_task *task, struct nfs4_sequence_res *res)
{
if (res->sr_slot == NULL)
return 1;
if (res->sr_slot->table->session != NULL)
return nfs41_sequence_process(task, res);
return nfs40_sequence_done(task, res);
}
static void nfs4_sequence_free_slot(struct nfs4_sequence_res *res)
{
if (res->sr_slot != NULL) {
if (res->sr_slot->table->session != NULL)
nfs41_sequence_free_slot(res);
else
nfs40_sequence_free_slot(res);
}
}
int nfs4_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res)
{
if (res->sr_slot == NULL)
return 1;
if (!res->sr_slot->table->session)
return nfs40_sequence_done(task, res);
return nfs41_sequence_done(task, res);
}
EXPORT_SYMBOL_GPL(nfs4_sequence_done);
static void nfs41_call_sync_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_call_sync_data *data = calldata;
dprintk("--> %s data->seq_server %p\n", __func__, data->seq_server);
nfs4_setup_sequence(data->seq_server->nfs_client,
data->seq_args, data->seq_res, task);
}
static void nfs41_call_sync_done(struct rpc_task *task, void *calldata)
{
struct nfs4_call_sync_data *data = calldata;
nfs41_sequence_done(task, data->seq_res);
}
static const struct rpc_call_ops nfs41_call_sync_ops = {
.rpc_call_prepare = nfs41_call_sync_prepare,
.rpc_call_done = nfs41_call_sync_done,
};
#else /* !CONFIG_NFS_V4_1 */
static int nfs4_sequence_process(struct rpc_task *task, struct nfs4_sequence_res *res)
{
return nfs40_sequence_done(task, res);
}
static void nfs4_sequence_free_slot(struct nfs4_sequence_res *res)
{
if (res->sr_slot != NULL)
nfs40_sequence_free_slot(res);
}
int nfs4_sequence_done(struct rpc_task *task,
struct nfs4_sequence_res *res)
{
return nfs40_sequence_done(task, res);
}
EXPORT_SYMBOL_GPL(nfs4_sequence_done);
#endif /* !CONFIG_NFS_V4_1 */
static void nfs41_sequence_res_init(struct nfs4_sequence_res *res)
{
res->sr_timestamp = jiffies;
res->sr_status_flags = 0;
res->sr_status = 1;
}
static
void nfs4_sequence_attach_slot(struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
struct nfs4_slot *slot)
{
if (!slot)
return;
slot->privileged = args->sa_privileged ? 1 : 0;
args->sa_slot = slot;
res->sr_slot = slot;
}
int nfs4_setup_sequence(struct nfs_client *client,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
struct rpc_task *task)
{
struct nfs4_session *session = nfs4_get_session(client);
struct nfs4_slot_table *tbl = client->cl_slot_tbl;
struct nfs4_slot *slot;
/* slot already allocated? */
if (res->sr_slot != NULL)
goto out_start;
if (session)
tbl = &session->fc_slot_table;
spin_lock(&tbl->slot_tbl_lock);
/* The state manager will wait until the slot table is empty */
if (nfs4_slot_tbl_draining(tbl) && !args->sa_privileged)
goto out_sleep;
slot = nfs4_alloc_slot(tbl);
if (IS_ERR(slot)) {
if (slot == ERR_PTR(-ENOMEM))
goto out_sleep_timeout;
goto out_sleep;
}
spin_unlock(&tbl->slot_tbl_lock);
nfs4_sequence_attach_slot(args, res, slot);
trace_nfs4_setup_sequence(session, args);
out_start:
nfs41_sequence_res_init(res);
rpc_call_start(task);
return 0;
out_sleep_timeout:
/* Try again in 1/4 second */
if (args->sa_privileged)
rpc_sleep_on_priority_timeout(&tbl->slot_tbl_waitq, task,
jiffies + (HZ >> 2), RPC_PRIORITY_PRIVILEGED);
else
rpc_sleep_on_timeout(&tbl->slot_tbl_waitq, task,
NULL, jiffies + (HZ >> 2));
spin_unlock(&tbl->slot_tbl_lock);
return -EAGAIN;
out_sleep:
if (args->sa_privileged)
rpc_sleep_on_priority(&tbl->slot_tbl_waitq, task,
RPC_PRIORITY_PRIVILEGED);
else
rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL);
spin_unlock(&tbl->slot_tbl_lock);
return -EAGAIN;
}
EXPORT_SYMBOL_GPL(nfs4_setup_sequence);
static void nfs40_call_sync_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_call_sync_data *data = calldata;
nfs4_setup_sequence(data->seq_server->nfs_client,
data->seq_args, data->seq_res, task);
}
static void nfs40_call_sync_done(struct rpc_task *task, void *calldata)
{
struct nfs4_call_sync_data *data = calldata;
nfs4_sequence_done(task, data->seq_res);
}
static const struct rpc_call_ops nfs40_call_sync_ops = {
.rpc_call_prepare = nfs40_call_sync_prepare,
.rpc_call_done = nfs40_call_sync_done,
};
static int nfs4_call_sync_custom(struct rpc_task_setup *task_setup)
{
int ret;
struct rpc_task *task;
task = rpc_run_task(task_setup);
if (IS_ERR(task))
return PTR_ERR(task);
ret = task->tk_status;
rpc_put_task(task);
return ret;
}
static int nfs4_do_call_sync(struct rpc_clnt *clnt,
struct nfs_server *server,
struct rpc_message *msg,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
unsigned short task_flags)
{
struct nfs_client *clp = server->nfs_client;
struct nfs4_call_sync_data data = {
.seq_server = server,
.seq_args = args,
.seq_res = res,
};
struct rpc_task_setup task_setup = {
.rpc_client = clnt,
.rpc_message = msg,
.callback_ops = clp->cl_mvops->call_sync_ops,
.callback_data = &data,
.flags = task_flags,
};
return nfs4_call_sync_custom(&task_setup);
}
static int nfs4_call_sync_sequence(struct rpc_clnt *clnt,
struct nfs_server *server,
struct rpc_message *msg,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res)
{
unsigned short task_flags = 0;
if (server->caps & NFS_CAP_MOVEABLE)
task_flags = RPC_TASK_MOVEABLE;
return nfs4_do_call_sync(clnt, server, msg, args, res, task_flags);
}
int nfs4_call_sync(struct rpc_clnt *clnt,
struct nfs_server *server,
struct rpc_message *msg,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
int cache_reply)
{
nfs4_init_sequence(args, res, cache_reply, 0);
return nfs4_call_sync_sequence(clnt, server, msg, args, res);
}
static void
nfs4_inc_nlink_locked(struct inode *inode)
{
nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE |
NFS_INO_INVALID_CTIME |
NFS_INO_INVALID_NLINK);
inc_nlink(inode);
}
static void
nfs4_inc_nlink(struct inode *inode)
{
spin_lock(&inode->i_lock);
nfs4_inc_nlink_locked(inode);
spin_unlock(&inode->i_lock);
}
static void
nfs4_dec_nlink_locked(struct inode *inode)
{
nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE |
NFS_INO_INVALID_CTIME |
NFS_INO_INVALID_NLINK);
drop_nlink(inode);
}
static void
nfs4_update_changeattr_locked(struct inode *inode,
struct nfs4_change_info *cinfo,
unsigned long timestamp, unsigned long cache_validity)
{
struct nfs_inode *nfsi = NFS_I(inode);
u64 change_attr = inode_peek_iversion_raw(inode);
cache_validity |= NFS_INO_INVALID_CTIME | NFS_INO_INVALID_MTIME;
if (S_ISDIR(inode->i_mode))
cache_validity |= NFS_INO_INVALID_DATA;
switch (NFS_SERVER(inode)->change_attr_type) {
case NFS4_CHANGE_TYPE_IS_UNDEFINED:
if (cinfo->after == change_attr)
goto out;
break;
default:
if ((s64)(change_attr - cinfo->after) >= 0)
goto out;
}
inode_set_iversion_raw(inode, cinfo->after);
if (!cinfo->atomic || cinfo->before != change_attr) {
if (S_ISDIR(inode->i_mode))
nfs_force_lookup_revalidate(inode);
if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
cache_validity |=
NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL |
NFS_INO_INVALID_SIZE | NFS_INO_INVALID_OTHER |
NFS_INO_INVALID_BLOCKS | NFS_INO_INVALID_NLINK |
NFS_INO_INVALID_MODE | NFS_INO_INVALID_XATTR;
nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
}
nfsi->attrtimeo_timestamp = jiffies;
nfsi->read_cache_jiffies = timestamp;
nfsi->attr_gencount = nfs_inc_attr_generation_counter();
nfsi->cache_validity &= ~NFS_INO_INVALID_CHANGE;
out:
nfs_set_cache_invalid(inode, cache_validity);
}
void
nfs4_update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo,
unsigned long timestamp, unsigned long cache_validity)
{
spin_lock(&dir->i_lock);
nfs4_update_changeattr_locked(dir, cinfo, timestamp, cache_validity);
spin_unlock(&dir->i_lock);
}
struct nfs4_open_createattrs {
struct nfs4_label *label;
struct iattr *sattr;
const __u32 verf[2];
};
static bool nfs4_clear_cap_atomic_open_v1(struct nfs_server *server,
int err, struct nfs4_exception *exception)
{
if (err != -EINVAL)
return false;
if (!(server->caps & NFS_CAP_ATOMIC_OPEN_V1))
return false;
server->caps &= ~NFS_CAP_ATOMIC_OPEN_V1;
exception->retry = 1;
return true;
}
static fmode_t _nfs4_ctx_to_accessmode(const struct nfs_open_context *ctx)
{
return ctx->mode & (FMODE_READ|FMODE_WRITE|FMODE_EXEC);
}
static fmode_t _nfs4_ctx_to_openmode(const struct nfs_open_context *ctx)
{
fmode_t ret = ctx->mode & (FMODE_READ|FMODE_WRITE);
return (ctx->mode & FMODE_EXEC) ? FMODE_READ | ret : ret;
}
static u32
nfs4_map_atomic_open_share(struct nfs_server *server,
fmode_t fmode, int openflags)
{
u32 res = 0;
switch (fmode & (FMODE_READ | FMODE_WRITE)) {
case FMODE_READ:
res = NFS4_SHARE_ACCESS_READ;
break;
case FMODE_WRITE:
res = NFS4_SHARE_ACCESS_WRITE;
break;
case FMODE_READ|FMODE_WRITE:
res = NFS4_SHARE_ACCESS_BOTH;
}
if (!(server->caps & NFS_CAP_ATOMIC_OPEN_V1))
goto out;
/* Want no delegation if we're using O_DIRECT */
if (openflags & O_DIRECT)
res |= NFS4_SHARE_WANT_NO_DELEG;
out:
return res;
}
static enum open_claim_type4
nfs4_map_atomic_open_claim(struct nfs_server *server,
enum open_claim_type4 claim)
{
if (server->caps & NFS_CAP_ATOMIC_OPEN_V1)
return claim;
switch (claim) {
default:
return claim;
case NFS4_OPEN_CLAIM_FH:
return NFS4_OPEN_CLAIM_NULL;
case NFS4_OPEN_CLAIM_DELEG_CUR_FH:
return NFS4_OPEN_CLAIM_DELEGATE_CUR;
case NFS4_OPEN_CLAIM_DELEG_PREV_FH:
return NFS4_OPEN_CLAIM_DELEGATE_PREV;
}
}
static void nfs4_init_opendata_res(struct nfs4_opendata *p)
{
p->o_res.f_attr = &p->f_attr;
p->o_res.seqid = p->o_arg.seqid;
p->c_res.seqid = p->c_arg.seqid;
p->o_res.server = p->o_arg.server;
p->o_res.access_request = p->o_arg.access;
nfs_fattr_init(&p->f_attr);
nfs_fattr_init_names(&p->f_attr, &p->owner_name, &p->group_name);
}
static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
struct nfs4_state_owner *sp, fmode_t fmode, int flags,
const struct nfs4_open_createattrs *c,
enum open_claim_type4 claim,
gfp_t gfp_mask)
{
struct dentry *parent = dget_parent(dentry);
struct inode *dir = d_inode(parent);
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_seqid *(*alloc_seqid)(struct nfs_seqid_counter *, gfp_t);
struct nfs4_label *label = (c != NULL) ? c->label : NULL;
struct nfs4_opendata *p;
p = kzalloc(sizeof(*p), gfp_mask);
if (p == NULL)
goto err;
p->f_attr.label = nfs4_label_alloc(server, gfp_mask);
if (IS_ERR(p->f_attr.label))
goto err_free_p;
p->a_label = nfs4_label_alloc(server, gfp_mask);
if (IS_ERR(p->a_label))
goto err_free_f;
alloc_seqid = server->nfs_client->cl_mvops->alloc_seqid;
p->o_arg.seqid = alloc_seqid(&sp->so_seqid, gfp_mask);
if (IS_ERR(p->o_arg.seqid))
goto err_free_label;
nfs_sb_active(dentry->d_sb);
p->dentry = dget(dentry);
p->dir = parent;
p->owner = sp;
atomic_inc(&sp->so_count);
p->o_arg.open_flags = flags;
p->o_arg.fmode = fmode & (FMODE_READ|FMODE_WRITE);
p->o_arg.claim = nfs4_map_atomic_open_claim(server, claim);
p->o_arg.share_access = nfs4_map_atomic_open_share(server,
fmode, flags);
if (flags & O_CREAT) {
p->o_arg.umask = current_umask();
p->o_arg.label = nfs4_label_copy(p->a_label, label);
if (c->sattr != NULL && c->sattr->ia_valid != 0) {
p->o_arg.u.attrs = &p->attrs;
memcpy(&p->attrs, c->sattr, sizeof(p->attrs));
memcpy(p->o_arg.u.verifier.data, c->verf,
sizeof(p->o_arg.u.verifier.data));
}
}
/* ask server to check for all possible rights as results
* are cached */
switch (p->o_arg.claim) {
default:
break;
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_FH:
p->o_arg.access = NFS4_ACCESS_READ | NFS4_ACCESS_MODIFY |
NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE |
NFS4_ACCESS_EXECUTE |
nfs_access_xattr_mask(server);
}
p->o_arg.clientid = server->nfs_client->cl_clientid;
p->o_arg.id.create_time = ktime_to_ns(sp->so_seqid.create_time);
p->o_arg.id.uniquifier = sp->so_seqid.owner_id;
p->o_arg.name = &dentry->d_name;
p->o_arg.server = server;
p->o_arg.bitmask = nfs4_bitmask(server, label);
p->o_arg.open_bitmap = &nfs4_fattr_bitmap[0];
switch (p->o_arg.claim) {
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_DELEGATE_CUR:
case NFS4_OPEN_CLAIM_DELEGATE_PREV:
p->o_arg.fh = NFS_FH(dir);
break;
case NFS4_OPEN_CLAIM_PREVIOUS:
case NFS4_OPEN_CLAIM_FH:
case NFS4_OPEN_CLAIM_DELEG_CUR_FH:
case NFS4_OPEN_CLAIM_DELEG_PREV_FH:
p->o_arg.fh = NFS_FH(d_inode(dentry));
}
p->c_arg.fh = &p->o_res.fh;
p->c_arg.stateid = &p->o_res.stateid;
p->c_arg.seqid = p->o_arg.seqid;
nfs4_init_opendata_res(p);
kref_init(&p->kref);
return p;
err_free_label:
nfs4_label_free(p->a_label);
err_free_f:
nfs4_label_free(p->f_attr.label);
err_free_p:
kfree(p);
err:
dput(parent);
return NULL;
}
static void nfs4_opendata_free(struct kref *kref)
{
struct nfs4_opendata *p = container_of(kref,
struct nfs4_opendata, kref);
struct super_block *sb = p->dentry->d_sb;
nfs4_lgopen_release(p->lgp);
nfs_free_seqid(p->o_arg.seqid);
nfs4_sequence_free_slot(&p->o_res.seq_res);
if (p->state != NULL)
nfs4_put_open_state(p->state);
nfs4_put_state_owner(p->owner);
nfs4_label_free(p->a_label);
nfs4_label_free(p->f_attr.label);
dput(p->dir);
dput(p->dentry);
nfs_sb_deactive(sb);
nfs_fattr_free_names(&p->f_attr);
kfree(p->f_attr.mdsthreshold);
kfree(p);
}
static void nfs4_opendata_put(struct nfs4_opendata *p)
{
if (p != NULL)
kref_put(&p->kref, nfs4_opendata_free);
}
static bool nfs4_mode_match_open_stateid(struct nfs4_state *state,
fmode_t fmode)
{
switch(fmode & (FMODE_READ|FMODE_WRITE)) {
case FMODE_READ|FMODE_WRITE:
return state->n_rdwr != 0;
case FMODE_WRITE:
return state->n_wronly != 0;
case FMODE_READ:
return state->n_rdonly != 0;
}
WARN_ON_ONCE(1);
return false;
}
static int can_open_cached(struct nfs4_state *state, fmode_t mode,
int open_mode, enum open_claim_type4 claim)
{
int ret = 0;
if (open_mode & (O_EXCL|O_TRUNC))
goto out;
switch (claim) {
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_FH:
goto out;
default:
break;
}
switch (mode & (FMODE_READ|FMODE_WRITE)) {
case FMODE_READ:
ret |= test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0
&& state->n_rdonly != 0;
break;
case FMODE_WRITE:
ret |= test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0
&& state->n_wronly != 0;
break;
case FMODE_READ|FMODE_WRITE:
ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0
&& state->n_rdwr != 0;
}
out:
return ret;
}
static int can_open_delegated(struct nfs_delegation *delegation, fmode_t fmode,
enum open_claim_type4 claim)
{
if (delegation == NULL)
return 0;
if ((delegation->type & fmode) != fmode)
return 0;
switch (claim) {
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_FH:
break;
case NFS4_OPEN_CLAIM_PREVIOUS:
if (!test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags))
break;
fallthrough;
default:
return 0;
}
nfs_mark_delegation_referenced(delegation);
return 1;
}
static void update_open_stateflags(struct nfs4_state *state, fmode_t fmode)
{
switch (fmode) {
case FMODE_WRITE:
state->n_wronly++;
break;
case FMODE_READ:
state->n_rdonly++;
break;
case FMODE_READ|FMODE_WRITE:
state->n_rdwr++;
}
nfs4_state_set_mode_locked(state, state->state | fmode);
}
#ifdef CONFIG_NFS_V4_1
static bool nfs_open_stateid_recover_openmode(struct nfs4_state *state)
{
if (state->n_rdonly && !test_bit(NFS_O_RDONLY_STATE, &state->flags))
return true;
if (state->n_wronly && !test_bit(NFS_O_WRONLY_STATE, &state->flags))
return true;
if (state->n_rdwr && !test_bit(NFS_O_RDWR_STATE, &state->flags))
return true;
return false;
}
#endif /* CONFIG_NFS_V4_1 */
static void nfs_state_log_update_open_stateid(struct nfs4_state *state)
{
if (test_and_clear_bit(NFS_STATE_CHANGE_WAIT, &state->flags))
wake_up_all(&state->waitq);
}
static void nfs_test_and_clear_all_open_stateid(struct nfs4_state *state)
{
struct nfs_client *clp = state->owner->so_server->nfs_client;
bool need_recover = false;
if (test_and_clear_bit(NFS_O_RDONLY_STATE, &state->flags) && state->n_rdonly)
need_recover = true;
if (test_and_clear_bit(NFS_O_WRONLY_STATE, &state->flags) && state->n_wronly)
need_recover = true;
if (test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags) && state->n_rdwr)
need_recover = true;
if (need_recover)
nfs4_state_mark_reclaim_nograce(clp, state);
}
/*
* Check for whether or not the caller may update the open stateid
* to the value passed in by stateid.
*
* Note: This function relies heavily on the server implementing
* RFC7530 Section 9.1.4.2, and RFC5661 Section 8.2.2
* correctly.
* i.e. The stateid seqids have to be initialised to 1, and
* are then incremented on every state transition.
*/
static bool nfs_stateid_is_sequential(struct nfs4_state *state,
const nfs4_stateid *stateid)
{
if (test_bit(NFS_OPEN_STATE, &state->flags)) {
/* The common case - we're updating to a new sequence number */
if (nfs4_stateid_match_other(stateid, &state->open_stateid)) {
if (nfs4_stateid_is_next(&state->open_stateid, stateid))
return true;
return false;
}
/* The server returned a new stateid */
}
/* This is the first OPEN in this generation */
if (stateid->seqid == cpu_to_be32(1))
return true;
return false;
}
static void nfs_resync_open_stateid_locked(struct nfs4_state *state)
{
if (!(state->n_wronly || state->n_rdonly || state->n_rdwr))
return;
if (state->n_wronly)
set_bit(NFS_O_WRONLY_STATE, &state->flags);
if (state->n_rdonly)
set_bit(NFS_O_RDONLY_STATE, &state->flags);
if (state->n_rdwr)
set_bit(NFS_O_RDWR_STATE, &state->flags);
set_bit(NFS_OPEN_STATE, &state->flags);
}
static void nfs_clear_open_stateid_locked(struct nfs4_state *state,
nfs4_stateid *stateid, fmode_t fmode)
{
clear_bit(NFS_O_RDWR_STATE, &state->flags);
switch (fmode & (FMODE_READ|FMODE_WRITE)) {
case FMODE_WRITE:
clear_bit(NFS_O_RDONLY_STATE, &state->flags);
break;
case FMODE_READ:
clear_bit(NFS_O_WRONLY_STATE, &state->flags);
break;
case 0:
clear_bit(NFS_O_RDONLY_STATE, &state->flags);
clear_bit(NFS_O_WRONLY_STATE, &state->flags);
clear_bit(NFS_OPEN_STATE, &state->flags);
}
if (stateid == NULL)
return;
/* Handle OPEN+OPEN_DOWNGRADE races */
if (nfs4_stateid_match_other(stateid, &state->open_stateid) &&
!nfs4_stateid_is_newer(stateid, &state->open_stateid)) {
nfs_resync_open_stateid_locked(state);
goto out;
}
if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
nfs4_stateid_copy(&state->stateid, stateid);
nfs4_stateid_copy(&state->open_stateid, stateid);
trace_nfs4_open_stateid_update(state->inode, stateid, 0);
out:
nfs_state_log_update_open_stateid(state);
}
static void nfs_clear_open_stateid(struct nfs4_state *state,
nfs4_stateid *arg_stateid,
nfs4_stateid *stateid, fmode_t fmode)
{
write_seqlock(&state->seqlock);
/* Ignore, if the CLOSE argment doesn't match the current stateid */
if (nfs4_state_match_open_stateid_other(state, arg_stateid))
nfs_clear_open_stateid_locked(state, stateid, fmode);
write_sequnlock(&state->seqlock);
if (test_bit(NFS_STATE_RECLAIM_NOGRACE, &state->flags))
nfs4_schedule_state_manager(state->owner->so_server->nfs_client);
}
static void nfs_set_open_stateid_locked(struct nfs4_state *state,
const nfs4_stateid *stateid, nfs4_stateid *freeme)
__must_hold(&state->owner->so_lock)
__must_hold(&state->seqlock)
__must_hold(RCU)
{
DEFINE_WAIT(wait);
int status = 0;
for (;;) {
if (nfs_stateid_is_sequential(state, stateid))
break;
if (status)
break;
/* Rely on seqids for serialisation with NFSv4.0 */
if (!nfs4_has_session(NFS_SERVER(state->inode)->nfs_client))
break;
set_bit(NFS_STATE_CHANGE_WAIT, &state->flags);
prepare_to_wait(&state->waitq, &wait, TASK_KILLABLE);
/*
* Ensure we process the state changes in the same order
* in which the server processed them by delaying the
* update of the stateid until we are in sequence.
*/
write_sequnlock(&state->seqlock);
spin_unlock(&state->owner->so_lock);
rcu_read_unlock();
trace_nfs4_open_stateid_update_wait(state->inode, stateid, 0);
if (!fatal_signal_pending(current)) {
if (schedule_timeout(5*HZ) == 0)
status = -EAGAIN;
else
status = 0;
} else
status = -EINTR;
finish_wait(&state->waitq, &wait);
rcu_read_lock();
spin_lock(&state->owner->so_lock);
write_seqlock(&state->seqlock);
}
if (test_bit(NFS_OPEN_STATE, &state->flags) &&
!nfs4_stateid_match_other(stateid, &state->open_stateid)) {
nfs4_stateid_copy(freeme, &state->open_stateid);
nfs_test_and_clear_all_open_stateid(state);
}
if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
nfs4_stateid_copy(&state->stateid, stateid);
nfs4_stateid_copy(&state->open_stateid, stateid);
trace_nfs4_open_stateid_update(state->inode, stateid, status);
nfs_state_log_update_open_stateid(state);
}
static void nfs_state_set_open_stateid(struct nfs4_state *state,
const nfs4_stateid *open_stateid,
fmode_t fmode,
nfs4_stateid *freeme)
{
/*
* Protect the call to nfs4_state_set_mode_locked and
* serialise the stateid update
*/
write_seqlock(&state->seqlock);
nfs_set_open_stateid_locked(state, open_stateid, freeme);
switch (fmode) {
case FMODE_READ:
set_bit(NFS_O_RDONLY_STATE, &state->flags);
break;
case FMODE_WRITE:
set_bit(NFS_O_WRONLY_STATE, &state->flags);
break;
case FMODE_READ|FMODE_WRITE:
set_bit(NFS_O_RDWR_STATE, &state->flags);
}
set_bit(NFS_OPEN_STATE, &state->flags);
write_sequnlock(&state->seqlock);
}
static void nfs_state_clear_open_state_flags(struct nfs4_state *state)
{
clear_bit(NFS_O_RDWR_STATE, &state->flags);
clear_bit(NFS_O_WRONLY_STATE, &state->flags);
clear_bit(NFS_O_RDONLY_STATE, &state->flags);
clear_bit(NFS_OPEN_STATE, &state->flags);
}
static void nfs_state_set_delegation(struct nfs4_state *state,
const nfs4_stateid *deleg_stateid,
fmode_t fmode)
{
/*
* Protect the call to nfs4_state_set_mode_locked and
* serialise the stateid update
*/
write_seqlock(&state->seqlock);
nfs4_stateid_copy(&state->stateid, deleg_stateid);
set_bit(NFS_DELEGATED_STATE, &state->flags);
write_sequnlock(&state->seqlock);
}
static void nfs_state_clear_delegation(struct nfs4_state *state)
{
write_seqlock(&state->seqlock);
nfs4_stateid_copy(&state->stateid, &state->open_stateid);
clear_bit(NFS_DELEGATED_STATE, &state->flags);
write_sequnlock(&state->seqlock);
}
int update_open_stateid(struct nfs4_state *state,
const nfs4_stateid *open_stateid,
const nfs4_stateid *delegation,
fmode_t fmode)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs_client *clp = server->nfs_client;
struct nfs_inode *nfsi = NFS_I(state->inode);
struct nfs_delegation *deleg_cur;
nfs4_stateid freeme = { };
int ret = 0;
fmode &= (FMODE_READ|FMODE_WRITE);
rcu_read_lock();
spin_lock(&state->owner->so_lock);
if (open_stateid != NULL) {
nfs_state_set_open_stateid(state, open_stateid, fmode, &freeme);
ret = 1;
}
deleg_cur = nfs4_get_valid_delegation(state->inode);
if (deleg_cur == NULL)
goto no_delegation;
spin_lock(&deleg_cur->lock);
if (rcu_dereference(nfsi->delegation) != deleg_cur ||
test_bit(NFS_DELEGATION_RETURNING, &deleg_cur->flags) ||
(deleg_cur->type & fmode) != fmode)
goto no_delegation_unlock;
if (delegation == NULL)
delegation = &deleg_cur->stateid;
else if (!nfs4_stateid_match_other(&deleg_cur->stateid, delegation))
goto no_delegation_unlock;
nfs_mark_delegation_referenced(deleg_cur);
nfs_state_set_delegation(state, &deleg_cur->stateid, fmode);
ret = 1;
no_delegation_unlock:
spin_unlock(&deleg_cur->lock);
no_delegation:
if (ret)
update_open_stateflags(state, fmode);
spin_unlock(&state->owner->so_lock);
rcu_read_unlock();
if (test_bit(NFS_STATE_RECLAIM_NOGRACE, &state->flags))
nfs4_schedule_state_manager(clp);
if (freeme.type != 0)
nfs4_test_and_free_stateid(server, &freeme,
state->owner->so_cred);
return ret;
}
static bool nfs4_update_lock_stateid(struct nfs4_lock_state *lsp,
const nfs4_stateid *stateid)
{
struct nfs4_state *state = lsp->ls_state;
bool ret = false;
spin_lock(&state->state_lock);
if (!nfs4_stateid_match_other(stateid, &lsp->ls_stateid))
goto out_noupdate;
if (!nfs4_stateid_is_newer(stateid, &lsp->ls_stateid))
goto out_noupdate;
nfs4_stateid_copy(&lsp->ls_stateid, stateid);
ret = true;
out_noupdate:
spin_unlock(&state->state_lock);
return ret;
}
static void nfs4_return_incompatible_delegation(struct inode *inode, fmode_t fmode)
{
struct nfs_delegation *delegation;
fmode &= FMODE_READ|FMODE_WRITE;
rcu_read_lock();
delegation = nfs4_get_valid_delegation(inode);
if (delegation == NULL || (delegation->type & fmode) == fmode) {
rcu_read_unlock();
return;
}
rcu_read_unlock();
nfs4_inode_return_delegation(inode);
}
static struct nfs4_state *nfs4_try_open_cached(struct nfs4_opendata *opendata)
{
struct nfs4_state *state = opendata->state;
struct nfs_delegation *delegation;
int open_mode = opendata->o_arg.open_flags;
fmode_t fmode = opendata->o_arg.fmode;
enum open_claim_type4 claim = opendata->o_arg.claim;
nfs4_stateid stateid;
int ret = -EAGAIN;
for (;;) {
spin_lock(&state->owner->so_lock);
if (can_open_cached(state, fmode, open_mode, claim)) {
update_open_stateflags(state, fmode);
spin_unlock(&state->owner->so_lock);
goto out_return_state;
}
spin_unlock(&state->owner->so_lock);
rcu_read_lock();
delegation = nfs4_get_valid_delegation(state->inode);
if (!can_open_delegated(delegation, fmode, claim)) {
rcu_read_unlock();
break;
}
/* Save the delegation */
nfs4_stateid_copy(&stateid, &delegation->stateid);
rcu_read_unlock();
nfs_release_seqid(opendata->o_arg.seqid);
if (!opendata->is_recover) {
ret = nfs_may_open(state->inode, state->owner->so_cred, open_mode);
if (ret != 0)
goto out;
}
ret = -EAGAIN;
/* Try to update the stateid using the delegation */
if (update_open_stateid(state, NULL, &stateid, fmode))
goto out_return_state;
}
out:
return ERR_PTR(ret);
out_return_state:
refcount_inc(&state->count);
return state;
}
static void
nfs4_opendata_check_deleg(struct nfs4_opendata *data, struct nfs4_state *state)
{
struct nfs_client *clp = NFS_SERVER(state->inode)->nfs_client;
struct nfs_delegation *delegation;
int delegation_flags = 0;
rcu_read_lock();
delegation = rcu_dereference(NFS_I(state->inode)->delegation);
if (delegation)
delegation_flags = delegation->flags;
rcu_read_unlock();
switch (data->o_arg.claim) {
default:
break;
case NFS4_OPEN_CLAIM_DELEGATE_CUR:
case NFS4_OPEN_CLAIM_DELEG_CUR_FH:
pr_err_ratelimited("NFS: Broken NFSv4 server %s is "
"returning a delegation for "
"OPEN(CLAIM_DELEGATE_CUR)\n",
clp->cl_hostname);
return;
}
if ((delegation_flags & 1UL<<NFS_DELEGATION_NEED_RECLAIM) == 0)
nfs_inode_set_delegation(state->inode,
data->owner->so_cred,
data->o_res.delegation_type,
&data->o_res.delegation,
data->o_res.pagemod_limit);
else
nfs_inode_reclaim_delegation(state->inode,
data->owner->so_cred,
data->o_res.delegation_type,
&data->o_res.delegation,
data->o_res.pagemod_limit);
if (data->o_res.do_recall)
nfs_async_inode_return_delegation(state->inode,
&data->o_res.delegation);
}
/*
* Check the inode attributes against the CLAIM_PREVIOUS returned attributes
* and update the nfs4_state.
*/
static struct nfs4_state *
_nfs4_opendata_reclaim_to_nfs4_state(struct nfs4_opendata *data)
{
struct inode *inode = data->state->inode;
struct nfs4_state *state = data->state;
int ret;
if (!data->rpc_done) {
if (data->rpc_status)
return ERR_PTR(data->rpc_status);
/* cached opens have already been processed */
goto update;
}
ret = nfs_refresh_inode(inode, &data->f_attr);
if (ret)
return ERR_PTR(ret);
if (data->o_res.delegation_type != 0)
nfs4_opendata_check_deleg(data, state);
update:
if (!update_open_stateid(state, &data->o_res.stateid,
NULL, data->o_arg.fmode))
return ERR_PTR(-EAGAIN);
refcount_inc(&state->count);
return state;
}
static struct inode *
nfs4_opendata_get_inode(struct nfs4_opendata *data)
{
struct inode *inode;
switch (data->o_arg.claim) {
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_DELEGATE_CUR:
case NFS4_OPEN_CLAIM_DELEGATE_PREV:
if (!(data->f_attr.valid & NFS_ATTR_FATTR))
return ERR_PTR(-EAGAIN);
inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh,
&data->f_attr);
break;
default:
inode = d_inode(data->dentry);
ihold(inode);
nfs_refresh_inode(inode, &data->f_attr);
}
return inode;
}
static struct nfs4_state *
nfs4_opendata_find_nfs4_state(struct nfs4_opendata *data)
{
struct nfs4_state *state;
struct inode *inode;
inode = nfs4_opendata_get_inode(data);
if (IS_ERR(inode))
return ERR_CAST(inode);
if (data->state != NULL && data->state->inode == inode) {
state = data->state;
refcount_inc(&state->count);
} else
state = nfs4_get_open_state(inode, data->owner);
iput(inode);
if (state == NULL)
state = ERR_PTR(-ENOMEM);
return state;
}
static struct nfs4_state *
_nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
{
struct nfs4_state *state;
if (!data->rpc_done) {
state = nfs4_try_open_cached(data);
trace_nfs4_cached_open(data->state);
goto out;
}
state = nfs4_opendata_find_nfs4_state(data);
if (IS_ERR(state))
goto out;
if (data->o_res.delegation_type != 0)
nfs4_opendata_check_deleg(data, state);
if (!update_open_stateid(state, &data->o_res.stateid,
NULL, data->o_arg.fmode)) {
nfs4_put_open_state(state);
state = ERR_PTR(-EAGAIN);
}
out:
nfs_release_seqid(data->o_arg.seqid);
return state;
}
static struct nfs4_state *
nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
{
struct nfs4_state *ret;
if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
ret =_nfs4_opendata_reclaim_to_nfs4_state(data);
else
ret = _nfs4_opendata_to_nfs4_state(data);
nfs4_sequence_free_slot(&data->o_res.seq_res);
return ret;
}
static struct nfs_open_context *
nfs4_state_find_open_context_mode(struct nfs4_state *state, fmode_t mode)
{
struct nfs_inode *nfsi = NFS_I(state->inode);
struct nfs_open_context *ctx;
rcu_read_lock();
list_for_each_entry_rcu(ctx, &nfsi->open_files, list) {
if (ctx->state != state)
continue;
if ((ctx->mode & mode) != mode)
continue;
if (!get_nfs_open_context(ctx))
continue;
rcu_read_unlock();
return ctx;
}
rcu_read_unlock();
return ERR_PTR(-ENOENT);
}
static struct nfs_open_context *
nfs4_state_find_open_context(struct nfs4_state *state)
{
struct nfs_open_context *ctx;
ctx = nfs4_state_find_open_context_mode(state, FMODE_READ|FMODE_WRITE);
if (!IS_ERR(ctx))
return ctx;
ctx = nfs4_state_find_open_context_mode(state, FMODE_WRITE);
if (!IS_ERR(ctx))
return ctx;
return nfs4_state_find_open_context_mode(state, FMODE_READ);
}
static struct nfs4_opendata *nfs4_open_recoverdata_alloc(struct nfs_open_context *ctx,
struct nfs4_state *state, enum open_claim_type4 claim)
{
struct nfs4_opendata *opendata;
opendata = nfs4_opendata_alloc(ctx->dentry, state->owner, 0, 0,
NULL, claim, GFP_NOFS);
if (opendata == NULL)
return ERR_PTR(-ENOMEM);
opendata->state = state;
refcount_inc(&state->count);
return opendata;
}
static int nfs4_open_recover_helper(struct nfs4_opendata *opendata,
fmode_t fmode)
{
struct nfs4_state *newstate;
int ret;
if (!nfs4_mode_match_open_stateid(opendata->state, fmode))
return 0;
opendata->o_arg.open_flags = 0;
opendata->o_arg.fmode = fmode;
opendata->o_arg.share_access = nfs4_map_atomic_open_share(
NFS_SB(opendata->dentry->d_sb),
fmode, 0);
memset(&opendata->o_res, 0, sizeof(opendata->o_res));
memset(&opendata->c_res, 0, sizeof(opendata->c_res));
nfs4_init_opendata_res(opendata);
ret = _nfs4_recover_proc_open(opendata);
if (ret != 0)
return ret;
newstate = nfs4_opendata_to_nfs4_state(opendata);
if (IS_ERR(newstate))
return PTR_ERR(newstate);
if (newstate != opendata->state)
ret = -ESTALE;
nfs4_close_state(newstate, fmode);
return ret;
}
static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
{
int ret;
/* memory barrier prior to reading state->n_* */
smp_rmb();
ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE);
if (ret != 0)
return ret;
ret = nfs4_open_recover_helper(opendata, FMODE_WRITE);
if (ret != 0)
return ret;
ret = nfs4_open_recover_helper(opendata, FMODE_READ);
if (ret != 0)
return ret;
/*
* We may have performed cached opens for all three recoveries.
* Check if we need to update the current stateid.
*/
if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0 &&
!nfs4_stateid_match(&state->stateid, &state->open_stateid)) {
write_seqlock(&state->seqlock);
if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
nfs4_stateid_copy(&state->stateid, &state->open_stateid);
write_sequnlock(&state->seqlock);
}
return 0;
}
/*
* OPEN_RECLAIM:
* reclaim state on the server after a reboot.
*/
static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
{
struct nfs_delegation *delegation;
struct nfs4_opendata *opendata;
fmode_t delegation_type = 0;
int status;
opendata = nfs4_open_recoverdata_alloc(ctx, state,
NFS4_OPEN_CLAIM_PREVIOUS);
if (IS_ERR(opendata))
return PTR_ERR(opendata);
rcu_read_lock();
delegation = rcu_dereference(NFS_I(state->inode)->delegation);
if (delegation != NULL && test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags) != 0)
delegation_type = delegation->type;
rcu_read_unlock();
opendata->o_arg.u.delegation_type = delegation_type;
status = nfs4_open_recover(opendata, state);
nfs4_opendata_put(opendata);
return status;
}
static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_do_open_reclaim(ctx, state);
trace_nfs4_open_reclaim(ctx, 0, err);
if (nfs4_clear_cap_atomic_open_v1(server, err, &exception))
continue;
if (err != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
struct nfs_open_context *ctx;
int ret;
ctx = nfs4_state_find_open_context(state);
if (IS_ERR(ctx))
return -EAGAIN;
clear_bit(NFS_DELEGATED_STATE, &state->flags);
nfs_state_clear_open_state_flags(state);
ret = nfs4_do_open_reclaim(ctx, state);
put_nfs_open_context(ctx);
return ret;
}
static int nfs4_handle_delegation_recall_error(struct nfs_server *server, struct nfs4_state *state, const nfs4_stateid *stateid, struct file_lock *fl, int err)
{
switch (err) {
default:
printk(KERN_ERR "NFS: %s: unhandled error "
"%d.\n", __func__, err);
fallthrough;
case 0:
case -ENOENT:
case -EAGAIN:
case -ESTALE:
case -ETIMEDOUT:
break;
case -NFS4ERR_BADSESSION:
case -NFS4ERR_BADSLOT:
case -NFS4ERR_BAD_HIGH_SLOT:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
case -NFS4ERR_DEADSESSION:
return -EAGAIN;
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_STALE_STATEID:
/* Don't recall a delegation if it was lost */
nfs4_schedule_lease_recovery(server->nfs_client);
return -EAGAIN;
case -NFS4ERR_MOVED:
nfs4_schedule_migration_recovery(server);
return -EAGAIN;
case -NFS4ERR_LEASE_MOVED:
nfs4_schedule_lease_moved_recovery(server->nfs_client);
return -EAGAIN;
case -NFS4ERR_DELEG_REVOKED:
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_EXPIRED:
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_OPENMODE:
nfs_inode_find_state_and_recover(state->inode,
stateid);
nfs4_schedule_stateid_recovery(server, state);
return -EAGAIN;
case -NFS4ERR_DELAY:
case -NFS4ERR_GRACE:
ssleep(1);
return -EAGAIN;
case -ENOMEM:
case -NFS4ERR_DENIED:
if (fl) {
struct nfs4_lock_state *lsp = fl->fl_u.nfs4_fl.owner;
if (lsp)
set_bit(NFS_LOCK_LOST, &lsp->ls_flags);
}
return 0;
}
return err;
}
int nfs4_open_delegation_recall(struct nfs_open_context *ctx,
struct nfs4_state *state, const nfs4_stateid *stateid)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_opendata *opendata;
int err = 0;
opendata = nfs4_open_recoverdata_alloc(ctx, state,
NFS4_OPEN_CLAIM_DELEG_CUR_FH);
if (IS_ERR(opendata))
return PTR_ERR(opendata);
nfs4_stateid_copy(&opendata->o_arg.u.delegation, stateid);
if (!test_bit(NFS_O_RDWR_STATE, &state->flags)) {
err = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE);
if (err)
goto out;
}
if (!test_bit(NFS_O_WRONLY_STATE, &state->flags)) {
err = nfs4_open_recover_helper(opendata, FMODE_WRITE);
if (err)
goto out;
}
if (!test_bit(NFS_O_RDONLY_STATE, &state->flags)) {
err = nfs4_open_recover_helper(opendata, FMODE_READ);
if (err)
goto out;
}
nfs_state_clear_delegation(state);
out:
nfs4_opendata_put(opendata);
return nfs4_handle_delegation_recall_error(server, state, stateid, NULL, err);
}
static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
nfs4_setup_sequence(data->o_arg.server->nfs_client,
&data->c_arg.seq_args, &data->c_res.seq_res, task);
}
static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
nfs40_sequence_done(task, &data->c_res.seq_res);
data->rpc_status = task->tk_status;
if (data->rpc_status == 0) {
nfs4_stateid_copy(&data->o_res.stateid, &data->c_res.stateid);
nfs_confirm_seqid(&data->owner->so_seqid, 0);
renew_lease(data->o_res.server, data->timestamp);
data->rpc_done = true;
}
}
static void nfs4_open_confirm_release(void *calldata)
{
struct nfs4_opendata *data = calldata;
struct nfs4_state *state = NULL;
/* If this request hasn't been cancelled, do nothing */
if (!data->cancelled)
goto out_free;
/* In case of error, no cleanup! */
if (!data->rpc_done)
goto out_free;
state = nfs4_opendata_to_nfs4_state(data);
if (!IS_ERR(state))
nfs4_close_state(state, data->o_arg.fmode);
out_free:
nfs4_opendata_put(data);
}
static const struct rpc_call_ops nfs4_open_confirm_ops = {
.rpc_call_prepare = nfs4_open_confirm_prepare,
.rpc_call_done = nfs4_open_confirm_done,
.rpc_release = nfs4_open_confirm_release,
};
/*
* Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
*/
static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
{
struct nfs_server *server = NFS_SERVER(d_inode(data->dir));
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
.rpc_argp = &data->c_arg,
.rpc_resp = &data->c_res,
.rpc_cred = data->owner->so_cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_open_confirm_ops,
.callback_data = data,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC | RPC_TASK_CRED_NOREF,
};
int status;
nfs4_init_sequence(&data->c_arg.seq_args, &data->c_res.seq_res, 1,
data->is_recover);
kref_get(&data->kref);
data->rpc_done = false;
data->rpc_status = 0;
data->timestamp = jiffies;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
status = rpc_wait_for_completion_task(task);
if (status != 0) {
data->cancelled = true;
smp_wmb();
} else
status = data->rpc_status;
rpc_put_task(task);
return status;
}
static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
struct nfs4_state_owner *sp = data->owner;
struct nfs_client *clp = sp->so_server->nfs_client;
enum open_claim_type4 claim = data->o_arg.claim;
if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
goto out_wait;
/*
* Check if we still need to send an OPEN call, or if we can use
* a delegation instead.
*/
if (data->state != NULL) {
struct nfs_delegation *delegation;
if (can_open_cached(data->state, data->o_arg.fmode,
data->o_arg.open_flags, claim))
goto out_no_action;
rcu_read_lock();
delegation = nfs4_get_valid_delegation(data->state->inode);
if (can_open_delegated(delegation, data->o_arg.fmode, claim))
goto unlock_no_action;
rcu_read_unlock();
}
/* Update client id. */
data->o_arg.clientid = clp->cl_clientid;
switch (claim) {
default:
break;
case NFS4_OPEN_CLAIM_PREVIOUS:
case NFS4_OPEN_CLAIM_DELEG_CUR_FH:
case NFS4_OPEN_CLAIM_DELEG_PREV_FH:
data->o_arg.open_bitmap = &nfs4_open_noattr_bitmap[0];
fallthrough;
case NFS4_OPEN_CLAIM_FH:
task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
}
data->timestamp = jiffies;
if (nfs4_setup_sequence(data->o_arg.server->nfs_client,
&data->o_arg.seq_args,
&data->o_res.seq_res,
task) != 0)
nfs_release_seqid(data->o_arg.seqid);
/* Set the create mode (note dependency on the session type) */
data->o_arg.createmode = NFS4_CREATE_UNCHECKED;
if (data->o_arg.open_flags & O_EXCL) {
data->o_arg.createmode = NFS4_CREATE_EXCLUSIVE4_1;
if (clp->cl_mvops->minor_version == 0) {
data->o_arg.createmode = NFS4_CREATE_EXCLUSIVE;
/* don't put an ACCESS op in OPEN compound if O_EXCL,
* because ACCESS will return permission denied for
* all bits until close */
data->o_res.access_request = data->o_arg.access = 0;
} else if (nfs4_has_persistent_session(clp))
data->o_arg.createmode = NFS4_CREATE_GUARDED;
}
return;
unlock_no_action:
trace_nfs4_cached_open(data->state);
rcu_read_unlock();
out_no_action:
task->tk_action = NULL;
out_wait:
nfs4_sequence_done(task, &data->o_res.seq_res);
}
static void nfs4_open_done(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
data->rpc_status = task->tk_status;
if (!nfs4_sequence_process(task, &data->o_res.seq_res))
return;
if (task->tk_status == 0) {
if (data->o_res.f_attr->valid & NFS_ATTR_FATTR_TYPE) {
switch (data->o_res.f_attr->mode & S_IFMT) {
case S_IFREG:
break;
case S_IFLNK:
data->rpc_status = -ELOOP;
break;
case S_IFDIR:
data->rpc_status = -EISDIR;
break;
default:
data->rpc_status = -ENOTDIR;
}
}
renew_lease(data->o_res.server, data->timestamp);
if (!(data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM))
nfs_confirm_seqid(&data->owner->so_seqid, 0);
}
data->rpc_done = true;
}
static void nfs4_open_release(void *calldata)
{
struct nfs4_opendata *data = calldata;
struct nfs4_state *state = NULL;
/* If this request hasn't been cancelled, do nothing */
if (!data->cancelled)
goto out_free;
/* In case of error, no cleanup! */
if (data->rpc_status != 0 || !data->rpc_done)
goto out_free;
/* In case we need an open_confirm, no cleanup! */
if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
goto out_free;
state = nfs4_opendata_to_nfs4_state(data);
if (!IS_ERR(state))
nfs4_close_state(state, data->o_arg.fmode);
out_free:
nfs4_opendata_put(data);
}
static const struct rpc_call_ops nfs4_open_ops = {
.rpc_call_prepare = nfs4_open_prepare,
.rpc_call_done = nfs4_open_done,
.rpc_release = nfs4_open_release,
};
static int nfs4_run_open_task(struct nfs4_opendata *data,
struct nfs_open_context *ctx)
{
struct inode *dir = d_inode(data->dir);
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_openargs *o_arg = &data->o_arg;
struct nfs_openres *o_res = &data->o_res;
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
.rpc_argp = o_arg,
.rpc_resp = o_res,
.rpc_cred = data->owner->so_cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_open_ops,
.callback_data = data,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC | RPC_TASK_CRED_NOREF,
};
int status;
if (nfs_server_capable(dir, NFS_CAP_MOVEABLE))
task_setup_data.flags |= RPC_TASK_MOVEABLE;
kref_get(&data->kref);
data->rpc_done = false;
data->rpc_status = 0;
data->cancelled = false;
data->is_recover = false;
if (!ctx) {
nfs4_init_sequence(&o_arg->seq_args, &o_res->seq_res, 1, 1);
data->is_recover = true;
task_setup_data.flags |= RPC_TASK_TIMEOUT;
} else {
nfs4_init_sequence(&o_arg->seq_args, &o_res->seq_res, 1, 0);
pnfs_lgopen_prepare(data, ctx);
}
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
status = rpc_wait_for_completion_task(task);
if (status != 0) {
data->cancelled = true;
smp_wmb();
} else
status = data->rpc_status;
rpc_put_task(task);
return status;
}
static int _nfs4_recover_proc_open(struct nfs4_opendata *data)
{
struct inode *dir = d_inode(data->dir);
struct nfs_openres *o_res = &data->o_res;
int status;
status = nfs4_run_open_task(data, NULL);
if (status != 0 || !data->rpc_done)
return status;
nfs_fattr_map_and_free_names(NFS_SERVER(dir), &data->f_attr);
if (o_res->rflags & NFS4_OPEN_RESULT_CONFIRM)
status = _nfs4_proc_open_confirm(data);
return status;
}
/*
* Additional permission checks in order to distinguish between an
* open for read, and an open for execute. This works around the
* fact that NFSv4 OPEN treats read and execute permissions as being
* the same.
* Note that in the non-execute case, we want to turn off permission
* checking if we just created a new file (POSIX open() semantics).
*/
static int nfs4_opendata_access(const struct cred *cred,
struct nfs4_opendata *opendata,
struct nfs4_state *state, fmode_t fmode,
int openflags)
{
struct nfs_access_entry cache;
u32 mask, flags;
/* access call failed or for some reason the server doesn't
* support any access modes -- defer access call until later */
if (opendata->o_res.access_supported == 0)
return 0;
mask = 0;
/*
* Use openflags to check for exec, because fmode won't
* always have FMODE_EXEC set when file open for exec.
*/
if (openflags & __FMODE_EXEC) {
/* ONLY check for exec rights */
if (S_ISDIR(state->inode->i_mode))
mask = NFS4_ACCESS_LOOKUP;
else
mask = NFS4_ACCESS_EXECUTE;
} else if ((fmode & FMODE_READ) && !opendata->file_created)
mask = NFS4_ACCESS_READ;
nfs_access_set_mask(&cache, opendata->o_res.access_result);
nfs_access_add_cache(state->inode, &cache, cred);
flags = NFS4_ACCESS_READ | NFS4_ACCESS_EXECUTE | NFS4_ACCESS_LOOKUP;
if ((mask & ~cache.mask & flags) == 0)
return 0;
return -EACCES;
}
/*
* Note: On error, nfs4_proc_open will free the struct nfs4_opendata
*/
static int _nfs4_proc_open(struct nfs4_opendata *data,
struct nfs_open_context *ctx)
{
struct inode *dir = d_inode(data->dir);
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_openargs *o_arg = &data->o_arg;
struct nfs_openres *o_res = &data->o_res;
int status;
status = nfs4_run_open_task(data, ctx);
if (!data->rpc_done)
return status;
if (status != 0) {
if (status == -NFS4ERR_BADNAME &&
!(o_arg->open_flags & O_CREAT))
return -ENOENT;
return status;
}
nfs_fattr_map_and_free_names(server, &data->f_attr);
if (o_arg->open_flags & O_CREAT) {
if (o_arg->open_flags & O_EXCL)
data->file_created = true;
else if (o_res->cinfo.before != o_res->cinfo.after)
data->file_created = true;
if (data->file_created ||
inode_peek_iversion_raw(dir) != o_res->cinfo.after)
nfs4_update_changeattr(dir, &o_res->cinfo,
o_res->f_attr->time_start,
NFS_INO_INVALID_DATA);
}
if ((o_res->rflags & NFS4_OPEN_RESULT_LOCKTYPE_POSIX) == 0)
server->caps &= ~NFS_CAP_POSIX_LOCK;
if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
status = _nfs4_proc_open_confirm(data);
if (status != 0)
return status;
}
if (!(o_res->f_attr->valid & NFS_ATTR_FATTR)) {
nfs4_sequence_free_slot(&o_res->seq_res);
nfs4_proc_getattr(server, &o_res->fh, o_res->f_attr, NULL);
}
return 0;
}
/*
* OPEN_EXPIRED:
* reclaim state on the server after a network partition.
* Assumes caller holds the appropriate lock
*/
static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
{
struct nfs4_opendata *opendata;
int ret;
opendata = nfs4_open_recoverdata_alloc(ctx, state,
NFS4_OPEN_CLAIM_FH);
if (IS_ERR(opendata))
return PTR_ERR(opendata);
ret = nfs4_open_recover(opendata, state);
if (ret == -ESTALE)
d_drop(ctx->dentry);
nfs4_opendata_put(opendata);
return ret;
}
static int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_open_expired(ctx, state);
trace_nfs4_open_expired(ctx, 0, err);
if (nfs4_clear_cap_atomic_open_v1(server, err, &exception))
continue;
switch (err) {
default:
goto out;
case -NFS4ERR_GRACE:
case -NFS4ERR_DELAY:
nfs4_handle_exception(server, err, &exception);
err = 0;
}
} while (exception.retry);
out:
return err;
}
static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
struct nfs_open_context *ctx;
int ret;
ctx = nfs4_state_find_open_context(state);
if (IS_ERR(ctx))
return -EAGAIN;
ret = nfs4_do_open_expired(ctx, state);
put_nfs_open_context(ctx);
return ret;
}
static void nfs_finish_clear_delegation_stateid(struct nfs4_state *state,
const nfs4_stateid *stateid)
{
nfs_remove_bad_delegation(state->inode, stateid);
nfs_state_clear_delegation(state);
}
static void nfs40_clear_delegation_stateid(struct nfs4_state *state)
{
if (rcu_access_pointer(NFS_I(state->inode)->delegation) != NULL)
nfs_finish_clear_delegation_stateid(state, NULL);
}
static int nfs40_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
/* NFSv4.0 doesn't allow for delegation recovery on open expire */
nfs40_clear_delegation_stateid(state);
nfs_state_clear_open_state_flags(state);
return nfs4_open_expired(sp, state);
}
static int nfs40_test_and_free_expired_stateid(struct nfs_server *server,
nfs4_stateid *stateid,
const struct cred *cred)
{
return -NFS4ERR_BAD_STATEID;
}
#if defined(CONFIG_NFS_V4_1)
static int nfs41_test_and_free_expired_stateid(struct nfs_server *server,
nfs4_stateid *stateid,
const struct cred *cred)
{
int status;
switch (stateid->type) {
default:
break;
case NFS4_INVALID_STATEID_TYPE:
case NFS4_SPECIAL_STATEID_TYPE:
return -NFS4ERR_BAD_STATEID;
case NFS4_REVOKED_STATEID_TYPE:
goto out_free;
}
status = nfs41_test_stateid(server, stateid, cred);
switch (status) {
case -NFS4ERR_EXPIRED:
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_DELEG_REVOKED:
break;
default:
return status;
}
out_free:
/* Ack the revoked state to the server */
nfs41_free_stateid(server, stateid, cred, true);
return -NFS4ERR_EXPIRED;
}
static int nfs41_check_delegation_stateid(struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(state->inode);
nfs4_stateid stateid;
struct nfs_delegation *delegation;
const struct cred *cred = NULL;
int status, ret = NFS_OK;
/* Get the delegation credential for use by test/free_stateid */
rcu_read_lock();
delegation = rcu_dereference(NFS_I(state->inode)->delegation);
if (delegation == NULL) {
rcu_read_unlock();
nfs_state_clear_delegation(state);
return NFS_OK;
}
spin_lock(&delegation->lock);
nfs4_stateid_copy(&stateid, &delegation->stateid);
if (!test_and_clear_bit(NFS_DELEGATION_TEST_EXPIRED,
&delegation->flags)) {
spin_unlock(&delegation->lock);
rcu_read_unlock();
return NFS_OK;
}
if (delegation->cred)
cred = get_cred(delegation->cred);
spin_unlock(&delegation->lock);
rcu_read_unlock();
status = nfs41_test_and_free_expired_stateid(server, &stateid, cred);
trace_nfs4_test_delegation_stateid(state, NULL, status);
if (status == -NFS4ERR_EXPIRED || status == -NFS4ERR_BAD_STATEID)
nfs_finish_clear_delegation_stateid(state, &stateid);
else
ret = status;
put_cred(cred);
return ret;
}
static void nfs41_delegation_recover_stateid(struct nfs4_state *state)
{
nfs4_stateid tmp;
if (test_bit(NFS_DELEGATED_STATE, &state->flags) &&
nfs4_copy_delegation_stateid(state->inode, state->state,
&tmp, NULL) &&
nfs4_stateid_match_other(&state->stateid, &tmp))
nfs_state_set_delegation(state, &tmp, state->state);
else
nfs_state_clear_delegation(state);
}
/**
* nfs41_check_expired_locks - possibly free a lock stateid
*
* @state: NFSv4 state for an inode
*
* Returns NFS_OK if recovery for this stateid is now finished.
* Otherwise a negative NFS4ERR value is returned.
*/
static int nfs41_check_expired_locks(struct nfs4_state *state)
{
int status, ret = NFS_OK;
struct nfs4_lock_state *lsp, *prev = NULL;
struct nfs_server *server = NFS_SERVER(state->inode);
if (!test_bit(LK_STATE_IN_USE, &state->flags))
goto out;
spin_lock(&state->state_lock);
list_for_each_entry(lsp, &state->lock_states, ls_locks) {
if (test_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags)) {
const struct cred *cred = lsp->ls_state->owner->so_cred;
refcount_inc(&lsp->ls_count);
spin_unlock(&state->state_lock);
nfs4_put_lock_state(prev);
prev = lsp;
status = nfs41_test_and_free_expired_stateid(server,
&lsp->ls_stateid,
cred);
trace_nfs4_test_lock_stateid(state, lsp, status);
if (status == -NFS4ERR_EXPIRED ||
status == -NFS4ERR_BAD_STATEID) {
clear_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags);
lsp->ls_stateid.type = NFS4_INVALID_STATEID_TYPE;
if (!recover_lost_locks)
set_bit(NFS_LOCK_LOST, &lsp->ls_flags);
} else if (status != NFS_OK) {
ret = status;
nfs4_put_lock_state(prev);
goto out;
}
spin_lock(&state->state_lock);
}
}
spin_unlock(&state->state_lock);
nfs4_put_lock_state(prev);
out:
return ret;
}
/**
* nfs41_check_open_stateid - possibly free an open stateid
*
* @state: NFSv4 state for an inode
*
* Returns NFS_OK if recovery for this stateid is now finished.
* Otherwise a negative NFS4ERR value is returned.
*/
static int nfs41_check_open_stateid(struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(state->inode);
nfs4_stateid *stateid = &state->open_stateid;
const struct cred *cred = state->owner->so_cred;
int status;
if (test_bit(NFS_OPEN_STATE, &state->flags) == 0)
return -NFS4ERR_BAD_STATEID;
status = nfs41_test_and_free_expired_stateid(server, stateid, cred);
trace_nfs4_test_open_stateid(state, NULL, status);
if (status == -NFS4ERR_EXPIRED || status == -NFS4ERR_BAD_STATEID) {
nfs_state_clear_open_state_flags(state);
stateid->type = NFS4_INVALID_STATEID_TYPE;
return status;
}
if (nfs_open_stateid_recover_openmode(state))
return -NFS4ERR_OPENMODE;
return NFS_OK;
}
static int nfs41_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
int status;
status = nfs41_check_delegation_stateid(state);
if (status != NFS_OK)
return status;
nfs41_delegation_recover_stateid(state);
status = nfs41_check_expired_locks(state);
if (status != NFS_OK)
return status;
status = nfs41_check_open_stateid(state);
if (status != NFS_OK)
status = nfs4_open_expired(sp, state);
return status;
}
#endif
/*
* on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-*
* fields corresponding to attributes that were used to store the verifier.
* Make sure we clobber those fields in the later setattr call
*/
static unsigned nfs4_exclusive_attrset(struct nfs4_opendata *opendata,
struct iattr *sattr, struct nfs4_label **label)
{
const __u32 *bitmask = opendata->o_arg.server->exclcreat_bitmask;
__u32 attrset[3];
unsigned ret;
unsigned i;
for (i = 0; i < ARRAY_SIZE(attrset); i++) {
attrset[i] = opendata->o_res.attrset[i];
if (opendata->o_arg.createmode == NFS4_CREATE_EXCLUSIVE4_1)
attrset[i] &= ~bitmask[i];
}
ret = (opendata->o_arg.createmode == NFS4_CREATE_EXCLUSIVE) ?
sattr->ia_valid : 0;
if ((attrset[1] & (FATTR4_WORD1_TIME_ACCESS|FATTR4_WORD1_TIME_ACCESS_SET))) {
if (sattr->ia_valid & ATTR_ATIME_SET)
ret |= ATTR_ATIME_SET;
else
ret |= ATTR_ATIME;
}
if ((attrset[1] & (FATTR4_WORD1_TIME_MODIFY|FATTR4_WORD1_TIME_MODIFY_SET))) {
if (sattr->ia_valid & ATTR_MTIME_SET)
ret |= ATTR_MTIME_SET;
else
ret |= ATTR_MTIME;
}
if (!(attrset[2] & FATTR4_WORD2_SECURITY_LABEL))
*label = NULL;
return ret;
}
static int _nfs4_open_and_get_state(struct nfs4_opendata *opendata,
int flags, struct nfs_open_context *ctx)
{
struct nfs4_state_owner *sp = opendata->owner;
struct nfs_server *server = sp->so_server;
struct dentry *dentry;
struct nfs4_state *state;
fmode_t acc_mode = _nfs4_ctx_to_accessmode(ctx);
struct inode *dir = d_inode(opendata->dir);
unsigned long dir_verifier;
unsigned int seq;
int ret;
seq = raw_seqcount_begin(&sp->so_reclaim_seqcount);
dir_verifier = nfs_save_change_attribute(dir);
ret = _nfs4_proc_open(opendata, ctx);
if (ret != 0)
goto out;
state = _nfs4_opendata_to_nfs4_state(opendata);
ret = PTR_ERR(state);
if (IS_ERR(state))
goto out;
ctx->state = state;
if (server->caps & NFS_CAP_POSIX_LOCK)
set_bit(NFS_STATE_POSIX_LOCKS, &state->flags);
if (opendata->o_res.rflags & NFS4_OPEN_RESULT_MAY_NOTIFY_LOCK)
set_bit(NFS_STATE_MAY_NOTIFY_LOCK, &state->flags);
if (opendata->o_res.rflags & NFS4_OPEN_RESULT_PRESERVE_UNLINKED)
set_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(state->inode)->flags);
dentry = opendata->dentry;
if (d_really_is_negative(dentry)) {
struct dentry *alias;
d_drop(dentry);
alias = d_exact_alias(dentry, state->inode);
if (!alias)
alias = d_splice_alias(igrab(state->inode), dentry);
/* d_splice_alias() can't fail here - it's a non-directory */
if (alias) {
dput(ctx->dentry);
ctx->dentry = dentry = alias;
}
}
switch(opendata->o_arg.claim) {
default:
break;
case NFS4_OPEN_CLAIM_NULL:
case NFS4_OPEN_CLAIM_DELEGATE_CUR:
case NFS4_OPEN_CLAIM_DELEGATE_PREV:
if (!opendata->rpc_done)
break;
if (opendata->o_res.delegation_type != 0)
dir_verifier = nfs_save_change_attribute(dir);
nfs_set_verifier(dentry, dir_verifier);
}
/* Parse layoutget results before we check for access */
pnfs_parse_lgopen(state->inode, opendata->lgp, ctx);
ret = nfs4_opendata_access(sp->so_cred, opendata, state,
acc_mode, flags);
if (ret != 0)
goto out;
if (d_inode(dentry) == state->inode) {
nfs_inode_attach_open_context(ctx);
if (read_seqcount_retry(&sp->so_reclaim_seqcount, seq))
nfs4_schedule_stateid_recovery(server, state);
}
out:
if (!opendata->cancelled) {
if (opendata->lgp) {
nfs4_lgopen_release(opendata->lgp);
opendata->lgp = NULL;
}
nfs4_sequence_free_slot(&opendata->o_res.seq_res);
}
return ret;
}
/*
* Returns a referenced nfs4_state
*/
static int _nfs4_do_open(struct inode *dir,
struct nfs_open_context *ctx,
int flags,
const struct nfs4_open_createattrs *c,
int *opened)
{
struct nfs4_state_owner *sp;
struct nfs4_state *state = NULL;
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_opendata *opendata;
struct dentry *dentry = ctx->dentry;
const struct cred *cred = ctx->cred;
struct nfs4_threshold **ctx_th = &ctx->mdsthreshold;
fmode_t fmode = _nfs4_ctx_to_openmode(ctx);
enum open_claim_type4 claim = NFS4_OPEN_CLAIM_NULL;
struct iattr *sattr = c->sattr;
struct nfs4_label *label = c->label;
int status;
/* Protect against reboot recovery conflicts */
status = -ENOMEM;
sp = nfs4_get_state_owner(server, cred, GFP_KERNEL);
if (sp == NULL) {
dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
goto out_err;
}
status = nfs4_client_recover_expired_lease(server->nfs_client);
if (status != 0)
goto err_put_state_owner;
if (d_really_is_positive(dentry))
nfs4_return_incompatible_delegation(d_inode(dentry), fmode);
status = -ENOMEM;
if (d_really_is_positive(dentry))
claim = NFS4_OPEN_CLAIM_FH;
opendata = nfs4_opendata_alloc(dentry, sp, fmode, flags,
c, claim, GFP_KERNEL);
if (opendata == NULL)
goto err_put_state_owner;
if (server->attr_bitmask[2] & FATTR4_WORD2_MDSTHRESHOLD) {
if (!opendata->f_attr.mdsthreshold) {
opendata->f_attr.mdsthreshold = pnfs_mdsthreshold_alloc();
if (!opendata->f_attr.mdsthreshold)
goto err_opendata_put;
}
opendata->o_arg.open_bitmap = &nfs4_pnfs_open_bitmap[0];
}
if (d_really_is_positive(dentry))
opendata->state = nfs4_get_open_state(d_inode(dentry), sp);
status = _nfs4_open_and_get_state(opendata, flags, ctx);
if (status != 0)
goto err_opendata_put;
state = ctx->state;
if ((opendata->o_arg.open_flags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL) &&
(opendata->o_arg.createmode != NFS4_CREATE_GUARDED)) {
unsigned attrs = nfs4_exclusive_attrset(opendata, sattr, &label);
/*
* send create attributes which was not set by open
* with an extra setattr.
*/
if (attrs || label) {
unsigned ia_old = sattr->ia_valid;
sattr->ia_valid = attrs;
nfs_fattr_init(opendata->o_res.f_attr);
status = nfs4_do_setattr(state->inode, cred,
opendata->o_res.f_attr, sattr,
ctx, label);
if (status == 0) {
nfs_setattr_update_inode(state->inode, sattr,
opendata->o_res.f_attr);
nfs_setsecurity(state->inode, opendata->o_res.f_attr);
}
sattr->ia_valid = ia_old;
}
}
if (opened && opendata->file_created)
*opened = 1;
if (pnfs_use_threshold(ctx_th, opendata->f_attr.mdsthreshold, server)) {
*ctx_th = opendata->f_attr.mdsthreshold;
opendata->f_attr.mdsthreshold = NULL;
}
nfs4_opendata_put(opendata);
nfs4_put_state_owner(sp);
return 0;
err_opendata_put:
nfs4_opendata_put(opendata);
err_put_state_owner:
nfs4_put_state_owner(sp);
out_err:
return status;
}
static struct nfs4_state *nfs4_do_open(struct inode *dir,
struct nfs_open_context *ctx,
int flags,
struct iattr *sattr,
struct nfs4_label *label,
int *opened)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_exception exception = {
.interruptible = true,
};
struct nfs4_state *res;
struct nfs4_open_createattrs c = {
.label = label,
.sattr = sattr,
.verf = {
[0] = (__u32)jiffies,
[1] = (__u32)current->pid,
},
};
int status;
do {
status = _nfs4_do_open(dir, ctx, flags, &c, opened);
res = ctx->state;
trace_nfs4_open_file(ctx, flags, status);
if (status == 0)
break;
/* NOTE: BAD_SEQID means the server and client disagree about the
* book-keeping w.r.t. state-changing operations
* (OPEN/CLOSE/LOCK/LOCKU...)
* It is actually a sign of a bug on the client or on the server.
*
* If we receive a BAD_SEQID error in the particular case of
* doing an OPEN, we assume that nfs_increment_open_seqid() will
* have unhashed the old state_owner for us, and that we can
* therefore safely retry using a new one. We should still warn
* the user though...
*/
if (status == -NFS4ERR_BAD_SEQID) {
pr_warn_ratelimited("NFS: v4 server %s "
" returned a bad sequence-id error!\n",
NFS_SERVER(dir)->nfs_client->cl_hostname);
exception.retry = 1;
continue;
}
/*
* BAD_STATEID on OPEN means that the server cancelled our
* state before it received the OPEN_CONFIRM.
* Recover by retrying the request as per the discussion
* on Page 181 of RFC3530.
*/
if (status == -NFS4ERR_BAD_STATEID) {
exception.retry = 1;
continue;
}
if (status == -NFS4ERR_EXPIRED) {
nfs4_schedule_lease_recovery(server->nfs_client);
exception.retry = 1;
continue;
}
if (status == -EAGAIN) {
/* We must have found a delegation */
exception.retry = 1;
continue;
}
if (nfs4_clear_cap_atomic_open_v1(server, status, &exception))
continue;
res = ERR_PTR(nfs4_handle_exception(server,
status, &exception));
} while (exception.retry);
return res;
}
static int _nfs4_do_setattr(struct inode *inode,
struct nfs_setattrargs *arg,
struct nfs_setattrres *res,
const struct cred *cred,
struct nfs_open_context *ctx)
{
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
.rpc_argp = arg,
.rpc_resp = res,
.rpc_cred = cred,
};
const struct cred *delegation_cred = NULL;
unsigned long timestamp = jiffies;
bool truncate;
int status;
nfs_fattr_init(res->fattr);
/* Servers should only apply open mode checks for file size changes */
truncate = (arg->iap->ia_valid & ATTR_SIZE) ? true : false;
if (!truncate) {
nfs4_inode_make_writeable(inode);
goto zero_stateid;
}
if (nfs4_copy_delegation_stateid(inode, FMODE_WRITE, &arg->stateid, &delegation_cred)) {
/* Use that stateid */
} else if (ctx != NULL && ctx->state) {
struct nfs_lock_context *l_ctx;
if (!nfs4_valid_open_stateid(ctx->state))
return -EBADF;
l_ctx = nfs_get_lock_context(ctx);
if (IS_ERR(l_ctx))
return PTR_ERR(l_ctx);
status = nfs4_select_rw_stateid(ctx->state, FMODE_WRITE, l_ctx,
&arg->stateid, &delegation_cred);
nfs_put_lock_context(l_ctx);
if (status == -EIO)
return -EBADF;
else if (status == -EAGAIN)
goto zero_stateid;
} else {
zero_stateid:
nfs4_stateid_copy(&arg->stateid, &zero_stateid);
}
if (delegation_cred)
msg.rpc_cred = delegation_cred;
status = nfs4_call_sync(server->client, server, &msg, &arg->seq_args, &res->seq_res, 1);
put_cred(delegation_cred);
if (status == 0 && ctx != NULL)
renew_lease(server, timestamp);
trace_nfs4_setattr(inode, &arg->stateid, status);
return status;
}
static int nfs4_do_setattr(struct inode *inode, const struct cred *cred,
struct nfs_fattr *fattr, struct iattr *sattr,
struct nfs_open_context *ctx, struct nfs4_label *ilabel)
{
struct nfs_server *server = NFS_SERVER(inode);
__u32 bitmask[NFS4_BITMASK_SZ];
struct nfs4_state *state = ctx ? ctx->state : NULL;
struct nfs_setattrargs arg = {
.fh = NFS_FH(inode),
.iap = sattr,
.server = server,
.bitmask = bitmask,
.label = ilabel,
};
struct nfs_setattrres res = {
.fattr = fattr,
.server = server,
};
struct nfs4_exception exception = {
.state = state,
.inode = inode,
.stateid = &arg.stateid,
};
unsigned long adjust_flags = NFS_INO_INVALID_CHANGE;
int err;
if (sattr->ia_valid & (ATTR_MODE | ATTR_KILL_SUID | ATTR_KILL_SGID))
adjust_flags |= NFS_INO_INVALID_MODE;
if (sattr->ia_valid & (ATTR_UID | ATTR_GID))
adjust_flags |= NFS_INO_INVALID_OTHER;
do {
nfs4_bitmap_copy_adjust(bitmask, nfs4_bitmask(server, fattr->label),
inode, adjust_flags);
err = _nfs4_do_setattr(inode, &arg, &res, cred, ctx);
switch (err) {
case -NFS4ERR_OPENMODE:
if (!(sattr->ia_valid & ATTR_SIZE)) {
pr_warn_once("NFSv4: server %s is incorrectly "
"applying open mode checks to "
"a SETATTR that is not "
"changing file size.\n",
server->nfs_client->cl_hostname);
}
if (state && !(state->state & FMODE_WRITE)) {
err = -EBADF;
if (sattr->ia_valid & ATTR_OPEN)
err = -EACCES;
goto out;
}
}
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
out:
return err;
}
static bool
nfs4_wait_on_layoutreturn(struct inode *inode, struct rpc_task *task)
{
if (inode == NULL || !nfs_have_layout(inode))
return false;
return pnfs_wait_on_layoutreturn(inode, task);
}
/*
* Update the seqid of an open stateid
*/
static void nfs4_sync_open_stateid(nfs4_stateid *dst,
struct nfs4_state *state)
{
__be32 seqid_open;
u32 dst_seqid;
int seq;
for (;;) {
if (!nfs4_valid_open_stateid(state))
break;
seq = read_seqbegin(&state->seqlock);
if (!nfs4_state_match_open_stateid_other(state, dst)) {
nfs4_stateid_copy(dst, &state->open_stateid);
if (read_seqretry(&state->seqlock, seq))
continue;
break;
}
seqid_open = state->open_stateid.seqid;
if (read_seqretry(&state->seqlock, seq))
continue;
dst_seqid = be32_to_cpu(dst->seqid);
if ((s32)(dst_seqid - be32_to_cpu(seqid_open)) < 0)
dst->seqid = seqid_open;
break;
}
}
/*
* Update the seqid of an open stateid after receiving
* NFS4ERR_OLD_STATEID
*/
static bool nfs4_refresh_open_old_stateid(nfs4_stateid *dst,
struct nfs4_state *state)
{
__be32 seqid_open;
u32 dst_seqid;
bool ret;
int seq, status = -EAGAIN;
DEFINE_WAIT(wait);
for (;;) {
ret = false;
if (!nfs4_valid_open_stateid(state))
break;
seq = read_seqbegin(&state->seqlock);
if (!nfs4_state_match_open_stateid_other(state, dst)) {
if (read_seqretry(&state->seqlock, seq))
continue;
break;
}
write_seqlock(&state->seqlock);
seqid_open = state->open_stateid.seqid;
dst_seqid = be32_to_cpu(dst->seqid);
/* Did another OPEN bump the state's seqid? try again: */
if ((s32)(be32_to_cpu(seqid_open) - dst_seqid) > 0) {
dst->seqid = seqid_open;
write_sequnlock(&state->seqlock);
ret = true;
break;
}
/* server says we're behind but we haven't seen the update yet */
set_bit(NFS_STATE_CHANGE_WAIT, &state->flags);
prepare_to_wait(&state->waitq, &wait, TASK_KILLABLE);
write_sequnlock(&state->seqlock);
trace_nfs4_close_stateid_update_wait(state->inode, dst, 0);
if (fatal_signal_pending(current))
status = -EINTR;
else
if (schedule_timeout(5*HZ) != 0)
status = 0;
finish_wait(&state->waitq, &wait);
if (!status)
continue;
if (status == -EINTR)
break;
/* we slept the whole 5 seconds, we must have lost a seqid */
dst->seqid = cpu_to_be32(dst_seqid + 1);
ret = true;
break;
}
return ret;
}
struct nfs4_closedata {
struct inode *inode;
struct nfs4_state *state;
struct nfs_closeargs arg;
struct nfs_closeres res;
struct {
struct nfs4_layoutreturn_args arg;
struct nfs4_layoutreturn_res res;
struct nfs4_xdr_opaque_data ld_private;
u32 roc_barrier;
bool roc;
} lr;
struct nfs_fattr fattr;
unsigned long timestamp;
};
static void nfs4_free_closedata(void *data)
{
struct nfs4_closedata *calldata = data;
struct nfs4_state_owner *sp = calldata->state->owner;
struct super_block *sb = calldata->state->inode->i_sb;
if (calldata->lr.roc)
pnfs_roc_release(&calldata->lr.arg, &calldata->lr.res,
calldata->res.lr_ret);
nfs4_put_open_state(calldata->state);
nfs_free_seqid(calldata->arg.seqid);
nfs4_put_state_owner(sp);
nfs_sb_deactive(sb);
kfree(calldata);
}
static void nfs4_close_done(struct rpc_task *task, void *data)
{
struct nfs4_closedata *calldata = data;
struct nfs4_state *state = calldata->state;
struct nfs_server *server = NFS_SERVER(calldata->inode);
nfs4_stateid *res_stateid = NULL;
struct nfs4_exception exception = {
.state = state,
.inode = calldata->inode,
.stateid = &calldata->arg.stateid,
};
if (!nfs4_sequence_done(task, &calldata->res.seq_res))
return;
trace_nfs4_close(state, &calldata->arg, &calldata->res, task->tk_status);
/* Handle Layoutreturn errors */
if (pnfs_roc_done(task, &calldata->arg.lr_args, &calldata->res.lr_res,
&calldata->res.lr_ret) == -EAGAIN)
goto out_restart;
/* hmm. we are done with the inode, and in the process of freeing
* the state_owner. we keep this around to process errors
*/
switch (task->tk_status) {
case 0:
res_stateid = &calldata->res.stateid;
renew_lease(server, calldata->timestamp);
break;
case -NFS4ERR_ACCESS:
if (calldata->arg.bitmask != NULL) {
calldata->arg.bitmask = NULL;
calldata->res.fattr = NULL;
goto out_restart;
}
break;
case -NFS4ERR_OLD_STATEID:
/* Did we race with OPEN? */
if (nfs4_refresh_open_old_stateid(&calldata->arg.stateid,
state))
goto out_restart;
goto out_release;
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
nfs4_free_revoked_stateid(server,
&calldata->arg.stateid,
task->tk_msg.rpc_cred);
fallthrough;
case -NFS4ERR_BAD_STATEID:
if (calldata->arg.fmode == 0)
break;
fallthrough;
default:
task->tk_status = nfs4_async_handle_exception(task,
server, task->tk_status, &exception);
if (exception.retry)
goto out_restart;
}
nfs_clear_open_stateid(state, &calldata->arg.stateid,
res_stateid, calldata->arg.fmode);
out_release:
task->tk_status = 0;
nfs_release_seqid(calldata->arg.seqid);
nfs_refresh_inode(calldata->inode, &calldata->fattr);
dprintk("%s: ret = %d\n", __func__, task->tk_status);
return;
out_restart:
task->tk_status = 0;
rpc_restart_call_prepare(task);
goto out_release;
}
static void nfs4_close_prepare(struct rpc_task *task, void *data)
{
struct nfs4_closedata *calldata = data;
struct nfs4_state *state = calldata->state;
struct inode *inode = calldata->inode;
struct nfs_server *server = NFS_SERVER(inode);
struct pnfs_layout_hdr *lo;
bool is_rdonly, is_wronly, is_rdwr;
int call_close = 0;
if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
goto out_wait;
task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
spin_lock(&state->owner->so_lock);
is_rdwr = test_bit(NFS_O_RDWR_STATE, &state->flags);
is_rdonly = test_bit(NFS_O_RDONLY_STATE, &state->flags);
is_wronly = test_bit(NFS_O_WRONLY_STATE, &state->flags);
/* Calculate the change in open mode */
calldata->arg.fmode = 0;
if (state->n_rdwr == 0) {
if (state->n_rdonly == 0)
call_close |= is_rdonly;
else if (is_rdonly)
calldata->arg.fmode |= FMODE_READ;
if (state->n_wronly == 0)
call_close |= is_wronly;
else if (is_wronly)
calldata->arg.fmode |= FMODE_WRITE;
if (calldata->arg.fmode != (FMODE_READ|FMODE_WRITE))
call_close |= is_rdwr;
} else if (is_rdwr)
calldata->arg.fmode |= FMODE_READ|FMODE_WRITE;
nfs4_sync_open_stateid(&calldata->arg.stateid, state);
if (!nfs4_valid_open_stateid(state))
call_close = 0;
spin_unlock(&state->owner->so_lock);
if (!call_close) {
/* Note: exit _without_ calling nfs4_close_done */
goto out_no_action;
}
if (!calldata->lr.roc && nfs4_wait_on_layoutreturn(inode, task)) {
nfs_release_seqid(calldata->arg.seqid);
goto out_wait;
}
lo = calldata->arg.lr_args ? calldata->arg.lr_args->layout : NULL;
if (lo && !pnfs_layout_is_valid(lo)) {
calldata->arg.lr_args = NULL;
calldata->res.lr_res = NULL;
}
if (calldata->arg.fmode == 0)
task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE];
if (calldata->arg.fmode == 0 || calldata->arg.fmode == FMODE_READ) {
/* Close-to-open cache consistency revalidation */
if (!nfs4_have_delegation(inode, FMODE_READ)) {
nfs4_bitmask_set(calldata->arg.bitmask_store,
server->cache_consistency_bitmask,
inode, 0);
calldata->arg.bitmask = calldata->arg.bitmask_store;
} else
calldata->arg.bitmask = NULL;
}
calldata->arg.share_access =
nfs4_map_atomic_open_share(NFS_SERVER(inode),
calldata->arg.fmode, 0);
if (calldata->res.fattr == NULL)
calldata->arg.bitmask = NULL;
else if (calldata->arg.bitmask == NULL)
calldata->res.fattr = NULL;
calldata->timestamp = jiffies;
if (nfs4_setup_sequence(NFS_SERVER(inode)->nfs_client,
&calldata->arg.seq_args,
&calldata->res.seq_res,
task) != 0)
nfs_release_seqid(calldata->arg.seqid);
return;
out_no_action:
task->tk_action = NULL;
out_wait:
nfs4_sequence_done(task, &calldata->res.seq_res);
}
static const struct rpc_call_ops nfs4_close_ops = {
.rpc_call_prepare = nfs4_close_prepare,
.rpc_call_done = nfs4_close_done,
.rpc_release = nfs4_free_closedata,
};
/*
* It is possible for data to be read/written from a mem-mapped file
* after the sys_close call (which hits the vfs layer as a flush).
* This means that we can't safely call nfsv4 close on a file until
* the inode is cleared. This in turn means that we are not good
* NFSv4 citizens - we do not indicate to the server to update the file's
* share state even when we are done with one of the three share
* stateid's in the inode.
*
* NOTE: Caller must be holding the sp->so_owner semaphore!
*/
int nfs4_do_close(struct nfs4_state *state, gfp_t gfp_mask, int wait)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs_seqid *(*alloc_seqid)(struct nfs_seqid_counter *, gfp_t);
struct nfs4_closedata *calldata;
struct nfs4_state_owner *sp = state->owner;
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
.rpc_cred = state->owner->so_cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_close_ops,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC | RPC_TASK_CRED_NOREF,
};
int status = -ENOMEM;
if (nfs_server_capable(state->inode, NFS_CAP_MOVEABLE))
task_setup_data.flags |= RPC_TASK_MOVEABLE;
nfs4_state_protect(server->nfs_client, NFS_SP4_MACH_CRED_CLEANUP,
&task_setup_data.rpc_client, &msg);
calldata = kzalloc(sizeof(*calldata), gfp_mask);
if (calldata == NULL)
goto out;
nfs4_init_sequence(&calldata->arg.seq_args, &calldata->res.seq_res, 1, 0);
calldata->inode = state->inode;
calldata->state = state;
calldata->arg.fh = NFS_FH(state->inode);
if (!nfs4_copy_open_stateid(&calldata->arg.stateid, state))
goto out_free_calldata;
/* Serialization for the sequence id */
alloc_seqid = server->nfs_client->cl_mvops->alloc_seqid;
calldata->arg.seqid = alloc_seqid(&state->owner->so_seqid, gfp_mask);
if (IS_ERR(calldata->arg.seqid))
goto out_free_calldata;
nfs_fattr_init(&calldata->fattr);
calldata->arg.fmode = 0;
calldata->lr.arg.ld_private = &calldata->lr.ld_private;
calldata->res.fattr = &calldata->fattr;
calldata->res.seqid = calldata->arg.seqid;
calldata->res.server = server;
calldata->res.lr_ret = -NFS4ERR_NOMATCHING_LAYOUT;
calldata->lr.roc = pnfs_roc(state->inode,
&calldata->lr.arg, &calldata->lr.res, msg.rpc_cred);
if (calldata->lr.roc) {
calldata->arg.lr_args = &calldata->lr.arg;
calldata->res.lr_res = &calldata->lr.res;
}
nfs_sb_active(calldata->inode->i_sb);
msg.rpc_argp = &calldata->arg;
msg.rpc_resp = &calldata->res;
task_setup_data.callback_data = calldata;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
status = 0;
if (wait)
status = rpc_wait_for_completion_task(task);
rpc_put_task(task);
return status;
out_free_calldata:
kfree(calldata);
out:
nfs4_put_open_state(state);
nfs4_put_state_owner(sp);
return status;
}
static struct inode *
nfs4_atomic_open(struct inode *dir, struct nfs_open_context *ctx,
int open_flags, struct iattr *attr, int *opened)
{
struct nfs4_state *state;
struct nfs4_label l = {0, 0, 0, NULL}, *label = NULL;
label = nfs4_label_init_security(dir, ctx->dentry, attr, &l);
/* Protect against concurrent sillydeletes */
state = nfs4_do_open(dir, ctx, open_flags, attr, label, opened);
nfs4_label_release_security(label);
if (IS_ERR(state))
return ERR_CAST(state);
return state->inode;
}
static void nfs4_close_context(struct nfs_open_context *ctx, int is_sync)
{
if (ctx->state == NULL)
return;
if (is_sync)
nfs4_close_sync(ctx->state, _nfs4_ctx_to_openmode(ctx));
else
nfs4_close_state(ctx->state, _nfs4_ctx_to_openmode(ctx));
}
#define FATTR4_WORD1_NFS40_MASK (2*FATTR4_WORD1_MOUNTED_ON_FILEID - 1UL)
#define FATTR4_WORD2_NFS41_MASK (2*FATTR4_WORD2_SUPPATTR_EXCLCREAT - 1UL)
#define FATTR4_WORD2_NFS42_MASK (2*FATTR4_WORD2_XATTR_SUPPORT - 1UL)
static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
{
u32 bitmask[3] = {}, minorversion = server->nfs_client->cl_minorversion;
struct nfs4_server_caps_arg args = {
.fhandle = fhandle,
.bitmask = bitmask,
};
struct nfs4_server_caps_res res = {};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
.rpc_argp = &args,
.rpc_resp = &res,
};
int status;
int i;
bitmask[0] = FATTR4_WORD0_SUPPORTED_ATTRS |
FATTR4_WORD0_FH_EXPIRE_TYPE |
FATTR4_WORD0_LINK_SUPPORT |
FATTR4_WORD0_SYMLINK_SUPPORT |
FATTR4_WORD0_ACLSUPPORT |
FATTR4_WORD0_CASE_INSENSITIVE |
FATTR4_WORD0_CASE_PRESERVING;
if (minorversion)
bitmask[2] = FATTR4_WORD2_SUPPATTR_EXCLCREAT;
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
if (status == 0) {
/* Sanity check the server answers */
switch (minorversion) {
case 0:
res.attr_bitmask[1] &= FATTR4_WORD1_NFS40_MASK;
res.attr_bitmask[2] = 0;
break;
case 1:
res.attr_bitmask[2] &= FATTR4_WORD2_NFS41_MASK;
break;
case 2:
res.attr_bitmask[2] &= FATTR4_WORD2_NFS42_MASK;
}
memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
server->caps &= ~(NFS_CAP_ACLS | NFS_CAP_HARDLINKS |
NFS_CAP_SYMLINKS| NFS_CAP_SECURITY_LABEL);
server->fattr_valid = NFS_ATTR_FATTR_V4;
if (res.attr_bitmask[0] & FATTR4_WORD0_ACL &&
res.acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
server->caps |= NFS_CAP_ACLS;
if (res.has_links != 0)
server->caps |= NFS_CAP_HARDLINKS;
if (res.has_symlinks != 0)
server->caps |= NFS_CAP_SYMLINKS;
if (res.case_insensitive)
server->caps |= NFS_CAP_CASE_INSENSITIVE;
if (res.case_preserving)
server->caps |= NFS_CAP_CASE_PRESERVING;
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
if (res.attr_bitmask[2] & FATTR4_WORD2_SECURITY_LABEL)
server->caps |= NFS_CAP_SECURITY_LABEL;
#endif
if (res.attr_bitmask[0] & FATTR4_WORD0_FS_LOCATIONS)
server->caps |= NFS_CAP_FS_LOCATIONS;
if (!(res.attr_bitmask[0] & FATTR4_WORD0_FILEID))
server->fattr_valid &= ~NFS_ATTR_FATTR_FILEID;
if (!(res.attr_bitmask[1] & FATTR4_WORD1_MODE))
server->fattr_valid &= ~NFS_ATTR_FATTR_MODE;
if (!(res.attr_bitmask[1] & FATTR4_WORD1_NUMLINKS))
server->fattr_valid &= ~NFS_ATTR_FATTR_NLINK;
if (!(res.attr_bitmask[1] & FATTR4_WORD1_OWNER))
server->fattr_valid &= ~(NFS_ATTR_FATTR_OWNER |
NFS_ATTR_FATTR_OWNER_NAME);
if (!(res.attr_bitmask[1] & FATTR4_WORD1_OWNER_GROUP))
server->fattr_valid &= ~(NFS_ATTR_FATTR_GROUP |
NFS_ATTR_FATTR_GROUP_NAME);
if (!(res.attr_bitmask[1] & FATTR4_WORD1_SPACE_USED))
server->fattr_valid &= ~NFS_ATTR_FATTR_SPACE_USED;
if (!(res.attr_bitmask[1] & FATTR4_WORD1_TIME_ACCESS))
server->fattr_valid &= ~NFS_ATTR_FATTR_ATIME;
if (!(res.attr_bitmask[1] & FATTR4_WORD1_TIME_METADATA))
server->fattr_valid &= ~NFS_ATTR_FATTR_CTIME;
if (!(res.attr_bitmask[1] & FATTR4_WORD1_TIME_MODIFY))
server->fattr_valid &= ~NFS_ATTR_FATTR_MTIME;
memcpy(server->attr_bitmask_nl, res.attr_bitmask,
sizeof(server->attr_bitmask));
server->attr_bitmask_nl[2] &= ~FATTR4_WORD2_SECURITY_LABEL;
memcpy(server->cache_consistency_bitmask, res.attr_bitmask, sizeof(server->cache_consistency_bitmask));
server->cache_consistency_bitmask[0] &= FATTR4_WORD0_CHANGE|FATTR4_WORD0_SIZE;
server->cache_consistency_bitmask[1] &= FATTR4_WORD1_TIME_METADATA|FATTR4_WORD1_TIME_MODIFY;
server->cache_consistency_bitmask[2] = 0;
/* Avoid a regression due to buggy server */
for (i = 0; i < ARRAY_SIZE(res.exclcreat_bitmask); i++)
res.exclcreat_bitmask[i] &= res.attr_bitmask[i];
memcpy(server->exclcreat_bitmask, res.exclcreat_bitmask,
sizeof(server->exclcreat_bitmask));
server->acl_bitmask = res.acl_bitmask;
server->fh_expire_type = res.fh_expire_type;
}
return status;
}
int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
nfs4_server_set_init_caps(server);
do {
err = nfs4_handle_exception(server,
_nfs4_server_capabilities(server, fhandle),
&exception);
} while (exception.retry);
return err;
}
static void test_fs_location_for_trunking(struct nfs4_fs_location *location,
struct nfs_client *clp,
struct nfs_server *server)
{
int i;
for (i = 0; i < location->nservers; i++) {
struct nfs4_string *srv_loc = &location->servers[i];
struct sockaddr addr;
size_t addrlen;
struct xprt_create xprt_args = {
.ident = 0,
.net = clp->cl_net,
};
struct nfs4_add_xprt_data xprtdata = {
.clp = clp,
};
struct rpc_add_xprt_test rpcdata = {
.add_xprt_test = clp->cl_mvops->session_trunk,
.data = &xprtdata,
};
char *servername = NULL;
if (!srv_loc->len)
continue;
addrlen = nfs_parse_server_name(srv_loc->data, srv_loc->len,
&addr, sizeof(addr),
clp->cl_net, server->port);
if (!addrlen)
return;
xprt_args.dstaddr = &addr;
xprt_args.addrlen = addrlen;
servername = kmalloc(srv_loc->len + 1, GFP_KERNEL);
if (!servername)
return;
memcpy(servername, srv_loc->data, srv_loc->len);
servername[srv_loc->len] = '\0';
xprt_args.servername = servername;
xprtdata.cred = nfs4_get_clid_cred(clp);
rpc_clnt_add_xprt(clp->cl_rpcclient, &xprt_args,
rpc_clnt_setup_test_and_add_xprt,
&rpcdata);
if (xprtdata.cred)
put_cred(xprtdata.cred);
kfree(servername);
}
}
static int _nfs4_discover_trunking(struct nfs_server *server,
struct nfs_fh *fhandle)
{
struct nfs4_fs_locations *locations = NULL;
struct page *page;
const struct cred *cred;
struct nfs_client *clp = server->nfs_client;
const struct nfs4_state_maintenance_ops *ops =
clp->cl_mvops->state_renewal_ops;
int status = -ENOMEM, i;
cred = ops->get_state_renewal_cred(clp);
if (cred == NULL) {
cred = nfs4_get_clid_cred(clp);
if (cred == NULL)
return -ENOKEY;
}
page = alloc_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
if (!locations)
goto out_free;
locations->fattr = nfs_alloc_fattr();
if (!locations->fattr)
goto out_free_2;
status = nfs4_proc_get_locations(server, fhandle, locations, page,
cred);
if (status)
goto out_free_3;
for (i = 0; i < locations->nlocations; i++)
test_fs_location_for_trunking(&locations->locations[i], clp,
server);
out_free_3:
kfree(locations->fattr);
out_free_2:
kfree(locations);
out_free:
__free_page(page);
return status;
}
static int nfs4_discover_trunking(struct nfs_server *server,
struct nfs_fh *fhandle)
{
struct nfs4_exception exception = {
.interruptible = true,
};
struct nfs_client *clp = server->nfs_client;
int err = 0;
if (!nfs4_has_session(clp))
goto out;
do {
err = nfs4_handle_exception(server,
_nfs4_discover_trunking(server, fhandle),
&exception);
} while (exception.retry);
out:
return err;
}
static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
u32 bitmask[3];
struct nfs4_lookup_root_arg args = {
.bitmask = bitmask,
};
struct nfs4_lookup_res res = {
.server = server,
.fattr = info->fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
.rpc_argp = &args,
.rpc_resp = &res,
};
bitmask[0] = nfs4_fattr_bitmap[0];
bitmask[1] = nfs4_fattr_bitmap[1];
/*
* Process the label in the upcoming getfattr
*/
bitmask[2] = nfs4_fattr_bitmap[2] & ~FATTR4_WORD2_SECURITY_LABEL;
nfs_fattr_init(info->fattr);
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_lookup_root(server, fhandle, info);
trace_nfs4_lookup_root(server, fhandle, info->fattr, err);
switch (err) {
case 0:
case -NFS4ERR_WRONGSEC:
goto out;
default:
err = nfs4_handle_exception(server, err, &exception);
}
} while (exception.retry);
out:
return err;
}
static int nfs4_lookup_root_sec(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info, rpc_authflavor_t flavor)
{
struct rpc_auth_create_args auth_args = {
.pseudoflavor = flavor,
};
struct rpc_auth *auth;
auth = rpcauth_create(&auth_args, server->client);
if (IS_ERR(auth))
return -EACCES;
return nfs4_lookup_root(server, fhandle, info);
}
/*
* Retry pseudoroot lookup with various security flavors. We do this when:
*
* NFSv4.0: the PUTROOTFH operation returns NFS4ERR_WRONGSEC
* NFSv4.1: the server does not support the SECINFO_NO_NAME operation
*
* Returns zero on success, or a negative NFS4ERR value, or a
* negative errno value.
*/
static int nfs4_find_root_sec(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
/* Per 3530bis 15.33.5 */
static const rpc_authflavor_t flav_array[] = {
RPC_AUTH_GSS_KRB5P,
RPC_AUTH_GSS_KRB5I,
RPC_AUTH_GSS_KRB5,
RPC_AUTH_UNIX, /* courtesy */
RPC_AUTH_NULL,
};
int status = -EPERM;
size_t i;
if (server->auth_info.flavor_len > 0) {
/* try each flavor specified by user */
for (i = 0; i < server->auth_info.flavor_len; i++) {
status = nfs4_lookup_root_sec(server, fhandle, info,
server->auth_info.flavors[i]);
if (status == -NFS4ERR_WRONGSEC || status == -EACCES)
continue;
break;
}
} else {
/* no flavors specified by user, try default list */
for (i = 0; i < ARRAY_SIZE(flav_array); i++) {
status = nfs4_lookup_root_sec(server, fhandle, info,
flav_array[i]);
if (status == -NFS4ERR_WRONGSEC || status == -EACCES)
continue;
break;
}
}
/*
* -EACCES could mean that the user doesn't have correct permissions
* to access the mount. It could also mean that we tried to mount
* with a gss auth flavor, but rpc.gssd isn't running. Either way,
* existing mount programs don't handle -EACCES very well so it should
* be mapped to -EPERM instead.
*/
if (status == -EACCES)
status = -EPERM;
return status;
}
/**
* nfs4_proc_get_rootfh - get file handle for server's pseudoroot
* @server: initialized nfs_server handle
* @fhandle: we fill in the pseudo-fs root file handle
* @info: we fill in an FSINFO struct
* @auth_probe: probe the auth flavours
*
* Returns zero on success, or a negative errno.
*/
int nfs4_proc_get_rootfh(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info,
bool auth_probe)
{
int status = 0;
if (!auth_probe)
status = nfs4_lookup_root(server, fhandle, info);
if (auth_probe || status == NFS4ERR_WRONGSEC)
status = server->nfs_client->cl_mvops->find_root_sec(server,
fhandle, info);
if (status == 0)
status = nfs4_server_capabilities(server, fhandle);
if (status == 0)
status = nfs4_do_fsinfo(server, fhandle, info);
return nfs4_map_errors(status);
}
static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *mntfh,
struct nfs_fsinfo *info)
{
int error;
struct nfs_fattr *fattr = info->fattr;
error = nfs4_server_capabilities(server, mntfh);
if (error < 0) {
dprintk("nfs4_get_root: getcaps error = %d\n", -error);
return error;
}
error = nfs4_proc_getattr(server, mntfh, fattr, NULL);
if (error < 0) {
dprintk("nfs4_get_root: getattr error = %d\n", -error);
goto out;
}
if (fattr->valid & NFS_ATTR_FATTR_FSID &&
!nfs_fsid_equal(&server->fsid, &fattr->fsid))
memcpy(&server->fsid, &fattr->fsid, sizeof(server->fsid));
out:
return error;
}
/*
* Get locations and (maybe) other attributes of a referral.
* Note that we'll actually follow the referral later when
* we detect fsid mismatch in inode revalidation
*/
static int nfs4_get_referral(struct rpc_clnt *client, struct inode *dir,
const struct qstr *name, struct nfs_fattr *fattr,
struct nfs_fh *fhandle)
{
int status = -ENOMEM;
struct page *page = NULL;
struct nfs4_fs_locations *locations = NULL;
page = alloc_page(GFP_KERNEL);
if (page == NULL)
goto out;
locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
if (locations == NULL)
goto out;
locations->fattr = fattr;
status = nfs4_proc_fs_locations(client, dir, name, locations, page);
if (status != 0)
goto out;
/*
* If the fsid didn't change, this is a migration event, not a
* referral. Cause us to drop into the exception handler, which
* will kick off migration recovery.
*/
if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &fattr->fsid)) {
dprintk("%s: server did not return a different fsid for"
" a referral at %s\n", __func__, name->name);
status = -NFS4ERR_MOVED;
goto out;
}
/* Fixup attributes for the nfs_lookup() call to nfs_fhget() */
nfs_fixup_referral_attributes(fattr);
memset(fhandle, 0, sizeof(struct nfs_fh));
out:
if (page)
__free_page(page);
kfree(locations);
return status;
}
static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fattr *fattr, struct inode *inode)
{
__u32 bitmask[NFS4_BITMASK_SZ];
struct nfs4_getattr_arg args = {
.fh = fhandle,
.bitmask = bitmask,
};
struct nfs4_getattr_res res = {
.fattr = fattr,
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
.rpc_argp = &args,
.rpc_resp = &res,
};
unsigned short task_flags = 0;
if (nfs4_has_session(server->nfs_client))
task_flags = RPC_TASK_MOVEABLE;
/* Is this is an attribute revalidation, subject to softreval? */
if (inode && (server->flags & NFS_MOUNT_SOFTREVAL))
task_flags |= RPC_TASK_TIMEOUT;
nfs4_bitmap_copy_adjust(bitmask, nfs4_bitmask(server, fattr->label), inode, 0);
nfs_fattr_init(fattr);
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 0);
return nfs4_do_call_sync(server->client, server, &msg,
&args.seq_args, &res.seq_res, task_flags);
}
int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fattr *fattr, struct inode *inode)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_getattr(server, fhandle, fattr, inode);
trace_nfs4_getattr(server, fhandle, fattr, err);
err = nfs4_handle_exception(server, err,
&exception);
} while (exception.retry);
return err;
}
/*
* The file is not closed if it is opened due to the a request to change
* the size of the file. The open call will not be needed once the
* VFS layer lookup-intents are implemented.
*
* Close is called when the inode is destroyed.
* If we haven't opened the file for O_WRONLY, we
* need to in the size_change case to obtain a stateid.
*
* Got race?
* Because OPEN is always done by name in nfsv4, it is
* possible that we opened a different file by the same
* name. We can recognize this race condition, but we
* can't do anything about it besides returning an error.
*
* This will be fixed with VFS changes (lookup-intent).
*/
static int
nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
struct iattr *sattr)
{
struct inode *inode = d_inode(dentry);
const struct cred *cred = NULL;
struct nfs_open_context *ctx = NULL;
int status;
if (pnfs_ld_layoutret_on_setattr(inode) &&
sattr->ia_valid & ATTR_SIZE &&
sattr->ia_size < i_size_read(inode))
pnfs_commit_and_return_layout(inode);
nfs_fattr_init(fattr);
/* Deal with open(O_TRUNC) */
if (sattr->ia_valid & ATTR_OPEN)
sattr->ia_valid &= ~(ATTR_MTIME|ATTR_CTIME);
/* Optimization: if the end result is no change, don't RPC */
if ((sattr->ia_valid & ~(ATTR_FILE|ATTR_OPEN)) == 0)
return 0;
/* Search for an existing open(O_WRITE) file */
if (sattr->ia_valid & ATTR_FILE) {
ctx = nfs_file_open_context(sattr->ia_file);
if (ctx)
cred = ctx->cred;
}
/* Return any delegations if we're going to change ACLs */
if ((sattr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0)
nfs4_inode_make_writeable(inode);
status = nfs4_do_setattr(inode, cred, fattr, sattr, ctx, NULL);
if (status == 0) {
nfs_setattr_update_inode(inode, sattr, fattr);
nfs_setsecurity(inode, fattr);
}
return status;
}
static int _nfs4_proc_lookup(struct rpc_clnt *clnt, struct inode *dir,
struct dentry *dentry, struct nfs_fh *fhandle,
struct nfs_fattr *fattr)
{
struct nfs_server *server = NFS_SERVER(dir);
int status;
struct nfs4_lookup_arg args = {
.bitmask = server->attr_bitmask,
.dir_fh = NFS_FH(dir),
.name = &dentry->d_name,
};
struct nfs4_lookup_res res = {
.server = server,
.fattr = fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
.rpc_argp = &args,
.rpc_resp = &res,
};
unsigned short task_flags = 0;
if (nfs_server_capable(dir, NFS_CAP_MOVEABLE))
task_flags = RPC_TASK_MOVEABLE;
/* Is this is an attribute revalidation, subject to softreval? */
if (nfs_lookup_is_soft_revalidate(dentry))
task_flags |= RPC_TASK_TIMEOUT;
args.bitmask = nfs4_bitmask(server, fattr->label);
nfs_fattr_init(fattr);
dprintk("NFS call lookup %pd2\n", dentry);
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 0);
status = nfs4_do_call_sync(clnt, server, &msg,
&args.seq_args, &res.seq_res, task_flags);
dprintk("NFS reply lookup: %d\n", status);
return status;
}
static void nfs_fixup_secinfo_attributes(struct nfs_fattr *fattr)
{
fattr->valid |= NFS_ATTR_FATTR_TYPE | NFS_ATTR_FATTR_MODE |
NFS_ATTR_FATTR_NLINK | NFS_ATTR_FATTR_MOUNTPOINT;
fattr->mode = S_IFDIR | S_IRUGO | S_IXUGO;
fattr->nlink = 2;
}
static int nfs4_proc_lookup_common(struct rpc_clnt **clnt, struct inode *dir,
struct dentry *dentry, struct nfs_fh *fhandle,
struct nfs_fattr *fattr)
{
struct nfs4_exception exception = {
.interruptible = true,
};
struct rpc_clnt *client = *clnt;
const struct qstr *name = &dentry->d_name;
int err;
do {
err = _nfs4_proc_lookup(client, dir, dentry, fhandle, fattr);
trace_nfs4_lookup(dir, name, err);
switch (err) {
case -NFS4ERR_BADNAME:
err = -ENOENT;
goto out;
case -NFS4ERR_MOVED:
err = nfs4_get_referral(client, dir, name, fattr, fhandle);
if (err == -NFS4ERR_MOVED)
err = nfs4_handle_exception(NFS_SERVER(dir), err, &exception);
goto out;
case -NFS4ERR_WRONGSEC:
err = -EPERM;
if (client != *clnt)
goto out;
client = nfs4_negotiate_security(client, dir, name);
if (IS_ERR(client))
return PTR_ERR(client);
exception.retry = 1;
break;
default:
err = nfs4_handle_exception(NFS_SERVER(dir), err, &exception);
}
} while (exception.retry);
out:
if (err == 0)
*clnt = client;
else if (client != *clnt)
rpc_shutdown_client(client);
return err;
}
static int nfs4_proc_lookup(struct inode *dir, struct dentry *dentry,
struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
int status;
struct rpc_clnt *client = NFS_CLIENT(dir);
status = nfs4_proc_lookup_common(&client, dir, dentry, fhandle, fattr);
if (client != NFS_CLIENT(dir)) {
rpc_shutdown_client(client);
nfs_fixup_secinfo_attributes(fattr);
}
return status;
}
struct rpc_clnt *
nfs4_proc_lookup_mountpoint(struct inode *dir, struct dentry *dentry,
struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
struct rpc_clnt *client = NFS_CLIENT(dir);
int status;
status = nfs4_proc_lookup_common(&client, dir, dentry, fhandle, fattr);
if (status < 0)
return ERR_PTR(status);
return (client == NFS_CLIENT(dir)) ? rpc_clone_client(client) : client;
}
static int _nfs4_proc_lookupp(struct inode *inode,
struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
struct rpc_clnt *clnt = NFS_CLIENT(inode);
struct nfs_server *server = NFS_SERVER(inode);
int status;
struct nfs4_lookupp_arg args = {
.bitmask = server->attr_bitmask,
.fh = NFS_FH(inode),
};
struct nfs4_lookupp_res res = {
.server = server,
.fattr = fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUPP],
.rpc_argp = &args,
.rpc_resp = &res,
};
unsigned short task_flags = 0;
if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
task_flags |= RPC_TASK_TIMEOUT;
args.bitmask = nfs4_bitmask(server, fattr->label);
nfs_fattr_init(fattr);
dprintk("NFS call lookupp ino=0x%lx\n", inode->i_ino);
status = nfs4_call_sync(clnt, server, &msg, &args.seq_args,
&res.seq_res, task_flags);
dprintk("NFS reply lookupp: %d\n", status);
return status;
}
static int nfs4_proc_lookupp(struct inode *inode, struct nfs_fh *fhandle,
struct nfs_fattr *fattr)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_lookupp(inode, fhandle, fattr);
trace_nfs4_lookupp(inode, err);
err = nfs4_handle_exception(NFS_SERVER(inode), err,
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry,
const struct cred *cred)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_accessargs args = {
.fh = NFS_FH(inode),
.access = entry->mask,
};
struct nfs4_accessres res = {
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
int status = 0;
if (!nfs4_have_delegation(inode, FMODE_READ)) {
res.fattr = nfs_alloc_fattr();
if (res.fattr == NULL)
return -ENOMEM;
args.bitmask = server->cache_consistency_bitmask;
}
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
if (!status) {
nfs_access_set_mask(entry, res.access);
if (res.fattr)
nfs_refresh_inode(inode, res.fattr);
}
nfs_free_fattr(res.fattr);
return status;
}
static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry,
const struct cred *cred)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_access(inode, entry, cred);
trace_nfs4_access(inode, err);
err = nfs4_handle_exception(NFS_SERVER(inode), err,
&exception);
} while (exception.retry);
return err;
}
/*
* TODO: For the time being, we don't try to get any attributes
* along with any of the zero-copy operations READ, READDIR,
* READLINK, WRITE.
*
* In the case of the first three, we want to put the GETATTR
* after the read-type operation -- this is because it is hard
* to predict the length of a GETATTR response in v4, and thus
* align the READ data correctly. This means that the GETATTR
* may end up partially falling into the page cache, and we should
* shift it into the 'tail' of the xdr_buf before processing.
* To do this efficiently, we need to know the total length
* of data received, which doesn't seem to be available outside
* of the RPC layer.
*
* In the case of WRITE, we also want to put the GETATTR after
* the operation -- in this case because we want to make sure
* we get the post-operation mtime and size.
*
* Both of these changes to the XDR layer would in fact be quite
* minor, but I decided to leave them for a subsequent patch.
*/
static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
unsigned int pgbase, unsigned int pglen)
{
struct nfs4_readlink args = {
.fh = NFS_FH(inode),
.pgbase = pgbase,
.pglen = pglen,
.pages = &page,
};
struct nfs4_readlink_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
.rpc_argp = &args,
.rpc_resp = &res,
};
return nfs4_call_sync(NFS_SERVER(inode)->client, NFS_SERVER(inode), &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_proc_readlink(struct inode *inode, struct page *page,
unsigned int pgbase, unsigned int pglen)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_readlink(inode, page, pgbase, pglen);
trace_nfs4_readlink(inode, err);
err = nfs4_handle_exception(NFS_SERVER(inode), err,
&exception);
} while (exception.retry);
return err;
}
/*
* This is just for mknod. open(O_CREAT) will always do ->open_context().
*/
static int
nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
int flags)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_label l, *ilabel = NULL;
struct nfs_open_context *ctx;
struct nfs4_state *state;
int status = 0;
ctx = alloc_nfs_open_context(dentry, FMODE_READ, NULL);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
ilabel = nfs4_label_init_security(dir, dentry, sattr, &l);
if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
sattr->ia_mode &= ~current_umask();
state = nfs4_do_open(dir, ctx, flags, sattr, ilabel, NULL);
if (IS_ERR(state)) {
status = PTR_ERR(state);
goto out;
}
out:
nfs4_label_release_security(ilabel);
put_nfs_open_context(ctx);
return status;
}
static int
_nfs4_proc_remove(struct inode *dir, const struct qstr *name, u32 ftype)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_removeargs args = {
.fh = NFS_FH(dir),
.name = *name,
};
struct nfs_removeres res = {
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
.rpc_argp = &args,
.rpc_resp = &res,
};
unsigned long timestamp = jiffies;
int status;
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 1);
if (status == 0) {
spin_lock(&dir->i_lock);
/* Removing a directory decrements nlink in the parent */
if (ftype == NF4DIR && dir->i_nlink > 2)
nfs4_dec_nlink_locked(dir);
nfs4_update_changeattr_locked(dir, &res.cinfo, timestamp,
NFS_INO_INVALID_DATA);
spin_unlock(&dir->i_lock);
}
return status;
}
static int nfs4_proc_remove(struct inode *dir, struct dentry *dentry)
{
struct nfs4_exception exception = {
.interruptible = true,
};
struct inode *inode = d_inode(dentry);
int err;
if (inode) {
if (inode->i_nlink == 1)
nfs4_inode_return_delegation(inode);
else
nfs4_inode_make_writeable(inode);
}
do {
err = _nfs4_proc_remove(dir, &dentry->d_name, NF4REG);
trace_nfs4_remove(dir, &dentry->d_name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
return err;
}
static int nfs4_proc_rmdir(struct inode *dir, const struct qstr *name)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_remove(dir, name, NF4DIR);
trace_nfs4_remove(dir, name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
return err;
}
static void nfs4_proc_unlink_setup(struct rpc_message *msg,
struct dentry *dentry,
struct inode *inode)
{
struct nfs_removeargs *args = msg->rpc_argp;
struct nfs_removeres *res = msg->rpc_resp;
res->server = NFS_SB(dentry->d_sb);
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
nfs4_init_sequence(&args->seq_args, &res->seq_res, 1, 0);
nfs_fattr_init(res->dir_attr);
if (inode) {
nfs4_inode_return_delegation(inode);
nfs_d_prune_case_insensitive_aliases(inode);
}
}
static void nfs4_proc_unlink_rpc_prepare(struct rpc_task *task, struct nfs_unlinkdata *data)
{
nfs4_setup_sequence(NFS_SB(data->dentry->d_sb)->nfs_client,
&data->args.seq_args,
&data->res.seq_res,
task);
}
static int nfs4_proc_unlink_done(struct rpc_task *task, struct inode *dir)
{
struct nfs_unlinkdata *data = task->tk_calldata;
struct nfs_removeres *res = &data->res;
if (!nfs4_sequence_done(task, &res->seq_res))
return 0;
if (nfs4_async_handle_error(task, res->server, NULL,
&data->timeout) == -EAGAIN)
return 0;
if (task->tk_status == 0)
nfs4_update_changeattr(dir, &res->cinfo,
res->dir_attr->time_start,
NFS_INO_INVALID_DATA);
return 1;
}
static void nfs4_proc_rename_setup(struct rpc_message *msg,
struct dentry *old_dentry,
struct dentry *new_dentry)
{
struct nfs_renameargs *arg = msg->rpc_argp;
struct nfs_renameres *res = msg->rpc_resp;
struct inode *old_inode = d_inode(old_dentry);
struct inode *new_inode = d_inode(new_dentry);
if (old_inode)
nfs4_inode_make_writeable(old_inode);
if (new_inode)
nfs4_inode_return_delegation(new_inode);
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME];
res->server = NFS_SB(old_dentry->d_sb);
nfs4_init_sequence(&arg->seq_args, &res->seq_res, 1, 0);
}
static void nfs4_proc_rename_rpc_prepare(struct rpc_task *task, struct nfs_renamedata *data)
{
nfs4_setup_sequence(NFS_SERVER(data->old_dir)->nfs_client,
&data->args.seq_args,
&data->res.seq_res,
task);
}
static int nfs4_proc_rename_done(struct rpc_task *task, struct inode *old_dir,
struct inode *new_dir)
{
struct nfs_renamedata *data = task->tk_calldata;
struct nfs_renameres *res = &data->res;
if (!nfs4_sequence_done(task, &res->seq_res))
return 0;
if (nfs4_async_handle_error(task, res->server, NULL, &data->timeout) == -EAGAIN)
return 0;
if (task->tk_status == 0) {
nfs_d_prune_case_insensitive_aliases(d_inode(data->old_dentry));
if (new_dir != old_dir) {
/* Note: If we moved a directory, nlink will change */
nfs4_update_changeattr(old_dir, &res->old_cinfo,
res->old_fattr->time_start,
NFS_INO_INVALID_NLINK |
NFS_INO_INVALID_DATA);
nfs4_update_changeattr(new_dir, &res->new_cinfo,
res->new_fattr->time_start,
NFS_INO_INVALID_NLINK |
NFS_INO_INVALID_DATA);
} else
nfs4_update_changeattr(old_dir, &res->old_cinfo,
res->old_fattr->time_start,
NFS_INO_INVALID_DATA);
}
return 1;
}
static int _nfs4_proc_link(struct inode *inode, struct inode *dir, const struct qstr *name)
{
struct nfs_server *server = NFS_SERVER(inode);
__u32 bitmask[NFS4_BITMASK_SZ];
struct nfs4_link_arg arg = {
.fh = NFS_FH(inode),
.dir_fh = NFS_FH(dir),
.name = name,
.bitmask = bitmask,
};
struct nfs4_link_res res = {
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status = -ENOMEM;
res.fattr = nfs_alloc_fattr_with_label(server);
if (res.fattr == NULL)
goto out;
nfs4_inode_make_writeable(inode);
nfs4_bitmap_copy_adjust(bitmask, nfs4_bitmask(server, res.fattr->label), inode,
NFS_INO_INVALID_CHANGE);
status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1);
if (!status) {
nfs4_update_changeattr(dir, &res.cinfo, res.fattr->time_start,
NFS_INO_INVALID_DATA);
nfs4_inc_nlink(inode);
status = nfs_post_op_update_inode(inode, res.fattr);
if (!status)
nfs_setsecurity(inode, res.fattr);
}
out:
nfs_free_fattr(res.fattr);
return status;
}
static int nfs4_proc_link(struct inode *inode, struct inode *dir, const struct qstr *name)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(inode),
_nfs4_proc_link(inode, dir, name),
&exception);
} while (exception.retry);
return err;
}
struct nfs4_createdata {
struct rpc_message msg;
struct nfs4_create_arg arg;
struct nfs4_create_res res;
struct nfs_fh fh;
struct nfs_fattr fattr;
};
static struct nfs4_createdata *nfs4_alloc_createdata(struct inode *dir,
const struct qstr *name, struct iattr *sattr, u32 ftype)
{
struct nfs4_createdata *data;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (data != NULL) {
struct nfs_server *server = NFS_SERVER(dir);
data->fattr.label = nfs4_label_alloc(server, GFP_KERNEL);
if (IS_ERR(data->fattr.label))
goto out_free;
data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE];
data->msg.rpc_argp = &data->arg;
data->msg.rpc_resp = &data->res;
data->arg.dir_fh = NFS_FH(dir);
data->arg.server = server;
data->arg.name = name;
data->arg.attrs = sattr;
data->arg.ftype = ftype;
data->arg.bitmask = nfs4_bitmask(server, data->fattr.label);
data->arg.umask = current_umask();
data->res.server = server;
data->res.fh = &data->fh;
data->res.fattr = &data->fattr;
nfs_fattr_init(data->res.fattr);
}
return data;
out_free:
kfree(data);
return NULL;
}
static int nfs4_do_create(struct inode *dir, struct dentry *dentry, struct nfs4_createdata *data)
{
int status = nfs4_call_sync(NFS_SERVER(dir)->client, NFS_SERVER(dir), &data->msg,
&data->arg.seq_args, &data->res.seq_res, 1);
if (status == 0) {
spin_lock(&dir->i_lock);
/* Creating a directory bumps nlink in the parent */
if (data->arg.ftype == NF4DIR)
nfs4_inc_nlink_locked(dir);
nfs4_update_changeattr_locked(dir, &data->res.dir_cinfo,
data->res.fattr->time_start,
NFS_INO_INVALID_DATA);
spin_unlock(&dir->i_lock);
status = nfs_instantiate(dentry, data->res.fh, data->res.fattr);
}
return status;
}
static void nfs4_free_createdata(struct nfs4_createdata *data)
{
nfs4_label_free(data->fattr.label);
kfree(data);
}
static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
struct page *page, unsigned int len, struct iattr *sattr,
struct nfs4_label *label)
{
struct nfs4_createdata *data;
int status = -ENAMETOOLONG;
if (len > NFS4_MAXPATHLEN)
goto out;
status = -ENOMEM;
data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4LNK);
if (data == NULL)
goto out;
data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK];
data->arg.u.symlink.pages = &page;
data->arg.u.symlink.len = len;
data->arg.label = label;
status = nfs4_do_create(dir, dentry, data);
nfs4_free_createdata(data);
out:
return status;
}
static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
struct page *page, unsigned int len, struct iattr *sattr)
{
struct nfs4_exception exception = {
.interruptible = true,
};
struct nfs4_label l, *label = NULL;
int err;
label = nfs4_label_init_security(dir, dentry, sattr, &l);
do {
err = _nfs4_proc_symlink(dir, dentry, page, len, sattr, label);
trace_nfs4_symlink(dir, &dentry->d_name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
nfs4_label_release_security(label);
return err;
}
static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, struct nfs4_label *label)
{
struct nfs4_createdata *data;
int status = -ENOMEM;
data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4DIR);
if (data == NULL)
goto out;
data->arg.label = label;
status = nfs4_do_create(dir, dentry, data);
nfs4_free_createdata(data);
out:
return status;
}
static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
struct iattr *sattr)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_exception exception = {
.interruptible = true,
};
struct nfs4_label l, *label = NULL;
int err;
label = nfs4_label_init_security(dir, dentry, sattr, &l);
if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
sattr->ia_mode &= ~current_umask();
do {
err = _nfs4_proc_mkdir(dir, dentry, sattr, label);
trace_nfs4_mkdir(dir, &dentry->d_name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
nfs4_label_release_security(label);
return err;
}
static int _nfs4_proc_readdir(struct nfs_readdir_arg *nr_arg,
struct nfs_readdir_res *nr_res)
{
struct inode *dir = d_inode(nr_arg->dentry);
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_readdir_arg args = {
.fh = NFS_FH(dir),
.pages = nr_arg->pages,
.pgbase = 0,
.count = nr_arg->page_len,
.plus = nr_arg->plus,
};
struct nfs4_readdir_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = nr_arg->cred,
};
int status;
dprintk("%s: dentry = %pd2, cookie = %llu\n", __func__,
nr_arg->dentry, (unsigned long long)nr_arg->cookie);
if (!(server->caps & NFS_CAP_SECURITY_LABEL))
args.bitmask = server->attr_bitmask_nl;
else
args.bitmask = server->attr_bitmask;
nfs4_setup_readdir(nr_arg->cookie, nr_arg->verf, nr_arg->dentry, &args);
res.pgbase = args.pgbase;
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args,
&res.seq_res, 0);
if (status >= 0) {
memcpy(nr_res->verf, res.verifier.data, NFS4_VERIFIER_SIZE);
status += args.pgbase;
}
nfs_invalidate_atime(dir);
dprintk("%s: returns %d\n", __func__, status);
return status;
}
static int nfs4_proc_readdir(struct nfs_readdir_arg *arg,
struct nfs_readdir_res *res)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_readdir(arg, res);
trace_nfs4_readdir(d_inode(arg->dentry), err);
err = nfs4_handle_exception(NFS_SERVER(d_inode(arg->dentry)),
err, &exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, struct nfs4_label *label, dev_t rdev)
{
struct nfs4_createdata *data;
int mode = sattr->ia_mode;
int status = -ENOMEM;
data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4SOCK);
if (data == NULL)
goto out;
if (S_ISFIFO(mode))
data->arg.ftype = NF4FIFO;
else if (S_ISBLK(mode)) {
data->arg.ftype = NF4BLK;
data->arg.u.device.specdata1 = MAJOR(rdev);
data->arg.u.device.specdata2 = MINOR(rdev);
}
else if (S_ISCHR(mode)) {
data->arg.ftype = NF4CHR;
data->arg.u.device.specdata1 = MAJOR(rdev);
data->arg.u.device.specdata2 = MINOR(rdev);
} else if (!S_ISSOCK(mode)) {
status = -EINVAL;
goto out_free;
}
data->arg.label = label;
status = nfs4_do_create(dir, dentry, data);
out_free:
nfs4_free_createdata(data);
out:
return status;
}
static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, dev_t rdev)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_exception exception = {
.interruptible = true,
};
struct nfs4_label l, *label = NULL;
int err;
label = nfs4_label_init_security(dir, dentry, sattr, &l);
if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
sattr->ia_mode &= ~current_umask();
do {
err = _nfs4_proc_mknod(dir, dentry, sattr, label, rdev);
trace_nfs4_mknod(dir, &dentry->d_name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
nfs4_label_release_security(label);
return err;
}
static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsstat *fsstat)
{
struct nfs4_statfs_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct nfs4_statfs_res res = {
.fsstat = fsstat,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
.rpc_argp = &args,
.rpc_resp = &res,
};
nfs_fattr_init(fsstat->fattr);
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_statfs(server, fhandle, fsstat),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *fsinfo)
{
struct nfs4_fsinfo_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct nfs4_fsinfo_res res = {
.fsinfo = fsinfo,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
.rpc_argp = &args,
.rpc_resp = &res,
};
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_do_fsinfo(server, fhandle, fsinfo);
trace_nfs4_fsinfo(server, fhandle, fsinfo->fattr, err);
if (err == 0) {
nfs4_set_lease_period(server->nfs_client, fsinfo->lease_time * HZ);
break;
}
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
{
int error;
nfs_fattr_init(fsinfo->fattr);
error = nfs4_do_fsinfo(server, fhandle, fsinfo);
if (error == 0) {
/* block layout checks this! */
server->pnfs_blksize = fsinfo->blksize;
set_pnfs_layoutdriver(server, fhandle, fsinfo);
}
return error;
}
static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_pathconf *pathconf)
{
struct nfs4_pathconf_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct nfs4_pathconf_res res = {
.pathconf = pathconf,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
.rpc_argp = &args,
.rpc_resp = &res,
};
/* None of the pathconf attributes are mandatory to implement */
if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
memset(pathconf, 0, sizeof(*pathconf));
return 0;
}
nfs_fattr_init(pathconf->fattr);
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_pathconf *pathconf)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_pathconf(server, fhandle, pathconf),
&exception);
} while (exception.retry);
return err;
}
int nfs4_set_rw_stateid(nfs4_stateid *stateid,
const struct nfs_open_context *ctx,
const struct nfs_lock_context *l_ctx,
fmode_t fmode)
{
return nfs4_select_rw_stateid(ctx->state, fmode, l_ctx, stateid, NULL);
}
EXPORT_SYMBOL_GPL(nfs4_set_rw_stateid);
static bool nfs4_stateid_is_current(nfs4_stateid *stateid,
const struct nfs_open_context *ctx,
const struct nfs_lock_context *l_ctx,
fmode_t fmode)
{
nfs4_stateid _current_stateid;
/* If the current stateid represents a lost lock, then exit */
if (nfs4_set_rw_stateid(&_current_stateid, ctx, l_ctx, fmode) == -EIO)
return true;
return nfs4_stateid_match(stateid, &_current_stateid);
}
static bool nfs4_error_stateid_expired(int err)
{
switch (err) {
case -NFS4ERR_DELEG_REVOKED:
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_OLD_STATEID:
case -NFS4ERR_OPENMODE:
case -NFS4ERR_EXPIRED:
return true;
}
return false;
}
static int nfs4_read_done_cb(struct rpc_task *task, struct nfs_pgio_header *hdr)
{
struct nfs_server *server = NFS_SERVER(hdr->inode);
trace_nfs4_read(hdr, task->tk_status);
if (task->tk_status < 0) {
struct nfs4_exception exception = {
.inode = hdr->inode,
.state = hdr->args.context->state,
.stateid = &hdr->args.stateid,
};
task->tk_status = nfs4_async_handle_exception(task,
server, task->tk_status, &exception);
if (exception.retry) {
rpc_restart_call_prepare(task);
return -EAGAIN;
}
}
if (task->tk_status > 0)
renew_lease(server, hdr->timestamp);
return 0;
}
static bool nfs4_read_stateid_changed(struct rpc_task *task,
struct nfs_pgio_args *args)
{
if (!nfs4_error_stateid_expired(task->tk_status) ||
nfs4_stateid_is_current(&args->stateid,
args->context,
args->lock_context,
FMODE_READ))
return false;
rpc_restart_call_prepare(task);
return true;
}
static bool nfs4_read_plus_not_supported(struct rpc_task *task,
struct nfs_pgio_header *hdr)
{
struct nfs_server *server = NFS_SERVER(hdr->inode);
struct rpc_message *msg = &task->tk_msg;
if (msg->rpc_proc == &nfs4_procedures[NFSPROC4_CLNT_READ_PLUS] &&
server->caps & NFS_CAP_READ_PLUS && task->tk_status == -ENOTSUPP) {
server->caps &= ~NFS_CAP_READ_PLUS;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ];
rpc_restart_call_prepare(task);
return true;
}
return false;
}
static int nfs4_read_done(struct rpc_task *task, struct nfs_pgio_header *hdr)
{
if (!nfs4_sequence_done(task, &hdr->res.seq_res))
return -EAGAIN;
if (nfs4_read_stateid_changed(task, &hdr->args))
return -EAGAIN;
if (nfs4_read_plus_not_supported(task, hdr))
return -EAGAIN;
if (task->tk_status > 0)
nfs_invalidate_atime(hdr->inode);
return hdr->pgio_done_cb ? hdr->pgio_done_cb(task, hdr) :
nfs4_read_done_cb(task, hdr);
}
#if defined CONFIG_NFS_V4_2 && defined CONFIG_NFS_V4_2_READ_PLUS
static void nfs42_read_plus_support(struct nfs_pgio_header *hdr,
struct rpc_message *msg)
{
/* Note: We don't use READ_PLUS with pNFS yet */
if (nfs_server_capable(hdr->inode, NFS_CAP_READ_PLUS) && !hdr->ds_clp)
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ_PLUS];
}
#else
static void nfs42_read_plus_support(struct nfs_pgio_header *hdr,
struct rpc_message *msg)
{
}
#endif /* CONFIG_NFS_V4_2 */
static void nfs4_proc_read_setup(struct nfs_pgio_header *hdr,
struct rpc_message *msg)
{
hdr->timestamp = jiffies;
if (!hdr->pgio_done_cb)
hdr->pgio_done_cb = nfs4_read_done_cb;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ];
nfs42_read_plus_support(hdr, msg);
nfs4_init_sequence(&hdr->args.seq_args, &hdr->res.seq_res, 0, 0);
}
static int nfs4_proc_pgio_rpc_prepare(struct rpc_task *task,
struct nfs_pgio_header *hdr)
{
if (nfs4_setup_sequence(NFS_SERVER(hdr->inode)->nfs_client,
&hdr->args.seq_args,
&hdr->res.seq_res,
task))
return 0;
if (nfs4_set_rw_stateid(&hdr->args.stateid, hdr->args.context,
hdr->args.lock_context,
hdr->rw_mode) == -EIO)
return -EIO;
if (unlikely(test_bit(NFS_CONTEXT_BAD, &hdr->args.context->flags)))
return -EIO;
return 0;
}
static int nfs4_write_done_cb(struct rpc_task *task,
struct nfs_pgio_header *hdr)
{
struct inode *inode = hdr->inode;
trace_nfs4_write(hdr, task->tk_status);
if (task->tk_status < 0) {
struct nfs4_exception exception = {
.inode = hdr->inode,
.state = hdr->args.context->state,
.stateid = &hdr->args.stateid,
};
task->tk_status = nfs4_async_handle_exception(task,
NFS_SERVER(inode), task->tk_status,
&exception);
if (exception.retry) {
rpc_restart_call_prepare(task);
return -EAGAIN;
}
}
if (task->tk_status >= 0) {
renew_lease(NFS_SERVER(inode), hdr->timestamp);
nfs_writeback_update_inode(hdr);
}
return 0;
}
static bool nfs4_write_stateid_changed(struct rpc_task *task,
struct nfs_pgio_args *args)
{
if (!nfs4_error_stateid_expired(task->tk_status) ||
nfs4_stateid_is_current(&args->stateid,
args->context,
args->lock_context,
FMODE_WRITE))
return false;
rpc_restart_call_prepare(task);
return true;
}
static int nfs4_write_done(struct rpc_task *task, struct nfs_pgio_header *hdr)
{
if (!nfs4_sequence_done(task, &hdr->res.seq_res))
return -EAGAIN;
if (nfs4_write_stateid_changed(task, &hdr->args))
return -EAGAIN;
return hdr->pgio_done_cb ? hdr->pgio_done_cb(task, hdr) :
nfs4_write_done_cb(task, hdr);
}
static
bool nfs4_write_need_cache_consistency_data(struct nfs_pgio_header *hdr)
{
/* Don't request attributes for pNFS or O_DIRECT writes */
if (hdr->ds_clp != NULL || hdr->dreq != NULL)
return false;
/* Otherwise, request attributes if and only if we don't hold
* a delegation
*/
return nfs4_have_delegation(hdr->inode, FMODE_READ) == 0;
}
void nfs4_bitmask_set(__u32 bitmask[], const __u32 src[],
struct inode *inode, unsigned long cache_validity)
{
struct nfs_server *server = NFS_SERVER(inode);
unsigned int i;
memcpy(bitmask, src, sizeof(*bitmask) * NFS4_BITMASK_SZ);
cache_validity |= READ_ONCE(NFS_I(inode)->cache_validity);
if (cache_validity & NFS_INO_INVALID_CHANGE)
bitmask[0] |= FATTR4_WORD0_CHANGE;
if (cache_validity & NFS_INO_INVALID_ATIME)
bitmask[1] |= FATTR4_WORD1_TIME_ACCESS;
if (cache_validity & NFS_INO_INVALID_MODE)
bitmask[1] |= FATTR4_WORD1_MODE;
if (cache_validity & NFS_INO_INVALID_OTHER)
bitmask[1] |= FATTR4_WORD1_OWNER | FATTR4_WORD1_OWNER_GROUP;
if (cache_validity & NFS_INO_INVALID_NLINK)
bitmask[1] |= FATTR4_WORD1_NUMLINKS;
if (cache_validity & NFS_INO_INVALID_CTIME)
bitmask[1] |= FATTR4_WORD1_TIME_METADATA;
if (cache_validity & NFS_INO_INVALID_MTIME)
bitmask[1] |= FATTR4_WORD1_TIME_MODIFY;
if (cache_validity & NFS_INO_INVALID_BLOCKS)
bitmask[1] |= FATTR4_WORD1_SPACE_USED;
if (cache_validity & NFS_INO_INVALID_SIZE)
bitmask[0] |= FATTR4_WORD0_SIZE;
for (i = 0; i < NFS4_BITMASK_SZ; i++)
bitmask[i] &= server->attr_bitmask[i];
}
static void nfs4_proc_write_setup(struct nfs_pgio_header *hdr,
struct rpc_message *msg,
struct rpc_clnt **clnt)
{
struct nfs_server *server = NFS_SERVER(hdr->inode);
if (!nfs4_write_need_cache_consistency_data(hdr)) {
hdr->args.bitmask = NULL;
hdr->res.fattr = NULL;
} else {
nfs4_bitmask_set(hdr->args.bitmask_store,
server->cache_consistency_bitmask,
hdr->inode, NFS_INO_INVALID_BLOCKS);
hdr->args.bitmask = hdr->args.bitmask_store;
}
if (!hdr->pgio_done_cb)
hdr->pgio_done_cb = nfs4_write_done_cb;
hdr->res.server = server;
hdr->timestamp = jiffies;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE];
nfs4_init_sequence(&hdr->args.seq_args, &hdr->res.seq_res, 0, 0);
nfs4_state_protect_write(server->nfs_client, clnt, msg, hdr);
}
static void nfs4_proc_commit_rpc_prepare(struct rpc_task *task, struct nfs_commit_data *data)
{
nfs4_setup_sequence(NFS_SERVER(data->inode)->nfs_client,
&data->args.seq_args,
&data->res.seq_res,
task);
}
static int nfs4_commit_done_cb(struct rpc_task *task, struct nfs_commit_data *data)
{
struct inode *inode = data->inode;
trace_nfs4_commit(data, task->tk_status);
if (nfs4_async_handle_error(task, NFS_SERVER(inode),
NULL, NULL) == -EAGAIN) {
rpc_restart_call_prepare(task);
return -EAGAIN;
}
return 0;
}
static int nfs4_commit_done(struct rpc_task *task, struct nfs_commit_data *data)
{
if (!nfs4_sequence_done(task, &data->res.seq_res))
return -EAGAIN;
return data->commit_done_cb(task, data);
}
static void nfs4_proc_commit_setup(struct nfs_commit_data *data, struct rpc_message *msg,
struct rpc_clnt **clnt)
{
struct nfs_server *server = NFS_SERVER(data->inode);
if (data->commit_done_cb == NULL)
data->commit_done_cb = nfs4_commit_done_cb;
data->res.server = server;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT];
nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 1, 0);
nfs4_state_protect(server->nfs_client, NFS_SP4_MACH_CRED_COMMIT, clnt, msg);
}
static int _nfs4_proc_commit(struct file *dst, struct nfs_commitargs *args,
struct nfs_commitres *res)
{
struct inode *dst_inode = file_inode(dst);
struct nfs_server *server = NFS_SERVER(dst_inode);
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
.rpc_argp = args,
.rpc_resp = res,
};
args->fh = NFS_FH(dst_inode);
return nfs4_call_sync(server->client, server, &msg,
&args->seq_args, &res->seq_res, 1);
}
int nfs4_proc_commit(struct file *dst, __u64 offset, __u32 count, struct nfs_commitres *res)
{
struct nfs_commitargs args = {
.offset = offset,
.count = count,
};
struct nfs_server *dst_server = NFS_SERVER(file_inode(dst));
struct nfs4_exception exception = { };
int status;
do {
status = _nfs4_proc_commit(dst, &args, res);
status = nfs4_handle_exception(dst_server, status, &exception);
} while (exception.retry);
return status;
}
struct nfs4_renewdata {
struct nfs_client *client;
unsigned long timestamp;
};
/*
* nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
* standalone procedure for queueing an asynchronous RENEW.
*/
static void nfs4_renew_release(void *calldata)
{
struct nfs4_renewdata *data = calldata;
struct nfs_client *clp = data->client;
if (refcount_read(&clp->cl_count) > 1)
nfs4_schedule_state_renewal(clp);
nfs_put_client(clp);
kfree(data);
}
static void nfs4_renew_done(struct rpc_task *task, void *calldata)
{
struct nfs4_renewdata *data = calldata;
struct nfs_client *clp = data->client;
unsigned long timestamp = data->timestamp;
trace_nfs4_renew_async(clp, task->tk_status);
switch (task->tk_status) {
case 0:
break;
case -NFS4ERR_LEASE_MOVED:
nfs4_schedule_lease_moved_recovery(clp);
break;
default:
/* Unless we're shutting down, schedule state recovery! */
if (test_bit(NFS_CS_RENEWD, &clp->cl_res_state) == 0)
return;
if (task->tk_status != NFS4ERR_CB_PATH_DOWN) {
nfs4_schedule_lease_recovery(clp);
return;
}
nfs4_schedule_path_down_recovery(clp);
}
do_renew_lease(clp, timestamp);
}
static const struct rpc_call_ops nfs4_renew_ops = {
.rpc_call_done = nfs4_renew_done,
.rpc_release = nfs4_renew_release,
};
static int nfs4_proc_async_renew(struct nfs_client *clp, const struct cred *cred, unsigned renew_flags)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
.rpc_argp = clp,
.rpc_cred = cred,
};
struct nfs4_renewdata *data;
if (renew_flags == 0)
return 0;
if (!refcount_inc_not_zero(&clp->cl_count))
return -EIO;
data = kmalloc(sizeof(*data), GFP_NOFS);
if (data == NULL) {
nfs_put_client(clp);
return -ENOMEM;
}
data->client = clp;
data->timestamp = jiffies;
return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT,
&nfs4_renew_ops, data);
}
static int nfs4_proc_renew(struct nfs_client *clp, const struct cred *cred)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
.rpc_argp = clp,
.rpc_cred = cred,
};
unsigned long now = jiffies;
int status;
status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT);
if (status < 0)
return status;
do_renew_lease(clp, now);
return 0;
}
static bool nfs4_server_supports_acls(const struct nfs_server *server,
enum nfs4_acl_type type)
{
switch (type) {
default:
return server->attr_bitmask[0] & FATTR4_WORD0_ACL;
case NFS4ACL_DACL:
return server->attr_bitmask[1] & FATTR4_WORD1_DACL;
case NFS4ACL_SACL:
return server->attr_bitmask[1] & FATTR4_WORD1_SACL;
}
}
/* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_SIZE, and that
* it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_SIZE) bytes on
* the stack.
*/
#define NFS4ACL_MAXPAGES DIV_ROUND_UP(XATTR_SIZE_MAX, PAGE_SIZE)
int nfs4_buf_to_pages_noslab(const void *buf, size_t buflen,
struct page **pages)
{
struct page *newpage, **spages;
int rc = 0;
size_t len;
spages = pages;
do {
len = min_t(size_t, PAGE_SIZE, buflen);
newpage = alloc_page(GFP_KERNEL);
if (newpage == NULL)
goto unwind;
memcpy(page_address(newpage), buf, len);
buf += len;
buflen -= len;
*pages++ = newpage;
rc++;
} while (buflen != 0);
return rc;
unwind:
for(; rc > 0; rc--)
__free_page(spages[rc-1]);
return -ENOMEM;
}
struct nfs4_cached_acl {
enum nfs4_acl_type type;
int cached;
size_t len;
char data[];
};
static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
{
struct nfs_inode *nfsi = NFS_I(inode);
spin_lock(&inode->i_lock);
kfree(nfsi->nfs4_acl);
nfsi->nfs4_acl = acl;
spin_unlock(&inode->i_lock);
}
static void nfs4_zap_acl_attr(struct inode *inode)
{
nfs4_set_cached_acl(inode, NULL);
}
static ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf,
size_t buflen, enum nfs4_acl_type type)
{
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs4_cached_acl *acl;
int ret = -ENOENT;
spin_lock(&inode->i_lock);
acl = nfsi->nfs4_acl;
if (acl == NULL)
goto out;
if (acl->type != type)
goto out;
if (buf == NULL) /* user is just asking for length */
goto out_len;
if (acl->cached == 0)
goto out;
ret = -ERANGE; /* see getxattr(2) man page */
if (acl->len > buflen)
goto out;
memcpy(buf, acl->data, acl->len);
out_len:
ret = acl->len;
out:
spin_unlock(&inode->i_lock);
return ret;
}
static void nfs4_write_cached_acl(struct inode *inode, struct page **pages,
size_t pgbase, size_t acl_len,
enum nfs4_acl_type type)
{
struct nfs4_cached_acl *acl;
size_t buflen = sizeof(*acl) + acl_len;
if (buflen <= PAGE_SIZE) {
acl = kmalloc(buflen, GFP_KERNEL);
if (acl == NULL)
goto out;
acl->cached = 1;
_copy_from_pages(acl->data, pages, pgbase, acl_len);
} else {
acl = kmalloc(sizeof(*acl), GFP_KERNEL);
if (acl == NULL)
goto out;
acl->cached = 0;
}
acl->type = type;
acl->len = acl_len;
out:
nfs4_set_cached_acl(inode, acl);
}
/*
* The getxattr API returns the required buffer length when called with a
* NULL buf. The NFSv4 acl tool then calls getxattr again after allocating
* the required buf. On a NULL buf, we send a page of data to the server
* guessing that the ACL request can be serviced by a page. If so, we cache
* up to the page of ACL data, and the 2nd call to getxattr is serviced by
* the cache. If not so, we throw away the page, and cache the required
* length. The next getxattr call will then produce another round trip to
* the server, this time with the input buf of the required size.
*/
static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf,
size_t buflen, enum nfs4_acl_type type)
{
struct page **pages;
struct nfs_getaclargs args = {
.fh = NFS_FH(inode),
.acl_type = type,
.acl_len = buflen,
};
struct nfs_getaclres res = {
.acl_type = type,
.acl_len = buflen,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
.rpc_argp = &args,
.rpc_resp = &res,
};
unsigned int npages;
int ret = -ENOMEM, i;
struct nfs_server *server = NFS_SERVER(inode);
if (buflen == 0)
buflen = server->rsize;
npages = DIV_ROUND_UP(buflen, PAGE_SIZE) + 1;
pages = kmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
if (!pages)
return -ENOMEM;
args.acl_pages = pages;
for (i = 0; i < npages; i++) {
pages[i] = alloc_page(GFP_KERNEL);
if (!pages[i])
goto out_free;
}
/* for decoding across pages */
res.acl_scratch = alloc_page(GFP_KERNEL);
if (!res.acl_scratch)
goto out_free;
args.acl_len = npages * PAGE_SIZE;
dprintk("%s buf %p buflen %zu npages %d args.acl_len %zu\n",
__func__, buf, buflen, npages, args.acl_len);
ret = nfs4_call_sync(NFS_SERVER(inode)->client, NFS_SERVER(inode),
&msg, &args.seq_args, &res.seq_res, 0);
if (ret)
goto out_free;
/* Handle the case where the passed-in buffer is too short */
if (res.acl_flags & NFS4_ACL_TRUNC) {
/* Did the user only issue a request for the acl length? */
if (buf == NULL)
goto out_ok;
ret = -ERANGE;
goto out_free;
}
nfs4_write_cached_acl(inode, pages, res.acl_data_offset, res.acl_len,
type);
if (buf) {
if (res.acl_len > buflen) {
ret = -ERANGE;
goto out_free;
}
_copy_from_pages(buf, pages, res.acl_data_offset, res.acl_len);
}
out_ok:
ret = res.acl_len;
out_free:
for (i = 0; i < npages; i++)
if (pages[i])
__free_page(pages[i]);
if (res.acl_scratch)
__free_page(res.acl_scratch);
kfree(pages);
return ret;
}
static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf,
size_t buflen, enum nfs4_acl_type type)
{
struct nfs4_exception exception = {
.interruptible = true,
};
ssize_t ret;
do {
ret = __nfs4_get_acl_uncached(inode, buf, buflen, type);
trace_nfs4_get_acl(inode, ret);
if (ret >= 0)
break;
ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
} while (exception.retry);
return ret;
}
static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen,
enum nfs4_acl_type type)
{
struct nfs_server *server = NFS_SERVER(inode);
int ret;
if (!nfs4_server_supports_acls(server, type))
return -EOPNOTSUPP;
ret = nfs_revalidate_inode(inode, NFS_INO_INVALID_CHANGE);
if (ret < 0)
return ret;
if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_ACL)
nfs_zap_acl_cache(inode);
ret = nfs4_read_cached_acl(inode, buf, buflen, type);
if (ret != -ENOENT)
/* -ENOENT is returned if there is no ACL or if there is an ACL
* but no cached acl data, just the acl length */
return ret;
return nfs4_get_acl_uncached(inode, buf, buflen, type);
}
static int __nfs4_proc_set_acl(struct inode *inode, const void *buf,
size_t buflen, enum nfs4_acl_type type)
{
struct nfs_server *server = NFS_SERVER(inode);
struct page *pages[NFS4ACL_MAXPAGES];
struct nfs_setaclargs arg = {
.fh = NFS_FH(inode),
.acl_type = type,
.acl_len = buflen,
.acl_pages = pages,
};
struct nfs_setaclres res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
.rpc_argp = &arg,
.rpc_resp = &res,
};
unsigned int npages = DIV_ROUND_UP(buflen, PAGE_SIZE);
int ret, i;
/* You can't remove system.nfs4_acl: */
if (buflen == 0)
return -EINVAL;
if (!nfs4_server_supports_acls(server, type))
return -EOPNOTSUPP;
if (npages > ARRAY_SIZE(pages))
return -ERANGE;
i = nfs4_buf_to_pages_noslab(buf, buflen, arg.acl_pages);
if (i < 0)
return i;
nfs4_inode_make_writeable(inode);
ret = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1);
/*
* Free each page after tx, so the only ref left is
* held by the network stack
*/
for (; i > 0; i--)
put_page(pages[i-1]);
/*
* Acl update can result in inode attribute update.
* so mark the attribute cache invalid.
*/
spin_lock(&inode->i_lock);
nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE |
NFS_INO_INVALID_CTIME |
NFS_INO_REVAL_FORCED);
spin_unlock(&inode->i_lock);
nfs_access_zap_cache(inode);
nfs_zap_acl_cache(inode);
return ret;
}
static int nfs4_proc_set_acl(struct inode *inode, const void *buf,
size_t buflen, enum nfs4_acl_type type)
{
struct nfs4_exception exception = { };
int err;
do {
err = __nfs4_proc_set_acl(inode, buf, buflen, type);
trace_nfs4_set_acl(inode, err);
if (err == -NFS4ERR_BADOWNER || err == -NFS4ERR_BADNAME) {
/*
* no need to retry since the kernel
* isn't involved in encoding the ACEs.
*/
err = -EINVAL;
break;
}
err = nfs4_handle_exception(NFS_SERVER(inode), err,
&exception);
} while (exception.retry);
return err;
}
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
static int _nfs4_get_security_label(struct inode *inode, void *buf,
size_t buflen)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_label label = {0, 0, buflen, buf};
u32 bitmask[3] = { 0, 0, FATTR4_WORD2_SECURITY_LABEL };
struct nfs_fattr fattr = {
.label = &label,
};
struct nfs4_getattr_arg arg = {
.fh = NFS_FH(inode),
.bitmask = bitmask,
};
struct nfs4_getattr_res res = {
.fattr = &fattr,
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int ret;
nfs_fattr_init(&fattr);
ret = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 0);
if (ret)
return ret;
if (!(fattr.valid & NFS_ATTR_FATTR_V4_SECURITY_LABEL))
return -ENOENT;
return label.len;
}
static int nfs4_get_security_label(struct inode *inode, void *buf,
size_t buflen)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
if (!nfs_server_capable(inode, NFS_CAP_SECURITY_LABEL))
return -EOPNOTSUPP;
do {
err = _nfs4_get_security_label(inode, buf, buflen);
trace_nfs4_get_security_label(inode, err);
err = nfs4_handle_exception(NFS_SERVER(inode), err,
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_do_set_security_label(struct inode *inode,
struct nfs4_label *ilabel,
struct nfs_fattr *fattr)
{
struct iattr sattr = {0};
struct nfs_server *server = NFS_SERVER(inode);
const u32 bitmask[3] = { 0, 0, FATTR4_WORD2_SECURITY_LABEL };
struct nfs_setattrargs arg = {
.fh = NFS_FH(inode),
.iap = &sattr,
.server = server,
.bitmask = bitmask,
.label = ilabel,
};
struct nfs_setattrres res = {
.fattr = fattr,
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status;
nfs4_stateid_copy(&arg.stateid, &zero_stateid);
status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1);
if (status)
dprintk("%s failed: %d\n", __func__, status);
return status;
}
static int nfs4_do_set_security_label(struct inode *inode,
struct nfs4_label *ilabel,
struct nfs_fattr *fattr)
{
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_do_set_security_label(inode, ilabel, fattr);
trace_nfs4_set_security_label(inode, err);
err = nfs4_handle_exception(NFS_SERVER(inode), err,
&exception);
} while (exception.retry);
return err;
}
static int
nfs4_set_security_label(struct inode *inode, const void *buf, size_t buflen)
{
struct nfs4_label ilabel = {0, 0, buflen, (char *)buf };
struct nfs_fattr *fattr;
int status;
if (!nfs_server_capable(inode, NFS_CAP_SECURITY_LABEL))
return -EOPNOTSUPP;
fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
if (fattr == NULL)
return -ENOMEM;
status = nfs4_do_set_security_label(inode, &ilabel, fattr);
if (status == 0)
nfs_setsecurity(inode, fattr);
return status;
}
#endif /* CONFIG_NFS_V4_SECURITY_LABEL */
static void nfs4_init_boot_verifier(const struct nfs_client *clp,
nfs4_verifier *bootverf)
{
__be32 verf[2];
if (test_bit(NFS4CLNT_PURGE_STATE, &clp->cl_state)) {
/* An impossible timestamp guarantees this value
* will never match a generated boot time. */
verf[0] = cpu_to_be32(U32_MAX);
verf[1] = cpu_to_be32(U32_MAX);
} else {
struct nfs_net *nn = net_generic(clp->cl_net, nfs_net_id);
u64 ns = ktime_to_ns(nn->boot_time);
verf[0] = cpu_to_be32(ns >> 32);
verf[1] = cpu_to_be32(ns);
}
memcpy(bootverf->data, verf, sizeof(bootverf->data));
}
static size_t
nfs4_get_uniquifier(struct nfs_client *clp, char *buf, size_t buflen)
{
struct nfs_net *nn = net_generic(clp->cl_net, nfs_net_id);
struct nfs_netns_client *nn_clp = nn->nfs_client;
const char *id;
buf[0] = '\0';
if (nn_clp) {
rcu_read_lock();
id = rcu_dereference(nn_clp->identifier);
if (id)
strscpy(buf, id, buflen);
rcu_read_unlock();
}
if (nfs4_client_id_uniquifier[0] != '\0' && buf[0] == '\0')
strscpy(buf, nfs4_client_id_uniquifier, buflen);
return strlen(buf);
}
static int
nfs4_init_nonuniform_client_string(struct nfs_client *clp)
{
char buf[NFS4_CLIENT_ID_UNIQ_LEN];
size_t buflen;
size_t len;
char *str;
if (clp->cl_owner_id != NULL)
return 0;
rcu_read_lock();
len = 14 +
strlen(clp->cl_rpcclient->cl_nodename) +
1 +
strlen(rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_ADDR)) +
1;
rcu_read_unlock();
buflen = nfs4_get_uniquifier(clp, buf, sizeof(buf));
if (buflen)
len += buflen + 1;
if (len > NFS4_OPAQUE_LIMIT + 1)
return -EINVAL;
/*
* Since this string is allocated at mount time, and held until the
* nfs_client is destroyed, we can use GFP_KERNEL here w/o worrying
* about a memory-reclaim deadlock.
*/
str = kmalloc(len, GFP_KERNEL);
if (!str)
return -ENOMEM;
rcu_read_lock();
if (buflen)
scnprintf(str, len, "Linux NFSv4.0 %s/%s/%s",
clp->cl_rpcclient->cl_nodename, buf,
rpc_peeraddr2str(clp->cl_rpcclient,
RPC_DISPLAY_ADDR));
else
scnprintf(str, len, "Linux NFSv4.0 %s/%s",
clp->cl_rpcclient->cl_nodename,
rpc_peeraddr2str(clp->cl_rpcclient,
RPC_DISPLAY_ADDR));
rcu_read_unlock();
clp->cl_owner_id = str;
return 0;
}
static int
nfs4_init_uniform_client_string(struct nfs_client *clp)
{
char buf[NFS4_CLIENT_ID_UNIQ_LEN];
size_t buflen;
size_t len;
char *str;
if (clp->cl_owner_id != NULL)
return 0;
len = 10 + 10 + 1 + 10 + 1 +
strlen(clp->cl_rpcclient->cl_nodename) + 1;
buflen = nfs4_get_uniquifier(clp, buf, sizeof(buf));
if (buflen)
len += buflen + 1;
if (len > NFS4_OPAQUE_LIMIT + 1)
return -EINVAL;
/*
* Since this string is allocated at mount time, and held until the
* nfs_client is destroyed, we can use GFP_KERNEL here w/o worrying
* about a memory-reclaim deadlock.
*/
str = kmalloc(len, GFP_KERNEL);
if (!str)
return -ENOMEM;
if (buflen)
scnprintf(str, len, "Linux NFSv%u.%u %s/%s",
clp->rpc_ops->version, clp->cl_minorversion,
buf, clp->cl_rpcclient->cl_nodename);
else
scnprintf(str, len, "Linux NFSv%u.%u %s",
clp->rpc_ops->version, clp->cl_minorversion,
clp->cl_rpcclient->cl_nodename);
clp->cl_owner_id = str;
return 0;
}
/*
* nfs4_callback_up_net() starts only "tcp" and "tcp6" callback
* services. Advertise one based on the address family of the
* clientaddr.
*/
static unsigned int
nfs4_init_callback_netid(const struct nfs_client *clp, char *buf, size_t len)
{
if (strchr(clp->cl_ipaddr, ':') != NULL)
return scnprintf(buf, len, "tcp6");
else
return scnprintf(buf, len, "tcp");
}
static void nfs4_setclientid_done(struct rpc_task *task, void *calldata)
{
struct nfs4_setclientid *sc = calldata;
if (task->tk_status == 0)
sc->sc_cred = get_rpccred(task->tk_rqstp->rq_cred);
}
static const struct rpc_call_ops nfs4_setclientid_ops = {
.rpc_call_done = nfs4_setclientid_done,
};
/**
* nfs4_proc_setclientid - Negotiate client ID
* @clp: state data structure
* @program: RPC program for NFSv4 callback service
* @port: IP port number for NFS4 callback service
* @cred: credential to use for this call
* @res: where to place the result
*
* Returns zero, a negative errno, or a negative NFS4ERR status code.
*/
int nfs4_proc_setclientid(struct nfs_client *clp, u32 program,
unsigned short port, const struct cred *cred,
struct nfs4_setclientid_res *res)
{
nfs4_verifier sc_verifier;
struct nfs4_setclientid setclientid = {
.sc_verifier = &sc_verifier,
.sc_prog = program,
.sc_clnt = clp,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
.rpc_argp = &setclientid,
.rpc_resp = res,
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clp->cl_rpcclient,
.rpc_message = &msg,
.callback_ops = &nfs4_setclientid_ops,
.callback_data = &setclientid,
.flags = RPC_TASK_TIMEOUT | RPC_TASK_NO_ROUND_ROBIN,
};
unsigned long now = jiffies;
int status;
/* nfs_client_id4 */
nfs4_init_boot_verifier(clp, &sc_verifier);
if (test_bit(NFS_CS_MIGRATION, &clp->cl_flags))
status = nfs4_init_uniform_client_string(clp);
else
status = nfs4_init_nonuniform_client_string(clp);
if (status)
goto out;
/* cb_client4 */
setclientid.sc_netid_len =
nfs4_init_callback_netid(clp,
setclientid.sc_netid,
sizeof(setclientid.sc_netid));
setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
sizeof(setclientid.sc_uaddr), "%s.%u.%u",
clp->cl_ipaddr, port >> 8, port & 255);
dprintk("NFS call setclientid auth=%s, '%s'\n",
clp->cl_rpcclient->cl_auth->au_ops->au_name,
clp->cl_owner_id);
status = nfs4_call_sync_custom(&task_setup_data);
if (setclientid.sc_cred) {
kfree(clp->cl_acceptor);
clp->cl_acceptor = rpcauth_stringify_acceptor(setclientid.sc_cred);
put_rpccred(setclientid.sc_cred);
}
if (status == 0)
do_renew_lease(clp, now);
out:
trace_nfs4_setclientid(clp, status);
dprintk("NFS reply setclientid: %d\n", status);
return status;
}
/**
* nfs4_proc_setclientid_confirm - Confirm client ID
* @clp: state data structure
* @arg: result of a previous SETCLIENTID
* @cred: credential to use for this call
*
* Returns zero, a negative errno, or a negative NFS4ERR status code.
*/
int nfs4_proc_setclientid_confirm(struct nfs_client *clp,
struct nfs4_setclientid_res *arg,
const struct cred *cred)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
.rpc_argp = arg,
.rpc_cred = cred,
};
int status;
dprintk("NFS call setclientid_confirm auth=%s, (client ID %llx)\n",
clp->cl_rpcclient->cl_auth->au_ops->au_name,
clp->cl_clientid);
status = rpc_call_sync(clp->cl_rpcclient, &msg,
RPC_TASK_TIMEOUT | RPC_TASK_NO_ROUND_ROBIN);
trace_nfs4_setclientid_confirm(clp, status);
dprintk("NFS reply setclientid_confirm: %d\n", status);
return status;
}
struct nfs4_delegreturndata {
struct nfs4_delegreturnargs args;
struct nfs4_delegreturnres res;
struct nfs_fh fh;
nfs4_stateid stateid;
unsigned long timestamp;
struct {
struct nfs4_layoutreturn_args arg;
struct nfs4_layoutreturn_res res;
struct nfs4_xdr_opaque_data ld_private;
u32 roc_barrier;
bool roc;
} lr;
struct nfs_fattr fattr;
int rpc_status;
struct inode *inode;
};
static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
{
struct nfs4_delegreturndata *data = calldata;
struct nfs4_exception exception = {
.inode = data->inode,
.stateid = &data->stateid,
.task_is_privileged = data->args.seq_args.sa_privileged,
};
if (!nfs4_sequence_done(task, &data->res.seq_res))
return;
trace_nfs4_delegreturn_exit(&data->args, &data->res, task->tk_status);
/* Handle Layoutreturn errors */
if (pnfs_roc_done(task, &data->args.lr_args, &data->res.lr_res,
&data->res.lr_ret) == -EAGAIN)
goto out_restart;
switch (task->tk_status) {
case 0:
renew_lease(data->res.server, data->timestamp);
break;
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_DELEG_REVOKED:
case -NFS4ERR_EXPIRED:
nfs4_free_revoked_stateid(data->res.server,
data->args.stateid,
task->tk_msg.rpc_cred);
fallthrough;
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_STALE_STATEID:
case -ETIMEDOUT:
task->tk_status = 0;
break;
case -NFS4ERR_OLD_STATEID:
if (!nfs4_refresh_delegation_stateid(&data->stateid, data->inode))
nfs4_stateid_seqid_inc(&data->stateid);
if (data->args.bitmask) {
data->args.bitmask = NULL;
data->res.fattr = NULL;
}
goto out_restart;
case -NFS4ERR_ACCESS:
if (data->args.bitmask) {
data->args.bitmask = NULL;
data->res.fattr = NULL;
goto out_restart;
}
fallthrough;
default:
task->tk_status = nfs4_async_handle_exception(task,
data->res.server, task->tk_status,
&exception);
if (exception.retry)
goto out_restart;
}
nfs_delegation_mark_returned(data->inode, data->args.stateid);
data->rpc_status = task->tk_status;
return;
out_restart:
task->tk_status = 0;
rpc_restart_call_prepare(task);
}
static void nfs4_delegreturn_release(void *calldata)
{
struct nfs4_delegreturndata *data = calldata;
struct inode *inode = data->inode;
if (data->lr.roc)
pnfs_roc_release(&data->lr.arg, &data->lr.res,
data->res.lr_ret);
if (inode) {
nfs4_fattr_set_prechange(&data->fattr,
inode_peek_iversion_raw(inode));
nfs_refresh_inode(inode, &data->fattr);
nfs_iput_and_deactive(inode);
}
kfree(calldata);
}
static void nfs4_delegreturn_prepare(struct rpc_task *task, void *data)
{
struct nfs4_delegreturndata *d_data;
struct pnfs_layout_hdr *lo;
d_data = (struct nfs4_delegreturndata *)data;
if (!d_data->lr.roc && nfs4_wait_on_layoutreturn(d_data->inode, task)) {
nfs4_sequence_done(task, &d_data->res.seq_res);
return;
}
lo = d_data->args.lr_args ? d_data->args.lr_args->layout : NULL;
if (lo && !pnfs_layout_is_valid(lo)) {
d_data->args.lr_args = NULL;
d_data->res.lr_res = NULL;
}
nfs4_setup_sequence(d_data->res.server->nfs_client,
&d_data->args.seq_args,
&d_data->res.seq_res,
task);
}
static const struct rpc_call_ops nfs4_delegreturn_ops = {
.rpc_call_prepare = nfs4_delegreturn_prepare,
.rpc_call_done = nfs4_delegreturn_done,
.rpc_release = nfs4_delegreturn_release,
};
static int _nfs4_proc_delegreturn(struct inode *inode, const struct cred *cred, const nfs4_stateid *stateid, int issync)
{
struct nfs4_delegreturndata *data;
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_delegreturn_ops,
.flags = RPC_TASK_ASYNC | RPC_TASK_TIMEOUT,
};
int status = 0;
if (nfs_server_capable(inode, NFS_CAP_MOVEABLE))
task_setup_data.flags |= RPC_TASK_MOVEABLE;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
nfs4_state_protect(server->nfs_client,
NFS_SP4_MACH_CRED_CLEANUP,
&task_setup_data.rpc_client, &msg);
data->args.fhandle = &data->fh;
data->args.stateid = &data->stateid;
nfs4_bitmask_set(data->args.bitmask_store,
server->cache_consistency_bitmask, inode, 0);
data->args.bitmask = data->args.bitmask_store;
nfs_copy_fh(&data->fh, NFS_FH(inode));
nfs4_stateid_copy(&data->stateid, stateid);
data->res.fattr = &data->fattr;
data->res.server = server;
data->res.lr_ret = -NFS4ERR_NOMATCHING_LAYOUT;
data->lr.arg.ld_private = &data->lr.ld_private;
nfs_fattr_init(data->res.fattr);
data->timestamp = jiffies;
data->rpc_status = 0;
data->inode = nfs_igrab_and_active(inode);
if (data->inode || issync) {
data->lr.roc = pnfs_roc(inode, &data->lr.arg, &data->lr.res,
cred);
if (data->lr.roc) {
data->args.lr_args = &data->lr.arg;
data->res.lr_res = &data->lr.res;
}
}
if (!data->inode)
nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 1,
1);
else
nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 1,
0);
task_setup_data.callback_data = data;
msg.rpc_argp = &data->args;
msg.rpc_resp = &data->res;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
if (!issync)
goto out;
status = rpc_wait_for_completion_task(task);
if (status != 0)
goto out;
status = data->rpc_status;
out:
rpc_put_task(task);
return status;
}
int nfs4_proc_delegreturn(struct inode *inode, const struct cred *cred, const nfs4_stateid *stateid, int issync)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_proc_delegreturn(inode, cred, stateid, issync);
trace_nfs4_delegreturn(inode, stateid, err);
switch (err) {
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
case 0:
return 0;
}
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct inode *inode = state->inode;
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_client *clp = server->nfs_client;
struct nfs_lockt_args arg = {
.fh = NFS_FH(inode),
.fl = request,
};
struct nfs_lockt_res res = {
.denied = request,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
.rpc_argp = &arg,
.rpc_resp = &res,
.rpc_cred = state->owner->so_cred,
};
struct nfs4_lock_state *lsp;
int status;
arg.lock_owner.clientid = clp->cl_clientid;
status = nfs4_set_lock_state(state, request);
if (status != 0)
goto out;
lsp = request->fl_u.nfs4_fl.owner;
arg.lock_owner.id = lsp->ls_seqid.owner_id;
arg.lock_owner.s_dev = server->s_dev;
status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1);
switch (status) {
case 0:
request->fl_type = F_UNLCK;
break;
case -NFS4ERR_DENIED:
status = 0;
}
request->fl_ops->fl_release_private(request);
request->fl_ops = NULL;
out:
return status;
}
static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_getlk(state, cmd, request);
trace_nfs4_get_lock(request, state, cmd, err);
err = nfs4_handle_exception(NFS_SERVER(state->inode), err,
&exception);
} while (exception.retry);
return err;
}
/*
* Update the seqid of a lock stateid after receiving
* NFS4ERR_OLD_STATEID
*/
static bool nfs4_refresh_lock_old_stateid(nfs4_stateid *dst,
struct nfs4_lock_state *lsp)
{
struct nfs4_state *state = lsp->ls_state;
bool ret = false;
spin_lock(&state->state_lock);
if (!nfs4_stateid_match_other(dst, &lsp->ls_stateid))
goto out;
if (!nfs4_stateid_is_newer(&lsp->ls_stateid, dst))
nfs4_stateid_seqid_inc(dst);
else
dst->seqid = lsp->ls_stateid.seqid;
ret = true;
out:
spin_unlock(&state->state_lock);
return ret;
}
static bool nfs4_sync_lock_stateid(nfs4_stateid *dst,
struct nfs4_lock_state *lsp)
{
struct nfs4_state *state = lsp->ls_state;
bool ret;
spin_lock(&state->state_lock);
ret = !nfs4_stateid_match_other(dst, &lsp->ls_stateid);
nfs4_stateid_copy(dst, &lsp->ls_stateid);
spin_unlock(&state->state_lock);
return ret;
}
struct nfs4_unlockdata {
struct nfs_locku_args arg;
struct nfs_locku_res res;
struct nfs4_lock_state *lsp;
struct nfs_open_context *ctx;
struct nfs_lock_context *l_ctx;
struct file_lock fl;
struct nfs_server *server;
unsigned long timestamp;
};
static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
struct nfs_open_context *ctx,
struct nfs4_lock_state *lsp,
struct nfs_seqid *seqid)
{
struct nfs4_unlockdata *p;
struct nfs4_state *state = lsp->ls_state;
struct inode *inode = state->inode;
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (p == NULL)
return NULL;
p->arg.fh = NFS_FH(inode);
p->arg.fl = &p->fl;
p->arg.seqid = seqid;
p->res.seqid = seqid;
p->lsp = lsp;
/* Ensure we don't close file until we're done freeing locks! */
p->ctx = get_nfs_open_context(ctx);
p->l_ctx = nfs_get_lock_context(ctx);
locks_init_lock(&p->fl);
locks_copy_lock(&p->fl, fl);
p->server = NFS_SERVER(inode);
spin_lock(&state->state_lock);
nfs4_stateid_copy(&p->arg.stateid, &lsp->ls_stateid);
spin_unlock(&state->state_lock);
return p;
}
static void nfs4_locku_release_calldata(void *data)
{
struct nfs4_unlockdata *calldata = data;
nfs_free_seqid(calldata->arg.seqid);
nfs4_put_lock_state(calldata->lsp);
nfs_put_lock_context(calldata->l_ctx);
put_nfs_open_context(calldata->ctx);
kfree(calldata);
}
static void nfs4_locku_done(struct rpc_task *task, void *data)
{
struct nfs4_unlockdata *calldata = data;
struct nfs4_exception exception = {
.inode = calldata->lsp->ls_state->inode,
.stateid = &calldata->arg.stateid,
};
if (!nfs4_sequence_done(task, &calldata->res.seq_res))
return;
switch (task->tk_status) {
case 0:
renew_lease(calldata->server, calldata->timestamp);
locks_lock_inode_wait(calldata->lsp->ls_state->inode, &calldata->fl);
if (nfs4_update_lock_stateid(calldata->lsp,
&calldata->res.stateid))
break;
fallthrough;
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_EXPIRED:
nfs4_free_revoked_stateid(calldata->server,
&calldata->arg.stateid,
task->tk_msg.rpc_cred);
fallthrough;
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_STALE_STATEID:
if (nfs4_sync_lock_stateid(&calldata->arg.stateid,
calldata->lsp))
rpc_restart_call_prepare(task);
break;
case -NFS4ERR_OLD_STATEID:
if (nfs4_refresh_lock_old_stateid(&calldata->arg.stateid,
calldata->lsp))
rpc_restart_call_prepare(task);
break;
default:
task->tk_status = nfs4_async_handle_exception(task,
calldata->server, task->tk_status,
&exception);
if (exception.retry)
rpc_restart_call_prepare(task);
}
nfs_release_seqid(calldata->arg.seqid);
}
static void nfs4_locku_prepare(struct rpc_task *task, void *data)
{
struct nfs4_unlockdata *calldata = data;
if (test_bit(NFS_CONTEXT_UNLOCK, &calldata->l_ctx->open_context->flags) &&
nfs_async_iocounter_wait(task, calldata->l_ctx))
return;
if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
goto out_wait;
if (test_bit(NFS_LOCK_INITIALIZED, &calldata->lsp->ls_flags) == 0) {
/* Note: exit _without_ running nfs4_locku_done */
goto out_no_action;
}
calldata->timestamp = jiffies;
if (nfs4_setup_sequence(calldata->server->nfs_client,
&calldata->arg.seq_args,
&calldata->res.seq_res,
task) != 0)
nfs_release_seqid(calldata->arg.seqid);
return;
out_no_action:
task->tk_action = NULL;
out_wait:
nfs4_sequence_done(task, &calldata->res.seq_res);
}
static const struct rpc_call_ops nfs4_locku_ops = {
.rpc_call_prepare = nfs4_locku_prepare,
.rpc_call_done = nfs4_locku_done,
.rpc_release = nfs4_locku_release_calldata,
};
static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
struct nfs_open_context *ctx,
struct nfs4_lock_state *lsp,
struct nfs_seqid *seqid)
{
struct nfs4_unlockdata *data;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
.rpc_cred = ctx->cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = NFS_CLIENT(lsp->ls_state->inode),
.rpc_message = &msg,
.callback_ops = &nfs4_locku_ops,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC,
};
if (nfs_server_capable(lsp->ls_state->inode, NFS_CAP_MOVEABLE))
task_setup_data.flags |= RPC_TASK_MOVEABLE;
nfs4_state_protect(NFS_SERVER(lsp->ls_state->inode)->nfs_client,
NFS_SP4_MACH_CRED_CLEANUP, &task_setup_data.rpc_client, &msg);
/* Ensure this is an unlock - when canceling a lock, the
* canceled lock is passed in, and it won't be an unlock.
*/
fl->fl_type = F_UNLCK;
if (fl->fl_flags & FL_CLOSE)
set_bit(NFS_CONTEXT_UNLOCK, &ctx->flags);
data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
if (data == NULL) {
nfs_free_seqid(seqid);
return ERR_PTR(-ENOMEM);
}
nfs4_init_sequence(&data->arg.seq_args, &data->res.seq_res, 1, 0);
msg.rpc_argp = &data->arg;
msg.rpc_resp = &data->res;
task_setup_data.callback_data = data;
return rpc_run_task(&task_setup_data);
}
static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct inode *inode = state->inode;
struct nfs4_state_owner *sp = state->owner;
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs_seqid *seqid;
struct nfs4_lock_state *lsp;
struct rpc_task *task;
struct nfs_seqid *(*alloc_seqid)(struct nfs_seqid_counter *, gfp_t);
int status = 0;
unsigned char fl_flags = request->fl_flags;
status = nfs4_set_lock_state(state, request);
/* Unlock _before_ we do the RPC call */
request->fl_flags |= FL_EXISTS;
/* Exclude nfs_delegation_claim_locks() */
mutex_lock(&sp->so_delegreturn_mutex);
/* Exclude nfs4_reclaim_open_stateid() - note nesting! */
down_read(&nfsi->rwsem);
if (locks_lock_inode_wait(inode, request) == -ENOENT) {
up_read(&nfsi->rwsem);
mutex_unlock(&sp->so_delegreturn_mutex);
goto out;
}
up_read(&nfsi->rwsem);
mutex_unlock(&sp->so_delegreturn_mutex);
if (status != 0)
goto out;
/* Is this a delegated lock? */
lsp = request->fl_u.nfs4_fl.owner;
if (test_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags) == 0)
goto out;
alloc_seqid = NFS_SERVER(inode)->nfs_client->cl_mvops->alloc_seqid;
seqid = alloc_seqid(&lsp->ls_seqid, GFP_KERNEL);
status = -ENOMEM;
if (IS_ERR(seqid))
goto out;
task = nfs4_do_unlck(request, nfs_file_open_context(request->fl_file), lsp, seqid);
status = PTR_ERR(task);
if (IS_ERR(task))
goto out;
status = rpc_wait_for_completion_task(task);
rpc_put_task(task);
out:
request->fl_flags = fl_flags;
trace_nfs4_unlock(request, state, F_SETLK, status);
return status;
}
struct nfs4_lockdata {
struct nfs_lock_args arg;
struct nfs_lock_res res;
struct nfs4_lock_state *lsp;
struct nfs_open_context *ctx;
struct file_lock fl;
unsigned long timestamp;
int rpc_status;
int cancelled;
struct nfs_server *server;
};
static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
struct nfs_open_context *ctx, struct nfs4_lock_state *lsp,
gfp_t gfp_mask)
{
struct nfs4_lockdata *p;
struct inode *inode = lsp->ls_state->inode;
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_seqid *(*alloc_seqid)(struct nfs_seqid_counter *, gfp_t);
p = kzalloc(sizeof(*p), gfp_mask);
if (p == NULL)
return NULL;
p->arg.fh = NFS_FH(inode);
p->arg.fl = &p->fl;
p->arg.open_seqid = nfs_alloc_seqid(&lsp->ls_state->owner->so_seqid, gfp_mask);
if (IS_ERR(p->arg.open_seqid))
goto out_free;
alloc_seqid = server->nfs_client->cl_mvops->alloc_seqid;
p->arg.lock_seqid = alloc_seqid(&lsp->ls_seqid, gfp_mask);
if (IS_ERR(p->arg.lock_seqid))
goto out_free_seqid;
p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
p->arg.lock_owner.id = lsp->ls_seqid.owner_id;
p->arg.lock_owner.s_dev = server->s_dev;
p->res.lock_seqid = p->arg.lock_seqid;
p->lsp = lsp;
p->server = server;
p->ctx = get_nfs_open_context(ctx);
locks_init_lock(&p->fl);
locks_copy_lock(&p->fl, fl);
return p;
out_free_seqid:
nfs_free_seqid(p->arg.open_seqid);
out_free:
kfree(p);
return NULL;
}
static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_lockdata *data = calldata;
struct nfs4_state *state = data->lsp->ls_state;
if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
goto out_wait;
/* Do we need to do an open_to_lock_owner? */
if (!test_bit(NFS_LOCK_INITIALIZED, &data->lsp->ls_flags)) {
if (nfs_wait_on_sequence(data->arg.open_seqid, task) != 0) {
goto out_release_lock_seqid;
}
nfs4_stateid_copy(&data->arg.open_stateid,
&state->open_stateid);
data->arg.new_lock_owner = 1;
data->res.open_seqid = data->arg.open_seqid;
} else {
data->arg.new_lock_owner = 0;
nfs4_stateid_copy(&data->arg.lock_stateid,
&data->lsp->ls_stateid);
}
if (!nfs4_valid_open_stateid(state)) {
data->rpc_status = -EBADF;
task->tk_action = NULL;
goto out_release_open_seqid;
}
data->timestamp = jiffies;
if (nfs4_setup_sequence(data->server->nfs_client,
&data->arg.seq_args,
&data->res.seq_res,
task) == 0)
return;
out_release_open_seqid:
nfs_release_seqid(data->arg.open_seqid);
out_release_lock_seqid:
nfs_release_seqid(data->arg.lock_seqid);
out_wait:
nfs4_sequence_done(task, &data->res.seq_res);
dprintk("%s: ret = %d\n", __func__, data->rpc_status);
}
static void nfs4_lock_done(struct rpc_task *task, void *calldata)
{
struct nfs4_lockdata *data = calldata;
struct nfs4_lock_state *lsp = data->lsp;
if (!nfs4_sequence_done(task, &data->res.seq_res))
return;
data->rpc_status = task->tk_status;
switch (task->tk_status) {
case 0:
renew_lease(NFS_SERVER(d_inode(data->ctx->dentry)),
data->timestamp);
if (data->arg.new_lock && !data->cancelled) {
data->fl.fl_flags &= ~(FL_SLEEP | FL_ACCESS);
if (locks_lock_inode_wait(lsp->ls_state->inode, &data->fl) < 0)
goto out_restart;
}
if (data->arg.new_lock_owner != 0) {
nfs_confirm_seqid(&lsp->ls_seqid, 0);
nfs4_stateid_copy(&lsp->ls_stateid, &data->res.stateid);
set_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags);
} else if (!nfs4_update_lock_stateid(lsp, &data->res.stateid))
goto out_restart;
break;
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_OLD_STATEID:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
if (data->arg.new_lock_owner != 0) {
if (!nfs4_stateid_match(&data->arg.open_stateid,
&lsp->ls_state->open_stateid))
goto out_restart;
} else if (!nfs4_stateid_match(&data->arg.lock_stateid,
&lsp->ls_stateid))
goto out_restart;
}
out_done:
dprintk("%s: ret = %d!\n", __func__, data->rpc_status);
return;
out_restart:
if (!data->cancelled)
rpc_restart_call_prepare(task);
goto out_done;
}
static void nfs4_lock_release(void *calldata)
{
struct nfs4_lockdata *data = calldata;
nfs_free_seqid(data->arg.open_seqid);
if (data->cancelled && data->rpc_status == 0) {
struct rpc_task *task;
task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
data->arg.lock_seqid);
if (!IS_ERR(task))
rpc_put_task_async(task);
dprintk("%s: cancelling lock!\n", __func__);
} else
nfs_free_seqid(data->arg.lock_seqid);
nfs4_put_lock_state(data->lsp);
put_nfs_open_context(data->ctx);
kfree(data);
}
static const struct rpc_call_ops nfs4_lock_ops = {
.rpc_call_prepare = nfs4_lock_prepare,
.rpc_call_done = nfs4_lock_done,
.rpc_release = nfs4_lock_release,
};
static void nfs4_handle_setlk_error(struct nfs_server *server, struct nfs4_lock_state *lsp, int new_lock_owner, int error)
{
switch (error) {
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_EXPIRED:
case -NFS4ERR_BAD_STATEID:
lsp->ls_seqid.flags &= ~NFS_SEQID_CONFIRMED;
if (new_lock_owner != 0 ||
test_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags) != 0)
nfs4_schedule_stateid_recovery(server, lsp->ls_state);
break;
case -NFS4ERR_STALE_STATEID:
lsp->ls_seqid.flags &= ~NFS_SEQID_CONFIRMED;
nfs4_schedule_lease_recovery(server->nfs_client);
}
}
static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int recovery_type)
{
struct nfs4_lockdata *data;
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
.rpc_cred = state->owner->so_cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = NFS_CLIENT(state->inode),
.rpc_message = &msg,
.callback_ops = &nfs4_lock_ops,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC | RPC_TASK_CRED_NOREF,
};
int ret;
if (nfs_server_capable(state->inode, NFS_CAP_MOVEABLE))
task_setup_data.flags |= RPC_TASK_MOVEABLE;
data = nfs4_alloc_lockdata(fl, nfs_file_open_context(fl->fl_file),
fl->fl_u.nfs4_fl.owner, GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
if (IS_SETLKW(cmd))
data->arg.block = 1;
nfs4_init_sequence(&data->arg.seq_args, &data->res.seq_res, 1,
recovery_type > NFS_LOCK_NEW);
msg.rpc_argp = &data->arg;
msg.rpc_resp = &data->res;
task_setup_data.callback_data = data;
if (recovery_type > NFS_LOCK_NEW) {
if (recovery_type == NFS_LOCK_RECLAIM)
data->arg.reclaim = NFS_LOCK_RECLAIM;
} else
data->arg.new_lock = 1;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
ret = rpc_wait_for_completion_task(task);
if (ret == 0) {
ret = data->rpc_status;
if (ret)
nfs4_handle_setlk_error(data->server, data->lsp,
data->arg.new_lock_owner, ret);
} else
data->cancelled = true;
trace_nfs4_set_lock(fl, state, &data->res.stateid, cmd, ret);
rpc_put_task(task);
dprintk("%s: ret = %d\n", __func__, ret);
return ret;
}
static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = {
.inode = state->inode,
};
int err;
do {
/* Cache the lock if possible... */
if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
return 0;
err = _nfs4_do_setlk(state, F_SETLK, request, NFS_LOCK_RECLAIM);
if (err != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = {
.inode = state->inode,
};
int err;
err = nfs4_set_lock_state(state, request);
if (err != 0)
return err;
if (!recover_lost_locks) {
set_bit(NFS_LOCK_LOST, &request->fl_u.nfs4_fl.owner->ls_flags);
return 0;
}
do {
if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
return 0;
err = _nfs4_do_setlk(state, F_SETLK, request, NFS_LOCK_EXPIRED);
switch (err) {
default:
goto out;
case -NFS4ERR_GRACE:
case -NFS4ERR_DELAY:
nfs4_handle_exception(server, err, &exception);
err = 0;
}
} while (exception.retry);
out:
return err;
}
#if defined(CONFIG_NFS_V4_1)
static int nfs41_lock_expired(struct nfs4_state *state, struct file_lock *request)
{
struct nfs4_lock_state *lsp;
int status;
status = nfs4_set_lock_state(state, request);
if (status != 0)
return status;
lsp = request->fl_u.nfs4_fl.owner;
if (test_bit(NFS_LOCK_INITIALIZED, &lsp->ls_flags) ||
test_bit(NFS_LOCK_LOST, &lsp->ls_flags))
return 0;
return nfs4_lock_expired(state, request);
}
#endif
static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs_inode *nfsi = NFS_I(state->inode);
struct nfs4_state_owner *sp = state->owner;
unsigned char fl_flags = request->fl_flags;
int status;
request->fl_flags |= FL_ACCESS;
status = locks_lock_inode_wait(state->inode, request);
if (status < 0)
goto out;
mutex_lock(&sp->so_delegreturn_mutex);
down_read(&nfsi->rwsem);
if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
/* Yes: cache locks! */
/* ...but avoid races with delegation recall... */
request->fl_flags = fl_flags & ~FL_SLEEP;
status = locks_lock_inode_wait(state->inode, request);
up_read(&nfsi->rwsem);
mutex_unlock(&sp->so_delegreturn_mutex);
goto out;
}
up_read(&nfsi->rwsem);
mutex_unlock(&sp->so_delegreturn_mutex);
status = _nfs4_do_setlk(state, cmd, request, NFS_LOCK_NEW);
out:
request->fl_flags = fl_flags;
return status;
}
static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_exception exception = {
.state = state,
.inode = state->inode,
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_setlk(state, cmd, request);
if (err == -NFS4ERR_DENIED)
err = -EAGAIN;
err = nfs4_handle_exception(NFS_SERVER(state->inode),
err, &exception);
} while (exception.retry);
return err;
}
#define NFS4_LOCK_MINTIMEOUT (1 * HZ)
#define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
static int
nfs4_retry_setlk_simple(struct nfs4_state *state, int cmd,
struct file_lock *request)
{
int status = -ERESTARTSYS;
unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
while(!signalled()) {
status = nfs4_proc_setlk(state, cmd, request);
if ((status != -EAGAIN) || IS_SETLK(cmd))
break;
freezable_schedule_timeout_interruptible(timeout);
timeout *= 2;
timeout = min_t(unsigned long, NFS4_LOCK_MAXTIMEOUT, timeout);
status = -ERESTARTSYS;
}
return status;
}
#ifdef CONFIG_NFS_V4_1
struct nfs4_lock_waiter {
struct inode *inode;
struct nfs_lowner owner;
wait_queue_entry_t wait;
};
static int
nfs4_wake_lock_waiter(wait_queue_entry_t *wait, unsigned int mode, int flags, void *key)
{
struct nfs4_lock_waiter *waiter =
container_of(wait, struct nfs4_lock_waiter, wait);
/* NULL key means to wake up everyone */
if (key) {
struct cb_notify_lock_args *cbnl = key;
struct nfs_lowner *lowner = &cbnl->cbnl_owner,
*wowner = &waiter->owner;
/* Only wake if the callback was for the same owner. */
if (lowner->id != wowner->id || lowner->s_dev != wowner->s_dev)
return 0;
/* Make sure it's for the right inode */
if (nfs_compare_fh(NFS_FH(waiter->inode), &cbnl->cbnl_fh))
return 0;
}
return woken_wake_function(wait, mode, flags, key);
}
static int
nfs4_retry_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_lock_state *lsp = request->fl_u.nfs4_fl.owner;
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs_client *clp = server->nfs_client;
wait_queue_head_t *q = &clp->cl_lock_waitq;
struct nfs4_lock_waiter waiter = {
.inode = state->inode,
.owner = { .clientid = clp->cl_clientid,
.id = lsp->ls_seqid.owner_id,
.s_dev = server->s_dev },
};
int status;
/* Don't bother with waitqueue if we don't expect a callback */
if (!test_bit(NFS_STATE_MAY_NOTIFY_LOCK, &state->flags))
return nfs4_retry_setlk_simple(state, cmd, request);
init_wait(&waiter.wait);
waiter.wait.func = nfs4_wake_lock_waiter;
add_wait_queue(q, &waiter.wait);
do {
status = nfs4_proc_setlk(state, cmd, request);
if (status != -EAGAIN || IS_SETLK(cmd))
break;
status = -ERESTARTSYS;
freezer_do_not_count();
wait_woken(&waiter.wait, TASK_INTERRUPTIBLE,
NFS4_LOCK_MAXTIMEOUT);
freezer_count();
} while (!signalled());
remove_wait_queue(q, &waiter.wait);
return status;
}
#else /* !CONFIG_NFS_V4_1 */
static inline int
nfs4_retry_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
return nfs4_retry_setlk_simple(state, cmd, request);
}
#endif
static int
nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
{
struct nfs_open_context *ctx;
struct nfs4_state *state;
int status;
/* verify open state */
ctx = nfs_file_open_context(filp);
state = ctx->state;
if (IS_GETLK(cmd)) {
if (state != NULL)
return nfs4_proc_getlk(state, F_GETLK, request);
return 0;
}
if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
return -EINVAL;
if (request->fl_type == F_UNLCK) {
if (state != NULL)
return nfs4_proc_unlck(state, cmd, request);
return 0;
}
if (state == NULL)
return -ENOLCK;
if ((request->fl_flags & FL_POSIX) &&
!test_bit(NFS_STATE_POSIX_LOCKS, &state->flags))
return -ENOLCK;
/*
* Don't rely on the VFS having checked the file open mode,
* since it won't do this for flock() locks.
*/
switch (request->fl_type) {
case F_RDLCK:
if (!(filp->f_mode & FMODE_READ))
return -EBADF;
break;
case F_WRLCK:
if (!(filp->f_mode & FMODE_WRITE))
return -EBADF;
}
status = nfs4_set_lock_state(state, request);
if (status != 0)
return status;
return nfs4_retry_setlk(state, cmd, request);
}
static int nfs4_delete_lease(struct file *file, void **priv)
{
return generic_setlease(file, F_UNLCK, NULL, priv);
}
static int nfs4_add_lease(struct file *file, long arg, struct file_lock **lease,
void **priv)
{
struct inode *inode = file_inode(file);
fmode_t type = arg == F_RDLCK ? FMODE_READ : FMODE_WRITE;
int ret;
/* No delegation, no lease */
if (!nfs4_have_delegation(inode, type))
return -EAGAIN;
ret = generic_setlease(file, arg, lease, priv);
if (ret || nfs4_have_delegation(inode, type))
return ret;
/* We raced with a delegation return */
nfs4_delete_lease(file, priv);
return -EAGAIN;
}
int nfs4_proc_setlease(struct file *file, long arg, struct file_lock **lease,
void **priv)
{
switch (arg) {
case F_RDLCK:
case F_WRLCK:
return nfs4_add_lease(file, arg, lease, priv);
case F_UNLCK:
return nfs4_delete_lease(file, priv);
default:
return -EINVAL;
}
}
int nfs4_lock_delegation_recall(struct file_lock *fl, struct nfs4_state *state, const nfs4_stateid *stateid)
{
struct nfs_server *server = NFS_SERVER(state->inode);
int err;
err = nfs4_set_lock_state(state, fl);
if (err != 0)
return err;
do {
err = _nfs4_do_setlk(state, F_SETLK, fl, NFS_LOCK_NEW);
if (err != -NFS4ERR_DELAY)
break;
ssleep(1);
} while (err == -NFS4ERR_DELAY);
return nfs4_handle_delegation_recall_error(server, state, stateid, fl, err);
}
struct nfs_release_lockowner_data {
struct nfs4_lock_state *lsp;
struct nfs_server *server;
struct nfs_release_lockowner_args args;
struct nfs_release_lockowner_res res;
unsigned long timestamp;
};
static void nfs4_release_lockowner_prepare(struct rpc_task *task, void *calldata)
{
struct nfs_release_lockowner_data *data = calldata;
struct nfs_server *server = data->server;
nfs4_setup_sequence(server->nfs_client, &data->args.seq_args,
&data->res.seq_res, task);
data->args.lock_owner.clientid = server->nfs_client->cl_clientid;
data->timestamp = jiffies;
}
static void nfs4_release_lockowner_done(struct rpc_task *task, void *calldata)
{
struct nfs_release_lockowner_data *data = calldata;
struct nfs_server *server = data->server;
nfs40_sequence_done(task, &data->res.seq_res);
switch (task->tk_status) {
case 0:
renew_lease(server, data->timestamp);
break;
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_EXPIRED:
nfs4_schedule_lease_recovery(server->nfs_client);
break;
case -NFS4ERR_LEASE_MOVED:
case -NFS4ERR_DELAY:
if (nfs4_async_handle_error(task, server,
NULL, NULL) == -EAGAIN)
rpc_restart_call_prepare(task);
}
}
static void nfs4_release_lockowner_release(void *calldata)
{
struct nfs_release_lockowner_data *data = calldata;
nfs4_free_lock_state(data->server, data->lsp);
kfree(calldata);
}
static const struct rpc_call_ops nfs4_release_lockowner_ops = {
.rpc_call_prepare = nfs4_release_lockowner_prepare,
.rpc_call_done = nfs4_release_lockowner_done,
.rpc_release = nfs4_release_lockowner_release,
};
static void
nfs4_release_lockowner(struct nfs_server *server, struct nfs4_lock_state *lsp)
{
struct nfs_release_lockowner_data *data;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RELEASE_LOCKOWNER],
};
if (server->nfs_client->cl_mvops->minor_version != 0)
return;
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return;
data->lsp = lsp;
data->server = server;
data->args.lock_owner.clientid = server->nfs_client->cl_clientid;
data->args.lock_owner.id = lsp->ls_seqid.owner_id;
data->args.lock_owner.s_dev = server->s_dev;
msg.rpc_argp = &data->args;
msg.rpc_resp = &data->res;
nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 0, 0);
rpc_call_async(server->client, &msg, 0, &nfs4_release_lockowner_ops, data);
}
#define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
static int nfs4_xattr_set_nfs4_acl(const struct xattr_handler *handler,
struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *key, const void *buf,
size_t buflen, int flags)
{
return nfs4_proc_set_acl(inode, buf, buflen, NFS4ACL_ACL);
}
static int nfs4_xattr_get_nfs4_acl(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *key, void *buf, size_t buflen)
{
return nfs4_proc_get_acl(inode, buf, buflen, NFS4ACL_ACL);
}
static bool nfs4_xattr_list_nfs4_acl(struct dentry *dentry)
{
return nfs4_server_supports_acls(NFS_SB(dentry->d_sb), NFS4ACL_ACL);
}
#if defined(CONFIG_NFS_V4_1)
#define XATTR_NAME_NFSV4_DACL "system.nfs4_dacl"
static int nfs4_xattr_set_nfs4_dacl(const struct xattr_handler *handler,
struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *key, const void *buf,
size_t buflen, int flags)
{
return nfs4_proc_set_acl(inode, buf, buflen, NFS4ACL_DACL);
}
static int nfs4_xattr_get_nfs4_dacl(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *key, void *buf, size_t buflen)
{
return nfs4_proc_get_acl(inode, buf, buflen, NFS4ACL_DACL);
}
static bool nfs4_xattr_list_nfs4_dacl(struct dentry *dentry)
{
return nfs4_server_supports_acls(NFS_SB(dentry->d_sb), NFS4ACL_DACL);
}
#define XATTR_NAME_NFSV4_SACL "system.nfs4_sacl"
static int nfs4_xattr_set_nfs4_sacl(const struct xattr_handler *handler,
struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *key, const void *buf,
size_t buflen, int flags)
{
return nfs4_proc_set_acl(inode, buf, buflen, NFS4ACL_SACL);
}
static int nfs4_xattr_get_nfs4_sacl(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *key, void *buf, size_t buflen)
{
return nfs4_proc_get_acl(inode, buf, buflen, NFS4ACL_SACL);
}
static bool nfs4_xattr_list_nfs4_sacl(struct dentry *dentry)
{
return nfs4_server_supports_acls(NFS_SB(dentry->d_sb), NFS4ACL_SACL);
}
#endif
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
static int nfs4_xattr_set_nfs4_label(const struct xattr_handler *handler,
struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *key, const void *buf,
size_t buflen, int flags)
{
if (security_ismaclabel(key))
return nfs4_set_security_label(inode, buf, buflen);
return -EOPNOTSUPP;
}
static int nfs4_xattr_get_nfs4_label(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *key, void *buf, size_t buflen)
{
if (security_ismaclabel(key))
return nfs4_get_security_label(inode, buf, buflen);
return -EOPNOTSUPP;
}
static ssize_t
nfs4_listxattr_nfs4_label(struct inode *inode, char *list, size_t list_len)
{
int len = 0;
if (nfs_server_capable(inode, NFS_CAP_SECURITY_LABEL)) {
len = security_inode_listsecurity(inode, list, list_len);
if (len >= 0 && list_len && len > list_len)
return -ERANGE;
}
return len;
}
static const struct xattr_handler nfs4_xattr_nfs4_label_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.get = nfs4_xattr_get_nfs4_label,
.set = nfs4_xattr_set_nfs4_label,
};
#else
static ssize_t
nfs4_listxattr_nfs4_label(struct inode *inode, char *list, size_t list_len)
{
return 0;
}
#endif
#ifdef CONFIG_NFS_V4_2
static int nfs4_xattr_set_nfs4_user(const struct xattr_handler *handler,
struct user_namespace *mnt_userns,
struct dentry *unused, struct inode *inode,
const char *key, const void *buf,
size_t buflen, int flags)
{
u32 mask;
int ret;
if (!nfs_server_capable(inode, NFS_CAP_XATTR))
return -EOPNOTSUPP;
/*
* There is no mapping from the MAY_* flags to the NFS_ACCESS_XA*
* flags right now. Handling of xattr operations use the normal
* file read/write permissions.
*
* Just in case the server has other ideas (which RFC 8276 allows),
* do a cached access check for the XA* flags to possibly avoid
* doing an RPC and getting EACCES back.
*/
if (!nfs_access_get_cached(inode, current_cred(), &mask, true)) {
if (!(mask & NFS_ACCESS_XAWRITE))
return -EACCES;
}
if (buf == NULL) {
ret = nfs42_proc_removexattr(inode, key);
if (!ret)
nfs4_xattr_cache_remove(inode, key);
} else {
ret = nfs42_proc_setxattr(inode, key, buf, buflen, flags);
if (!ret)
nfs4_xattr_cache_add(inode, key, buf, NULL, buflen);
}
return ret;
}
static int nfs4_xattr_get_nfs4_user(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *key, void *buf, size_t buflen)
{
u32 mask;
ssize_t ret;
if (!nfs_server_capable(inode, NFS_CAP_XATTR))
return -EOPNOTSUPP;
if (!nfs_access_get_cached(inode, current_cred(), &mask, true)) {
if (!(mask & NFS_ACCESS_XAREAD))
return -EACCES;
}
ret = nfs_revalidate_inode(inode, NFS_INO_INVALID_CHANGE);
if (ret)
return ret;
ret = nfs4_xattr_cache_get(inode, key, buf, buflen);
if (ret >= 0 || (ret < 0 && ret != -ENOENT))
return ret;
ret = nfs42_proc_getxattr(inode, key, buf, buflen);
return ret;
}
static ssize_t
nfs4_listxattr_nfs4_user(struct inode *inode, char *list, size_t list_len)
{
u64 cookie;
bool eof;
ssize_t ret, size;
char *buf;
size_t buflen;
u32 mask;
if (!nfs_server_capable(inode, NFS_CAP_XATTR))
return 0;
if (!nfs_access_get_cached(inode, current_cred(), &mask, true)) {
if (!(mask & NFS_ACCESS_XALIST))
return 0;
}
ret = nfs_revalidate_inode(inode, NFS_INO_INVALID_CHANGE);
if (ret)
return ret;
ret = nfs4_xattr_cache_list(inode, list, list_len);
if (ret >= 0 || (ret < 0 && ret != -ENOENT))
return ret;
cookie = 0;
eof = false;
buflen = list_len ? list_len : XATTR_LIST_MAX;
buf = list_len ? list : NULL;
size = 0;
while (!eof) {
ret = nfs42_proc_listxattrs(inode, buf, buflen,
&cookie, &eof);
if (ret < 0)
return ret;
if (list_len) {
buf += ret;
buflen -= ret;
}
size += ret;
}
if (list_len)
nfs4_xattr_cache_set_list(inode, list, size);
return size;
}
#else
static ssize_t
nfs4_listxattr_nfs4_user(struct inode *inode, char *list, size_t list_len)
{
return 0;
}
#endif /* CONFIG_NFS_V4_2 */
/*
* nfs_fhget will use either the mounted_on_fileid or the fileid
*/
static void nfs_fixup_referral_attributes(struct nfs_fattr *fattr)
{
if (!(((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) ||
(fattr->valid & NFS_ATTR_FATTR_FILEID)) &&
(fattr->valid & NFS_ATTR_FATTR_FSID) &&
(fattr->valid & NFS_ATTR_FATTR_V4_LOCATIONS)))
return;
fattr->valid |= NFS_ATTR_FATTR_TYPE | NFS_ATTR_FATTR_MODE |
NFS_ATTR_FATTR_NLINK | NFS_ATTR_FATTR_V4_REFERRAL;
fattr->mode = S_IFDIR | S_IRUGO | S_IXUGO;
fattr->nlink = 2;
}
static int _nfs4_proc_fs_locations(struct rpc_clnt *client, struct inode *dir,
const struct qstr *name,
struct nfs4_fs_locations *fs_locations,
struct page *page)
{
struct nfs_server *server = NFS_SERVER(dir);
u32 bitmask[3];
struct nfs4_fs_locations_arg args = {
.dir_fh = NFS_FH(dir),
.name = name,
.page = page,
.bitmask = bitmask,
};
struct nfs4_fs_locations_res res = {
.fs_locations = fs_locations,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
.rpc_argp = &args,
.rpc_resp = &res,
};
int status;
dprintk("%s: start\n", __func__);
bitmask[0] = nfs4_fattr_bitmap[0] | FATTR4_WORD0_FS_LOCATIONS;
bitmask[1] = nfs4_fattr_bitmap[1];
/* Ask for the fileid of the absent filesystem if mounted_on_fileid
* is not supported */
if (NFS_SERVER(dir)->attr_bitmask[1] & FATTR4_WORD1_MOUNTED_ON_FILEID)
bitmask[0] &= ~FATTR4_WORD0_FILEID;
else
bitmask[1] &= ~FATTR4_WORD1_MOUNTED_ON_FILEID;
nfs_fattr_init(fs_locations->fattr);
fs_locations->server = server;
fs_locations->nlocations = 0;
status = nfs4_call_sync(client, server, &msg, &args.seq_args, &res.seq_res, 0);
dprintk("%s: returned status = %d\n", __func__, status);
return status;
}
int nfs4_proc_fs_locations(struct rpc_clnt *client, struct inode *dir,
const struct qstr *name,
struct nfs4_fs_locations *fs_locations,
struct page *page)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs4_proc_fs_locations(client, dir, name,
fs_locations, page);
trace_nfs4_get_fs_locations(dir, name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
return err;
}
/*
* This operation also signals the server that this client is
* performing migration recovery. The server can stop returning
* NFS4ERR_LEASE_MOVED to this client. A RENEW operation is
* appended to this compound to identify the client ID which is
* performing recovery.
*/
static int _nfs40_proc_get_locations(struct nfs_server *server,
struct nfs_fh *fhandle,
struct nfs4_fs_locations *locations,
struct page *page, const struct cred *cred)
{
struct rpc_clnt *clnt = server->client;
u32 bitmask[2] = {
[0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
};
struct nfs4_fs_locations_arg args = {
.clientid = server->nfs_client->cl_clientid,
.fh = fhandle,
.page = page,
.bitmask = bitmask,
.migration = 1, /* skip LOOKUP */
.renew = 1, /* append RENEW */
};
struct nfs4_fs_locations_res res = {
.fs_locations = locations,
.migration = 1,
.renew = 1,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
unsigned long now = jiffies;
int status;
nfs_fattr_init(locations->fattr);
locations->server = server;
locations->nlocations = 0;
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 1);
status = nfs4_call_sync_sequence(clnt, server, &msg,
&args.seq_args, &res.seq_res);
if (status)
return status;
renew_lease(server, now);
return 0;
}
#ifdef CONFIG_NFS_V4_1
/*
* This operation also signals the server that this client is
* performing migration recovery. The server can stop asserting
* SEQ4_STATUS_LEASE_MOVED for this client. The client ID
* performing this operation is identified in the SEQUENCE
* operation in this compound.
*
* When the client supports GETATTR(fs_locations_info), it can
* be plumbed in here.
*/
static int _nfs41_proc_get_locations(struct nfs_server *server,
struct nfs_fh *fhandle,
struct nfs4_fs_locations *locations,
struct page *page, const struct cred *cred)
{
struct rpc_clnt *clnt = server->client;
u32 bitmask[2] = {
[0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
};
struct nfs4_fs_locations_arg args = {
.fh = fhandle,
.page = page,
.bitmask = bitmask,
.migration = 1, /* skip LOOKUP */
};
struct nfs4_fs_locations_res res = {
.fs_locations = locations,
.migration = 1,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
struct nfs4_call_sync_data data = {
.seq_server = server,
.seq_args = &args.seq_args,
.seq_res = &res.seq_res,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clnt,
.rpc_message = &msg,
.callback_ops = server->nfs_client->cl_mvops->call_sync_ops,
.callback_data = &data,
.flags = RPC_TASK_NO_ROUND_ROBIN,
};
int status;
nfs_fattr_init(locations->fattr);
locations->server = server;
locations->nlocations = 0;
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 1);
status = nfs4_call_sync_custom(&task_setup_data);
if (status == NFS4_OK &&
res.seq_res.sr_status_flags & SEQ4_STATUS_LEASE_MOVED)
status = -NFS4ERR_LEASE_MOVED;
return status;
}
#endif /* CONFIG_NFS_V4_1 */
/**
* nfs4_proc_get_locations - discover locations for a migrated FSID
* @server: pointer to nfs_server to process
* @fhandle: pointer to the kernel NFS client file handle
* @locations: result of query
* @page: buffer
* @cred: credential to use for this operation
*
* Returns NFS4_OK on success, a negative NFS4ERR status code if the
* operation failed, or a negative errno if a local error occurred.
*
* On success, "locations" is filled in, but if the server has
* no locations information, NFS_ATTR_FATTR_V4_LOCATIONS is not
* asserted.
*
* -NFS4ERR_LEASE_MOVED is returned if the server still has leases
* from this client that require migration recovery.
*/
int nfs4_proc_get_locations(struct nfs_server *server,
struct nfs_fh *fhandle,
struct nfs4_fs_locations *locations,
struct page *page, const struct cred *cred)
{
struct nfs_client *clp = server->nfs_client;
const struct nfs4_mig_recovery_ops *ops =
clp->cl_mvops->mig_recovery_ops;
struct nfs4_exception exception = {
.interruptible = true,
};
int status;
dprintk("%s: FSID %llx:%llx on \"%s\"\n", __func__,
(unsigned long long)server->fsid.major,
(unsigned long long)server->fsid.minor,
clp->cl_hostname);
nfs_display_fhandle(fhandle, __func__);
do {
status = ops->get_locations(server, fhandle, locations, page,
cred);
if (status != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, status, &exception);
} while (exception.retry);
return status;
}
/*
* This operation also signals the server that this client is
* performing "lease moved" recovery. The server can stop
* returning NFS4ERR_LEASE_MOVED to this client. A RENEW operation
* is appended to this compound to identify the client ID which is
* performing recovery.
*/
static int _nfs40_proc_fsid_present(struct inode *inode, const struct cred *cred)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_client *clp = NFS_SERVER(inode)->nfs_client;
struct rpc_clnt *clnt = server->client;
struct nfs4_fsid_present_arg args = {
.fh = NFS_FH(inode),
.clientid = clp->cl_clientid,
.renew = 1, /* append RENEW */
};
struct nfs4_fsid_present_res res = {
.renew = 1,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSID_PRESENT],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
unsigned long now = jiffies;
int status;
res.fh = nfs_alloc_fhandle();
if (res.fh == NULL)
return -ENOMEM;
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 1);
status = nfs4_call_sync_sequence(clnt, server, &msg,
&args.seq_args, &res.seq_res);
nfs_free_fhandle(res.fh);
if (status)
return status;
do_renew_lease(clp, now);
return 0;
}
#ifdef CONFIG_NFS_V4_1
/*
* This operation also signals the server that this client is
* performing "lease moved" recovery. The server can stop asserting
* SEQ4_STATUS_LEASE_MOVED for this client. The client ID performing
* this operation is identified in the SEQUENCE operation in this
* compound.
*/
static int _nfs41_proc_fsid_present(struct inode *inode, const struct cred *cred)
{
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_clnt *clnt = server->client;
struct nfs4_fsid_present_arg args = {
.fh = NFS_FH(inode),
};
struct nfs4_fsid_present_res res = {
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSID_PRESENT],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
int status;
res.fh = nfs_alloc_fhandle();
if (res.fh == NULL)
return -ENOMEM;
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 1);
status = nfs4_call_sync_sequence(clnt, server, &msg,
&args.seq_args, &res.seq_res);
nfs_free_fhandle(res.fh);
if (status == NFS4_OK &&
res.seq_res.sr_status_flags & SEQ4_STATUS_LEASE_MOVED)
status = -NFS4ERR_LEASE_MOVED;
return status;
}
#endif /* CONFIG_NFS_V4_1 */
/**
* nfs4_proc_fsid_present - Is this FSID present or absent on server?
* @inode: inode on FSID to check
* @cred: credential to use for this operation
*
* Server indicates whether the FSID is present, moved, or not
* recognized. This operation is necessary to clear a LEASE_MOVED
* condition for this client ID.
*
* Returns NFS4_OK if the FSID is present on this server,
* -NFS4ERR_MOVED if the FSID is no longer present, a negative
* NFS4ERR code if some error occurred on the server, or a
* negative errno if a local failure occurred.
*/
int nfs4_proc_fsid_present(struct inode *inode, const struct cred *cred)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_client *clp = server->nfs_client;
const struct nfs4_mig_recovery_ops *ops =
clp->cl_mvops->mig_recovery_ops;
struct nfs4_exception exception = {
.interruptible = true,
};
int status;
dprintk("%s: FSID %llx:%llx on \"%s\"\n", __func__,
(unsigned long long)server->fsid.major,
(unsigned long long)server->fsid.minor,
clp->cl_hostname);
nfs_display_fhandle(NFS_FH(inode), __func__);
do {
status = ops->fsid_present(inode, cred);
if (status != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, status, &exception);
} while (exception.retry);
return status;
}
/*
* If 'use_integrity' is true and the state managment nfs_client
* cl_rpcclient is using krb5i/p, use the integrity protected cl_rpcclient
* and the machine credential as per RFC3530bis and RFC5661 Security
* Considerations sections. Otherwise, just use the user cred with the
* filesystem's rpc_client.
*/
static int _nfs4_proc_secinfo(struct inode *dir, const struct qstr *name, struct nfs4_secinfo_flavors *flavors, bool use_integrity)
{
int status;
struct rpc_clnt *clnt = NFS_SERVER(dir)->client;
struct nfs_client *clp = NFS_SERVER(dir)->nfs_client;
struct nfs4_secinfo_arg args = {
.dir_fh = NFS_FH(dir),
.name = name,
};
struct nfs4_secinfo_res res = {
.flavors = flavors,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SECINFO],
.rpc_argp = &args,
.rpc_resp = &res,
};
struct nfs4_call_sync_data data = {
.seq_server = NFS_SERVER(dir),
.seq_args = &args.seq_args,
.seq_res = &res.seq_res,
};
struct rpc_task_setup task_setup = {
.rpc_client = clnt,
.rpc_message = &msg,
.callback_ops = clp->cl_mvops->call_sync_ops,
.callback_data = &data,
.flags = RPC_TASK_NO_ROUND_ROBIN,
};
const struct cred *cred = NULL;
if (use_integrity) {
clnt = clp->cl_rpcclient;
task_setup.rpc_client = clnt;
cred = nfs4_get_clid_cred(clp);
msg.rpc_cred = cred;
}
dprintk("NFS call secinfo %s\n", name->name);
nfs4_state_protect(clp, NFS_SP4_MACH_CRED_SECINFO, &clnt, &msg);
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 0);
status = nfs4_call_sync_custom(&task_setup);
dprintk("NFS reply secinfo: %d\n", status);
put_cred(cred);
return status;
}
int nfs4_proc_secinfo(struct inode *dir, const struct qstr *name,
struct nfs4_secinfo_flavors *flavors)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = -NFS4ERR_WRONGSEC;
/* try to use integrity protection with machine cred */
if (_nfs4_is_integrity_protected(NFS_SERVER(dir)->nfs_client))
err = _nfs4_proc_secinfo(dir, name, flavors, true);
/*
* if unable to use integrity protection, or SECINFO with
* integrity protection returns NFS4ERR_WRONGSEC (which is
* disallowed by spec, but exists in deployed servers) use
* the current filesystem's rpc_client and the user cred.
*/
if (err == -NFS4ERR_WRONGSEC)
err = _nfs4_proc_secinfo(dir, name, flavors, false);
trace_nfs4_secinfo(dir, name, err);
err = nfs4_handle_exception(NFS_SERVER(dir), err,
&exception);
} while (exception.retry);
return err;
}
#ifdef CONFIG_NFS_V4_1
/*
* Check the exchange flags returned by the server for invalid flags, having
* both PNFS and NON_PNFS flags set, and not having one of NON_PNFS, PNFS, or
* DS flags set.
*/
static int nfs4_check_cl_exchange_flags(u32 flags, u32 version)
{
if (version >= 2 && (flags & ~EXCHGID4_2_FLAG_MASK_R))
goto out_inval;
else if (version < 2 && (flags & ~EXCHGID4_FLAG_MASK_R))
goto out_inval;
if ((flags & EXCHGID4_FLAG_USE_PNFS_MDS) &&
(flags & EXCHGID4_FLAG_USE_NON_PNFS))
goto out_inval;
if (!(flags & (EXCHGID4_FLAG_MASK_PNFS)))
goto out_inval;
return NFS_OK;
out_inval:
return -NFS4ERR_INVAL;
}
static bool
nfs41_same_server_scope(struct nfs41_server_scope *a,
struct nfs41_server_scope *b)
{
if (a->server_scope_sz != b->server_scope_sz)
return false;
return memcmp(a->server_scope, b->server_scope, a->server_scope_sz) == 0;
}
static void
nfs4_bind_one_conn_to_session_done(struct rpc_task *task, void *calldata)
{
struct nfs41_bind_conn_to_session_args *args = task->tk_msg.rpc_argp;
struct nfs41_bind_conn_to_session_res *res = task->tk_msg.rpc_resp;
struct nfs_client *clp = args->client;
switch (task->tk_status) {
case -NFS4ERR_BADSESSION:
case -NFS4ERR_DEADSESSION:
nfs4_schedule_session_recovery(clp->cl_session,
task->tk_status);
return;
}
if (args->dir == NFS4_CDFC4_FORE_OR_BOTH &&
res->dir != NFS4_CDFS4_BOTH) {
rpc_task_close_connection(task);
if (args->retries++ < MAX_BIND_CONN_TO_SESSION_RETRIES)
rpc_restart_call(task);
}
}
static const struct rpc_call_ops nfs4_bind_one_conn_to_session_ops = {
.rpc_call_done = nfs4_bind_one_conn_to_session_done,
};
/*
* nfs4_proc_bind_one_conn_to_session()
*
* The 4.1 client currently uses the same TCP connection for the
* fore and backchannel.
*/
static
int nfs4_proc_bind_one_conn_to_session(struct rpc_clnt *clnt,
struct rpc_xprt *xprt,
struct nfs_client *clp,
const struct cred *cred)
{
int status;
struct nfs41_bind_conn_to_session_args args = {
.client = clp,
.dir = NFS4_CDFC4_FORE_OR_BOTH,
.retries = 0,
};
struct nfs41_bind_conn_to_session_res res;
struct rpc_message msg = {
.rpc_proc =
&nfs4_procedures[NFSPROC4_CLNT_BIND_CONN_TO_SESSION],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clnt,
.rpc_xprt = xprt,
.callback_ops = &nfs4_bind_one_conn_to_session_ops,
.rpc_message = &msg,
.flags = RPC_TASK_TIMEOUT,
};
struct rpc_task *task;
nfs4_copy_sessionid(&args.sessionid, &clp->cl_session->sess_id);
if (!(clp->cl_session->flags & SESSION4_BACK_CHAN))
args.dir = NFS4_CDFC4_FORE;
/* Do not set the backchannel flag unless this is clnt->cl_xprt */
if (xprt != rcu_access_pointer(clnt->cl_xprt))
args.dir = NFS4_CDFC4_FORE;
task = rpc_run_task(&task_setup_data);
if (!IS_ERR(task)) {
status = task->tk_status;
rpc_put_task(task);
} else
status = PTR_ERR(task);
trace_nfs4_bind_conn_to_session(clp, status);
if (status == 0) {
if (memcmp(res.sessionid.data,
clp->cl_session->sess_id.data, NFS4_MAX_SESSIONID_LEN)) {
dprintk("NFS: %s: Session ID mismatch\n", __func__);
return -EIO;
}
if ((res.dir & args.dir) != res.dir || res.dir == 0) {
dprintk("NFS: %s: Unexpected direction from server\n",
__func__);
return -EIO;
}
if (res.use_conn_in_rdma_mode != args.use_conn_in_rdma_mode) {
dprintk("NFS: %s: Server returned RDMA mode = true\n",
__func__);
return -EIO;
}
}
return status;
}
struct rpc_bind_conn_calldata {
struct nfs_client *clp;
const struct cred *cred;
};
static int
nfs4_proc_bind_conn_to_session_callback(struct rpc_clnt *clnt,
struct rpc_xprt *xprt,
void *calldata)
{
struct rpc_bind_conn_calldata *p = calldata;
return nfs4_proc_bind_one_conn_to_session(clnt, xprt, p->clp, p->cred);
}
int nfs4_proc_bind_conn_to_session(struct nfs_client *clp, const struct cred *cred)
{
struct rpc_bind_conn_calldata data = {
.clp = clp,
.cred = cred,
};
return rpc_clnt_iterate_for_each_xprt(clp->cl_rpcclient,
nfs4_proc_bind_conn_to_session_callback, &data);
}
/*
* Minimum set of SP4_MACH_CRED operations from RFC 5661 in the enforce map
* and operations we'd like to see to enable certain features in the allow map
*/
static const struct nfs41_state_protection nfs4_sp4_mach_cred_request = {
.how = SP4_MACH_CRED,
.enforce.u.words = {
[1] = 1 << (OP_BIND_CONN_TO_SESSION - 32) |
1 << (OP_EXCHANGE_ID - 32) |
1 << (OP_CREATE_SESSION - 32) |
1 << (OP_DESTROY_SESSION - 32) |
1 << (OP_DESTROY_CLIENTID - 32)
},
.allow.u.words = {
[0] = 1 << (OP_CLOSE) |
1 << (OP_OPEN_DOWNGRADE) |
1 << (OP_LOCKU) |
1 << (OP_DELEGRETURN) |
1 << (OP_COMMIT),
[1] = 1 << (OP_SECINFO - 32) |
1 << (OP_SECINFO_NO_NAME - 32) |
1 << (OP_LAYOUTRETURN - 32) |
1 << (OP_TEST_STATEID - 32) |
1 << (OP_FREE_STATEID - 32) |
1 << (OP_WRITE - 32)
}
};
/*
* Select the state protection mode for client `clp' given the server results
* from exchange_id in `sp'.
*
* Returns 0 on success, negative errno otherwise.
*/
static int nfs4_sp4_select_mode(struct nfs_client *clp,
struct nfs41_state_protection *sp)
{
static const u32 supported_enforce[NFS4_OP_MAP_NUM_WORDS] = {
[1] = 1 << (OP_BIND_CONN_TO_SESSION - 32) |
1 << (OP_EXCHANGE_ID - 32) |
1 << (OP_CREATE_SESSION - 32) |
1 << (OP_DESTROY_SESSION - 32) |
1 << (OP_DESTROY_CLIENTID - 32)
};
unsigned long flags = 0;
unsigned int i;
int ret = 0;
if (sp->how == SP4_MACH_CRED) {
/* Print state protect result */
dfprintk(MOUNT, "Server SP4_MACH_CRED support:\n");
for (i = 0; i <= LAST_NFS4_OP; i++) {
if (test_bit(i, sp->enforce.u.longs))
dfprintk(MOUNT, " enforce op %d\n", i);
if (test_bit(i, sp->allow.u.longs))
dfprintk(MOUNT, " allow op %d\n", i);
}
/* make sure nothing is on enforce list that isn't supported */
for (i = 0; i < NFS4_OP_MAP_NUM_WORDS; i++) {
if (sp->enforce.u.words[i] & ~supported_enforce[i]) {
dfprintk(MOUNT, "sp4_mach_cred: disabled\n");
ret = -EINVAL;
goto out;
}
}
/*
* Minimal mode - state operations are allowed to use machine
* credential. Note this already happens by default, so the
* client doesn't have to do anything more than the negotiation.
*
* NOTE: we don't care if EXCHANGE_ID is in the list -
* we're already using the machine cred for exchange_id
* and will never use a different cred.
*/
if (test_bit(OP_BIND_CONN_TO_SESSION, sp->enforce.u.longs) &&
test_bit(OP_CREATE_SESSION, sp->enforce.u.longs) &&
test_bit(OP_DESTROY_SESSION, sp->enforce.u.longs) &&
test_bit(OP_DESTROY_CLIENTID, sp->enforce.u.longs)) {
dfprintk(MOUNT, "sp4_mach_cred:\n");
dfprintk(MOUNT, " minimal mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_MINIMAL, &flags);
} else {
dfprintk(MOUNT, "sp4_mach_cred: disabled\n");
ret = -EINVAL;
goto out;
}
if (test_bit(OP_CLOSE, sp->allow.u.longs) &&
test_bit(OP_OPEN_DOWNGRADE, sp->allow.u.longs) &&
test_bit(OP_DELEGRETURN, sp->allow.u.longs) &&
test_bit(OP_LOCKU, sp->allow.u.longs)) {
dfprintk(MOUNT, " cleanup mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_CLEANUP, &flags);
}
if (test_bit(OP_LAYOUTRETURN, sp->allow.u.longs)) {
dfprintk(MOUNT, " pnfs cleanup mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_PNFS_CLEANUP, &flags);
}
if (test_bit(OP_SECINFO, sp->allow.u.longs) &&
test_bit(OP_SECINFO_NO_NAME, sp->allow.u.longs)) {
dfprintk(MOUNT, " secinfo mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_SECINFO, &flags);
}
if (test_bit(OP_TEST_STATEID, sp->allow.u.longs) &&
test_bit(OP_FREE_STATEID, sp->allow.u.longs)) {
dfprintk(MOUNT, " stateid mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_STATEID, &flags);
}
if (test_bit(OP_WRITE, sp->allow.u.longs)) {
dfprintk(MOUNT, " write mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_WRITE, &flags);
}
if (test_bit(OP_COMMIT, sp->allow.u.longs)) {
dfprintk(MOUNT, " commit mode enabled\n");
__set_bit(NFS_SP4_MACH_CRED_COMMIT, &flags);
}
}
out:
clp->cl_sp4_flags = flags;
return ret;
}
struct nfs41_exchange_id_data {
struct nfs41_exchange_id_res res;
struct nfs41_exchange_id_args args;
};
static void nfs4_exchange_id_release(void *data)
{
struct nfs41_exchange_id_data *cdata =
(struct nfs41_exchange_id_data *)data;
nfs_put_client(cdata->args.client);
kfree(cdata->res.impl_id);
kfree(cdata->res.server_scope);
kfree(cdata->res.server_owner);
kfree(cdata);
}
static const struct rpc_call_ops nfs4_exchange_id_call_ops = {
.rpc_release = nfs4_exchange_id_release,
};
/*
* _nfs4_proc_exchange_id()
*
* Wrapper for EXCHANGE_ID operation.
*/
static struct rpc_task *
nfs4_run_exchange_id(struct nfs_client *clp, const struct cred *cred,
u32 sp4_how, struct rpc_xprt *xprt)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_EXCHANGE_ID],
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clp->cl_rpcclient,
.callback_ops = &nfs4_exchange_id_call_ops,
.rpc_message = &msg,
.flags = RPC_TASK_TIMEOUT | RPC_TASK_NO_ROUND_ROBIN,
};
struct nfs41_exchange_id_data *calldata;
int status;
if (!refcount_inc_not_zero(&clp->cl_count))
return ERR_PTR(-EIO);
status = -ENOMEM;
calldata = kzalloc(sizeof(*calldata), GFP_NOFS);
if (!calldata)
goto out;
nfs4_init_boot_verifier(clp, &calldata->args.verifier);
status = nfs4_init_uniform_client_string(clp);
if (status)
goto out_calldata;
calldata->res.server_owner = kzalloc(sizeof(struct nfs41_server_owner),
GFP_NOFS);
status = -ENOMEM;
if (unlikely(calldata->res.server_owner == NULL))
goto out_calldata;
calldata->res.server_scope = kzalloc(sizeof(struct nfs41_server_scope),
GFP_NOFS);
if (unlikely(calldata->res.server_scope == NULL))
goto out_server_owner;
calldata->res.impl_id = kzalloc(sizeof(struct nfs41_impl_id), GFP_NOFS);
if (unlikely(calldata->res.impl_id == NULL))
goto out_server_scope;
switch (sp4_how) {
case SP4_NONE:
calldata->args.state_protect.how = SP4_NONE;
break;
case SP4_MACH_CRED:
calldata->args.state_protect = nfs4_sp4_mach_cred_request;
break;
default:
/* unsupported! */
WARN_ON_ONCE(1);
status = -EINVAL;
goto out_impl_id;
}
if (xprt) {
task_setup_data.rpc_xprt = xprt;
task_setup_data.flags |= RPC_TASK_SOFTCONN;
memcpy(calldata->args.verifier.data, clp->cl_confirm.data,
sizeof(calldata->args.verifier.data));
}
calldata->args.client = clp;
calldata->args.flags = EXCHGID4_FLAG_SUPP_MOVED_REFER |
EXCHGID4_FLAG_BIND_PRINC_STATEID;
#ifdef CONFIG_NFS_V4_1_MIGRATION
calldata->args.flags |= EXCHGID4_FLAG_SUPP_MOVED_MIGR;
#endif
msg.rpc_argp = &calldata->args;
msg.rpc_resp = &calldata->res;
task_setup_data.callback_data = calldata;
return rpc_run_task(&task_setup_data);
out_impl_id:
kfree(calldata->res.impl_id);
out_server_scope:
kfree(calldata->res.server_scope);
out_server_owner:
kfree(calldata->res.server_owner);
out_calldata:
kfree(calldata);
out:
nfs_put_client(clp);
return ERR_PTR(status);
}
/*
* _nfs4_proc_exchange_id()
*
* Wrapper for EXCHANGE_ID operation.
*/
static int _nfs4_proc_exchange_id(struct nfs_client *clp, const struct cred *cred,
u32 sp4_how)
{
struct rpc_task *task;
struct nfs41_exchange_id_args *argp;
struct nfs41_exchange_id_res *resp;
unsigned long now = jiffies;
int status;
task = nfs4_run_exchange_id(clp, cred, sp4_how, NULL);
if (IS_ERR(task))
return PTR_ERR(task);
argp = task->tk_msg.rpc_argp;
resp = task->tk_msg.rpc_resp;
status = task->tk_status;
if (status != 0)
goto out;
status = nfs4_check_cl_exchange_flags(resp->flags,
clp->cl_mvops->minor_version);
if (status != 0)
goto out;
status = nfs4_sp4_select_mode(clp, &resp->state_protect);
if (status != 0)
goto out;
do_renew_lease(clp, now);
clp->cl_clientid = resp->clientid;
clp->cl_exchange_flags = resp->flags;
clp->cl_seqid = resp->seqid;
/* Client ID is not confirmed */
if (!(resp->flags & EXCHGID4_FLAG_CONFIRMED_R))
clear_bit(NFS4_SESSION_ESTABLISHED,
&clp->cl_session->session_state);
if (clp->cl_serverscope != NULL &&
!nfs41_same_server_scope(clp->cl_serverscope,
resp->server_scope)) {
dprintk("%s: server_scope mismatch detected\n",
__func__);
set_bit(NFS4CLNT_SERVER_SCOPE_MISMATCH, &clp->cl_state);
}
swap(clp->cl_serverowner, resp->server_owner);
swap(clp->cl_serverscope, resp->server_scope);
swap(clp->cl_implid, resp->impl_id);
/* Save the EXCHANGE_ID verifier session trunk tests */
memcpy(clp->cl_confirm.data, argp->verifier.data,
sizeof(clp->cl_confirm.data));
out:
trace_nfs4_exchange_id(clp, status);
rpc_put_task(task);
return status;
}
/*
* nfs4_proc_exchange_id()
*
* Returns zero, a negative errno, or a negative NFS4ERR status code.
*
* Since the clientid has expired, all compounds using sessions
* associated with the stale clientid will be returning
* NFS4ERR_BADSESSION in the sequence operation, and will therefore
* be in some phase of session reset.
*
* Will attempt to negotiate SP4_MACH_CRED if krb5i / krb5p auth is used.
*/
int nfs4_proc_exchange_id(struct nfs_client *clp, const struct cred *cred)
{
rpc_authflavor_t authflavor = clp->cl_rpcclient->cl_auth->au_flavor;
int status;
/* try SP4_MACH_CRED if krb5i/p */
if (authflavor == RPC_AUTH_GSS_KRB5I ||
authflavor == RPC_AUTH_GSS_KRB5P) {
status = _nfs4_proc_exchange_id(clp, cred, SP4_MACH_CRED);
if (!status)
return 0;
}
/* try SP4_NONE */
return _nfs4_proc_exchange_id(clp, cred, SP4_NONE);
}
/**
* nfs4_test_session_trunk
*
* This is an add_xprt_test() test function called from
* rpc_clnt_setup_test_and_add_xprt.
*
* The rpc_xprt_switch is referrenced by rpc_clnt_setup_test_and_add_xprt
* and is dereferrenced in nfs4_exchange_id_release
*
* Upon success, add the new transport to the rpc_clnt
*
* @clnt: struct rpc_clnt to get new transport
* @xprt: the rpc_xprt to test
* @data: call data for _nfs4_proc_exchange_id.
*/
void nfs4_test_session_trunk(struct rpc_clnt *clnt, struct rpc_xprt *xprt,
void *data)
{
struct nfs4_add_xprt_data *adata = (struct nfs4_add_xprt_data *)data;
struct rpc_task *task;
int status;
u32 sp4_how;
dprintk("--> %s try %s\n", __func__,
xprt->address_strings[RPC_DISPLAY_ADDR]);
sp4_how = (adata->clp->cl_sp4_flags == 0 ? SP4_NONE : SP4_MACH_CRED);
/* Test connection for session trunking. Async exchange_id call */
task = nfs4_run_exchange_id(adata->clp, adata->cred, sp4_how, xprt);
if (IS_ERR(task))
return;
status = task->tk_status;
if (status == 0)
status = nfs4_detect_session_trunking(adata->clp,
task->tk_msg.rpc_resp, xprt);
if (status == 0)
rpc_clnt_xprt_switch_add_xprt(clnt, xprt);
else if (rpc_clnt_xprt_switch_has_addr(clnt,
(struct sockaddr *)&xprt->addr))
rpc_clnt_xprt_switch_remove_xprt(clnt, xprt);
rpc_put_task(task);
}
EXPORT_SYMBOL_GPL(nfs4_test_session_trunk);
static int _nfs4_proc_destroy_clientid(struct nfs_client *clp,
const struct cred *cred)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DESTROY_CLIENTID],
.rpc_argp = clp,
.rpc_cred = cred,
};
int status;
status = rpc_call_sync(clp->cl_rpcclient, &msg,
RPC_TASK_TIMEOUT | RPC_TASK_NO_ROUND_ROBIN);
trace_nfs4_destroy_clientid(clp, status);
if (status)
dprintk("NFS: Got error %d from the server %s on "
"DESTROY_CLIENTID.", status, clp->cl_hostname);
return status;
}
static int nfs4_proc_destroy_clientid(struct nfs_client *clp,
const struct cred *cred)
{
unsigned int loop;
int ret;
for (loop = NFS4_MAX_LOOP_ON_RECOVER; loop != 0; loop--) {
ret = _nfs4_proc_destroy_clientid(clp, cred);
switch (ret) {
case -NFS4ERR_DELAY:
case -NFS4ERR_CLIENTID_BUSY:
ssleep(1);
break;
default:
return ret;
}
}
return 0;
}
int nfs4_destroy_clientid(struct nfs_client *clp)
{
const struct cred *cred;
int ret = 0;
if (clp->cl_mvops->minor_version < 1)
goto out;
if (clp->cl_exchange_flags == 0)
goto out;
if (clp->cl_preserve_clid)
goto out;
cred = nfs4_get_clid_cred(clp);
ret = nfs4_proc_destroy_clientid(clp, cred);
put_cred(cred);
switch (ret) {
case 0:
case -NFS4ERR_STALE_CLIENTID:
clp->cl_exchange_flags = 0;
}
out:
return ret;
}
#endif /* CONFIG_NFS_V4_1 */
struct nfs4_get_lease_time_data {
struct nfs4_get_lease_time_args *args;
struct nfs4_get_lease_time_res *res;
struct nfs_client *clp;
};
static void nfs4_get_lease_time_prepare(struct rpc_task *task,
void *calldata)
{
struct nfs4_get_lease_time_data *data =
(struct nfs4_get_lease_time_data *)calldata;
/* just setup sequence, do not trigger session recovery
since we're invoked within one */
nfs4_setup_sequence(data->clp,
&data->args->la_seq_args,
&data->res->lr_seq_res,
task);
}
/*
* Called from nfs4_state_manager thread for session setup, so don't recover
* from sequence operation or clientid errors.
*/
static void nfs4_get_lease_time_done(struct rpc_task *task, void *calldata)
{
struct nfs4_get_lease_time_data *data =
(struct nfs4_get_lease_time_data *)calldata;
if (!nfs4_sequence_done(task, &data->res->lr_seq_res))
return;
switch (task->tk_status) {
case -NFS4ERR_DELAY:
case -NFS4ERR_GRACE:
rpc_delay(task, NFS4_POLL_RETRY_MIN);
task->tk_status = 0;
fallthrough;
case -NFS4ERR_RETRY_UNCACHED_REP:
rpc_restart_call_prepare(task);
return;
}
}
static const struct rpc_call_ops nfs4_get_lease_time_ops = {
.rpc_call_prepare = nfs4_get_lease_time_prepare,
.rpc_call_done = nfs4_get_lease_time_done,
};
int nfs4_proc_get_lease_time(struct nfs_client *clp, struct nfs_fsinfo *fsinfo)
{
struct nfs4_get_lease_time_args args;
struct nfs4_get_lease_time_res res = {
.lr_fsinfo = fsinfo,
};
struct nfs4_get_lease_time_data data = {
.args = &args,
.res = &res,
.clp = clp,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GET_LEASE_TIME],
.rpc_argp = &args,
.rpc_resp = &res,
};
struct rpc_task_setup task_setup = {
.rpc_client = clp->cl_rpcclient,
.rpc_message = &msg,
.callback_ops = &nfs4_get_lease_time_ops,
.callback_data = &data,
.flags = RPC_TASK_TIMEOUT,
};
nfs4_init_sequence(&args.la_seq_args, &res.lr_seq_res, 0, 1);
return nfs4_call_sync_custom(&task_setup);
}
#ifdef CONFIG_NFS_V4_1
/*
* Initialize the values to be used by the client in CREATE_SESSION
* If nfs4_init_session set the fore channel request and response sizes,
* use them.
*
* Set the back channel max_resp_sz_cached to zero to force the client to
* always set csa_cachethis to FALSE because the current implementation
* of the back channel DRC only supports caching the CB_SEQUENCE operation.
*/
static void nfs4_init_channel_attrs(struct nfs41_create_session_args *args,
struct rpc_clnt *clnt)
{
unsigned int max_rqst_sz, max_resp_sz;
unsigned int max_bc_payload = rpc_max_bc_payload(clnt);
unsigned int max_bc_slots = rpc_num_bc_slots(clnt);
max_rqst_sz = NFS_MAX_FILE_IO_SIZE + nfs41_maxwrite_overhead;
max_resp_sz = NFS_MAX_FILE_IO_SIZE + nfs41_maxread_overhead;
/* Fore channel attributes */
args->fc_attrs.max_rqst_sz = max_rqst_sz;
args->fc_attrs.max_resp_sz = max_resp_sz;
args->fc_attrs.max_ops = NFS4_MAX_OPS;
args->fc_attrs.max_reqs = max_session_slots;
dprintk("%s: Fore Channel : max_rqst_sz=%u max_resp_sz=%u "
"max_ops=%u max_reqs=%u\n",
__func__,
args->fc_attrs.max_rqst_sz, args->fc_attrs.max_resp_sz,
args->fc_attrs.max_ops, args->fc_attrs.max_reqs);
/* Back channel attributes */
args->bc_attrs.max_rqst_sz = max_bc_payload;
args->bc_attrs.max_resp_sz = max_bc_payload;
args->bc_attrs.max_resp_sz_cached = 0;
args->bc_attrs.max_ops = NFS4_MAX_BACK_CHANNEL_OPS;
args->bc_attrs.max_reqs = max_t(unsigned short, max_session_cb_slots, 1);
if (args->bc_attrs.max_reqs > max_bc_slots)
args->bc_attrs.max_reqs = max_bc_slots;
dprintk("%s: Back Channel : max_rqst_sz=%u max_resp_sz=%u "
"max_resp_sz_cached=%u max_ops=%u max_reqs=%u\n",
__func__,
args->bc_attrs.max_rqst_sz, args->bc_attrs.max_resp_sz,
args->bc_attrs.max_resp_sz_cached, args->bc_attrs.max_ops,
args->bc_attrs.max_reqs);
}
static int nfs4_verify_fore_channel_attrs(struct nfs41_create_session_args *args,
struct nfs41_create_session_res *res)
{
struct nfs4_channel_attrs *sent = &args->fc_attrs;
struct nfs4_channel_attrs *rcvd = &res->fc_attrs;
if (rcvd->max_resp_sz > sent->max_resp_sz)
return -EINVAL;
/*
* Our requested max_ops is the minimum we need; we're not
* prepared to break up compounds into smaller pieces than that.
* So, no point even trying to continue if the server won't
* cooperate:
*/
if (rcvd->max_ops < sent->max_ops)
return -EINVAL;
if (rcvd->max_reqs == 0)
return -EINVAL;
if (rcvd->max_reqs > NFS4_MAX_SLOT_TABLE)
rcvd->max_reqs = NFS4_MAX_SLOT_TABLE;
return 0;
}
static int nfs4_verify_back_channel_attrs(struct nfs41_create_session_args *args,
struct nfs41_create_session_res *res)
{
struct nfs4_channel_attrs *sent = &args->bc_attrs;
struct nfs4_channel_attrs *rcvd = &res->bc_attrs;
if (!(res->flags & SESSION4_BACK_CHAN))
goto out;
if (rcvd->max_rqst_sz > sent->max_rqst_sz)
return -EINVAL;
if (rcvd->max_resp_sz < sent->max_resp_sz)
return -EINVAL;
if (rcvd->max_resp_sz_cached > sent->max_resp_sz_cached)
return -EINVAL;
if (rcvd->max_ops > sent->max_ops)
return -EINVAL;
if (rcvd->max_reqs > sent->max_reqs)
return -EINVAL;
out:
return 0;
}
static int nfs4_verify_channel_attrs(struct nfs41_create_session_args *args,
struct nfs41_create_session_res *res)
{
int ret;
ret = nfs4_verify_fore_channel_attrs(args, res);
if (ret)
return ret;
return nfs4_verify_back_channel_attrs(args, res);
}
static void nfs4_update_session(struct nfs4_session *session,
struct nfs41_create_session_res *res)
{
nfs4_copy_sessionid(&session->sess_id, &res->sessionid);
/* Mark client id and session as being confirmed */
session->clp->cl_exchange_flags |= EXCHGID4_FLAG_CONFIRMED_R;
set_bit(NFS4_SESSION_ESTABLISHED, &session->session_state);
session->flags = res->flags;
memcpy(&session->fc_attrs, &res->fc_attrs, sizeof(session->fc_attrs));
if (res->flags & SESSION4_BACK_CHAN)
memcpy(&session->bc_attrs, &res->bc_attrs,
sizeof(session->bc_attrs));
}
static int _nfs4_proc_create_session(struct nfs_client *clp,
const struct cred *cred)
{
struct nfs4_session *session = clp->cl_session;
struct nfs41_create_session_args args = {
.client = clp,
.clientid = clp->cl_clientid,
.seqid = clp->cl_seqid,
.cb_program = NFS4_CALLBACK,
};
struct nfs41_create_session_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE_SESSION],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
int status;
nfs4_init_channel_attrs(&args, clp->cl_rpcclient);
args.flags = (SESSION4_PERSIST | SESSION4_BACK_CHAN);
status = rpc_call_sync(session->clp->cl_rpcclient, &msg,
RPC_TASK_TIMEOUT | RPC_TASK_NO_ROUND_ROBIN);
trace_nfs4_create_session(clp, status);
switch (status) {
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_DELAY:
case -ETIMEDOUT:
case -EACCES:
case -EAGAIN:
goto out;
}
clp->cl_seqid++;
if (!status) {
/* Verify the session's negotiated channel_attrs values */
status = nfs4_verify_channel_attrs(&args, &res);
/* Increment the clientid slot sequence id */
if (status)
goto out;
nfs4_update_session(session, &res);
}
out:
return status;
}
/*
* Issues a CREATE_SESSION operation to the server.
* It is the responsibility of the caller to verify the session is
* expired before calling this routine.
*/
int nfs4_proc_create_session(struct nfs_client *clp, const struct cred *cred)
{
int status;
unsigned *ptr;
struct nfs4_session *session = clp->cl_session;
struct nfs4_add_xprt_data xprtdata = {
.clp = clp,
};
struct rpc_add_xprt_test rpcdata = {
.add_xprt_test = clp->cl_mvops->session_trunk,
.data = &xprtdata,
};
dprintk("--> %s clp=%p session=%p\n", __func__, clp, session);
status = _nfs4_proc_create_session(clp, cred);
if (status)
goto out;
/* Init or reset the session slot tables */
status = nfs4_setup_session_slot_tables(session);
dprintk("slot table setup returned %d\n", status);
if (status)
goto out;
ptr = (unsigned *)&session->sess_id.data[0];
dprintk("%s client>seqid %d sessionid %u:%u:%u:%u\n", __func__,
clp->cl_seqid, ptr[0], ptr[1], ptr[2], ptr[3]);
rpc_clnt_probe_trunked_xprts(clp->cl_rpcclient, &rpcdata);
out:
return status;
}
/*
* Issue the over-the-wire RPC DESTROY_SESSION.
* The caller must serialize access to this routine.
*/
int nfs4_proc_destroy_session(struct nfs4_session *session,
const struct cred *cred)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DESTROY_SESSION],
.rpc_argp = session,
.rpc_cred = cred,
};
int status = 0;
/* session is still being setup */
if (!test_and_clear_bit(NFS4_SESSION_ESTABLISHED, &session->session_state))
return 0;
status = rpc_call_sync(session->clp->cl_rpcclient, &msg,
RPC_TASK_TIMEOUT | RPC_TASK_NO_ROUND_ROBIN);
trace_nfs4_destroy_session(session->clp, status);
if (status)
dprintk("NFS: Got error %d from the server on DESTROY_SESSION. "
"Session has been destroyed regardless...\n", status);
rpc_clnt_manage_trunked_xprts(session->clp->cl_rpcclient);
return status;
}
/*
* Renew the cl_session lease.
*/
struct nfs4_sequence_data {
struct nfs_client *clp;
struct nfs4_sequence_args args;
struct nfs4_sequence_res res;
};
static void nfs41_sequence_release(void *data)
{
struct nfs4_sequence_data *calldata = data;
struct nfs_client *clp = calldata->clp;
if (refcount_read(&clp->cl_count) > 1)
nfs4_schedule_state_renewal(clp);
nfs_put_client(clp);
kfree(calldata);
}
static int nfs41_sequence_handle_errors(struct rpc_task *task, struct nfs_client *clp)
{
switch(task->tk_status) {
case -NFS4ERR_DELAY:
rpc_delay(task, NFS4_POLL_RETRY_MAX);
return -EAGAIN;
default:
nfs4_schedule_lease_recovery(clp);
}
return 0;
}
static void nfs41_sequence_call_done(struct rpc_task *task, void *data)
{
struct nfs4_sequence_data *calldata = data;
struct nfs_client *clp = calldata->clp;
if (!nfs41_sequence_done(task, task->tk_msg.rpc_resp))
return;
trace_nfs4_sequence(clp, task->tk_status);
if (task->tk_status < 0) {
dprintk("%s ERROR %d\n", __func__, task->tk_status);
if (refcount_read(&clp->cl_count) == 1)
return;
if (nfs41_sequence_handle_errors(task, clp) == -EAGAIN) {
rpc_restart_call_prepare(task);
return;
}
}
dprintk("%s rpc_cred %p\n", __func__, task->tk_msg.rpc_cred);
}
static void nfs41_sequence_prepare(struct rpc_task *task, void *data)
{
struct nfs4_sequence_data *calldata = data;
struct nfs_client *clp = calldata->clp;
struct nfs4_sequence_args *args;
struct nfs4_sequence_res *res;
args = task->tk_msg.rpc_argp;
res = task->tk_msg.rpc_resp;
nfs4_setup_sequence(clp, args, res, task);
}
static const struct rpc_call_ops nfs41_sequence_ops = {
.rpc_call_done = nfs41_sequence_call_done,
.rpc_call_prepare = nfs41_sequence_prepare,
.rpc_release = nfs41_sequence_release,
};
static struct rpc_task *_nfs41_proc_sequence(struct nfs_client *clp,
const struct cred *cred,
struct nfs4_slot *slot,
bool is_privileged)
{
struct nfs4_sequence_data *calldata;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SEQUENCE],
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clp->cl_rpcclient,
.rpc_message = &msg,
.callback_ops = &nfs41_sequence_ops,
.flags = RPC_TASK_ASYNC | RPC_TASK_TIMEOUT | RPC_TASK_MOVEABLE,
};
struct rpc_task *ret;
ret = ERR_PTR(-EIO);
if (!refcount_inc_not_zero(&clp->cl_count))
goto out_err;
ret = ERR_PTR(-ENOMEM);
calldata = kzalloc(sizeof(*calldata), GFP_KERNEL);
if (calldata == NULL)
goto out_put_clp;
nfs4_init_sequence(&calldata->args, &calldata->res, 0, is_privileged);
nfs4_sequence_attach_slot(&calldata->args, &calldata->res, slot);
msg.rpc_argp = &calldata->args;
msg.rpc_resp = &calldata->res;
calldata->clp = clp;
task_setup_data.callback_data = calldata;
ret = rpc_run_task(&task_setup_data);
if (IS_ERR(ret))
goto out_err;
return ret;
out_put_clp:
nfs_put_client(clp);
out_err:
nfs41_release_slot(slot);
return ret;
}
static int nfs41_proc_async_sequence(struct nfs_client *clp, const struct cred *cred, unsigned renew_flags)
{
struct rpc_task *task;
int ret = 0;
if ((renew_flags & NFS4_RENEW_TIMEOUT) == 0)
return -EAGAIN;
task = _nfs41_proc_sequence(clp, cred, NULL, false);
if (IS_ERR(task))
ret = PTR_ERR(task);
else
rpc_put_task_async(task);
dprintk("<-- %s status=%d\n", __func__, ret);
return ret;
}
static int nfs4_proc_sequence(struct nfs_client *clp, const struct cred *cred)
{
struct rpc_task *task;
int ret;
task = _nfs41_proc_sequence(clp, cred, NULL, true);
if (IS_ERR(task)) {
ret = PTR_ERR(task);
goto out;
}
ret = rpc_wait_for_completion_task(task);
if (!ret)
ret = task->tk_status;
rpc_put_task(task);
out:
dprintk("<-- %s status=%d\n", __func__, ret);
return ret;
}
struct nfs4_reclaim_complete_data {
struct nfs_client *clp;
struct nfs41_reclaim_complete_args arg;
struct nfs41_reclaim_complete_res res;
};
static void nfs4_reclaim_complete_prepare(struct rpc_task *task, void *data)
{
struct nfs4_reclaim_complete_data *calldata = data;
nfs4_setup_sequence(calldata->clp,
&calldata->arg.seq_args,
&calldata->res.seq_res,
task);
}
static int nfs41_reclaim_complete_handle_errors(struct rpc_task *task, struct nfs_client *clp)
{
switch(task->tk_status) {
case 0:
wake_up_all(&clp->cl_lock_waitq);
fallthrough;
case -NFS4ERR_COMPLETE_ALREADY:
case -NFS4ERR_WRONG_CRED: /* What to do here? */
break;
case -NFS4ERR_DELAY:
rpc_delay(task, NFS4_POLL_RETRY_MAX);
fallthrough;
case -NFS4ERR_RETRY_UNCACHED_REP:
case -EACCES:
dprintk("%s: failed to reclaim complete error %d for server %s, retrying\n",
__func__, task->tk_status, clp->cl_hostname);
return -EAGAIN;
case -NFS4ERR_BADSESSION:
case -NFS4ERR_DEADSESSION:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
break;
default:
nfs4_schedule_lease_recovery(clp);
}
return 0;
}
static void nfs4_reclaim_complete_done(struct rpc_task *task, void *data)
{
struct nfs4_reclaim_complete_data *calldata = data;
struct nfs_client *clp = calldata->clp;
struct nfs4_sequence_res *res = &calldata->res.seq_res;
if (!nfs41_sequence_done(task, res))
return;
trace_nfs4_reclaim_complete(clp, task->tk_status);
if (nfs41_reclaim_complete_handle_errors(task, clp) == -EAGAIN) {
rpc_restart_call_prepare(task);
return;
}
}
static void nfs4_free_reclaim_complete_data(void *data)
{
struct nfs4_reclaim_complete_data *calldata = data;
kfree(calldata);
}
static const struct rpc_call_ops nfs4_reclaim_complete_call_ops = {
.rpc_call_prepare = nfs4_reclaim_complete_prepare,
.rpc_call_done = nfs4_reclaim_complete_done,
.rpc_release = nfs4_free_reclaim_complete_data,
};
/*
* Issue a global reclaim complete.
*/
static int nfs41_proc_reclaim_complete(struct nfs_client *clp,
const struct cred *cred)
{
struct nfs4_reclaim_complete_data *calldata;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RECLAIM_COMPLETE],
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clp->cl_rpcclient,
.rpc_message = &msg,
.callback_ops = &nfs4_reclaim_complete_call_ops,
.flags = RPC_TASK_NO_ROUND_ROBIN,
};
int status = -ENOMEM;
calldata = kzalloc(sizeof(*calldata), GFP_NOFS);
if (calldata == NULL)
goto out;
calldata->clp = clp;
calldata->arg.one_fs = 0;
nfs4_init_sequence(&calldata->arg.seq_args, &calldata->res.seq_res, 0, 1);
msg.rpc_argp = &calldata->arg;
msg.rpc_resp = &calldata->res;
task_setup_data.callback_data = calldata;
status = nfs4_call_sync_custom(&task_setup_data);
out:
dprintk("<-- %s status=%d\n", __func__, status);
return status;
}
static void
nfs4_layoutget_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutget *lgp = calldata;
struct nfs_server *server = NFS_SERVER(lgp->args.inode);
nfs4_setup_sequence(server->nfs_client, &lgp->args.seq_args,
&lgp->res.seq_res, task);
}
static void nfs4_layoutget_done(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutget *lgp = calldata;
nfs41_sequence_process(task, &lgp->res.seq_res);
}
static int
nfs4_layoutget_handle_exception(struct rpc_task *task,
struct nfs4_layoutget *lgp, struct nfs4_exception *exception)
{
struct inode *inode = lgp->args.inode;
struct nfs_server *server = NFS_SERVER(inode);
struct pnfs_layout_hdr *lo = lgp->lo;
int nfs4err = task->tk_status;
int err, status = 0;
LIST_HEAD(head);
dprintk("--> %s tk_status => %d\n", __func__, -task->tk_status);
nfs4_sequence_free_slot(&lgp->res.seq_res);
switch (nfs4err) {
case 0:
goto out;
/*
* NFS4ERR_LAYOUTUNAVAILABLE means we are not supposed to use pnfs
* on the file. set tk_status to -ENODATA to tell upper layer to
* retry go inband.
*/
case -NFS4ERR_LAYOUTUNAVAILABLE:
status = -ENODATA;
goto out;
/*
* NFS4ERR_BADLAYOUT means the MDS cannot return a layout of
* length lgp->args.minlength != 0 (see RFC5661 section 18.43.3).
*/
case -NFS4ERR_BADLAYOUT:
status = -EOVERFLOW;
goto out;
/*
* NFS4ERR_LAYOUTTRYLATER is a conflict with another client
* (or clients) writing to the same RAID stripe except when
* the minlength argument is 0 (see RFC5661 section 18.43.3).
*
* Treat it like we would RECALLCONFLICT -- we retry for a little
* while, and then eventually give up.
*/
case -NFS4ERR_LAYOUTTRYLATER:
if (lgp->args.minlength == 0) {
status = -EOVERFLOW;
goto out;
}
status = -EBUSY;
break;
case -NFS4ERR_RECALLCONFLICT:
status = -ERECALLCONFLICT;
break;
case -NFS4ERR_DELEG_REVOKED:
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_EXPIRED:
case -NFS4ERR_BAD_STATEID:
exception->timeout = 0;
spin_lock(&inode->i_lock);
/* If the open stateid was bad, then recover it. */
if (!lo || test_bit(NFS_LAYOUT_INVALID_STID, &lo->plh_flags) ||
!nfs4_stateid_match_other(&lgp->args.stateid, &lo->plh_stateid)) {
spin_unlock(&inode->i_lock);
exception->state = lgp->args.ctx->state;
exception->stateid = &lgp->args.stateid;
break;
}
/*
* Mark the bad layout state as invalid, then retry
*/
pnfs_mark_layout_stateid_invalid(lo, &head);
spin_unlock(&inode->i_lock);
nfs_commit_inode(inode, 0);
pnfs_free_lseg_list(&head);
status = -EAGAIN;
goto out;
}
err = nfs4_handle_exception(server, nfs4err, exception);
if (!status) {
if (exception->retry)
status = -EAGAIN;
else
status = err;
}
out:
return status;
}
size_t max_response_pages(struct nfs_server *server)
{
u32 max_resp_sz = server->nfs_client->cl_session->fc_attrs.max_resp_sz;
return nfs_page_array_len(0, max_resp_sz);
}
static void nfs4_layoutget_release(void *calldata)
{
struct nfs4_layoutget *lgp = calldata;
nfs4_sequence_free_slot(&lgp->res.seq_res);
pnfs_layoutget_free(lgp);
}
static const struct rpc_call_ops nfs4_layoutget_call_ops = {
.rpc_call_prepare = nfs4_layoutget_prepare,
.rpc_call_done = nfs4_layoutget_done,
.rpc_release = nfs4_layoutget_release,
};
struct pnfs_layout_segment *
nfs4_proc_layoutget(struct nfs4_layoutget *lgp, long *timeout)
{
struct inode *inode = lgp->args.inode;
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTGET],
.rpc_argp = &lgp->args,
.rpc_resp = &lgp->res,
.rpc_cred = lgp->cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_layoutget_call_ops,
.callback_data = lgp,
.flags = RPC_TASK_ASYNC | RPC_TASK_CRED_NOREF |
RPC_TASK_MOVEABLE,
};
struct pnfs_layout_segment *lseg = NULL;
struct nfs4_exception exception = {
.inode = inode,
.timeout = *timeout,
};
int status = 0;
nfs4_init_sequence(&lgp->args.seq_args, &lgp->res.seq_res, 0, 0);
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return ERR_CAST(task);
status = rpc_wait_for_completion_task(task);
if (status != 0)
goto out;
if (task->tk_status < 0) {
status = nfs4_layoutget_handle_exception(task, lgp, &exception);
*timeout = exception.timeout;
} else if (lgp->res.layoutp->len == 0) {
status = -EAGAIN;
*timeout = nfs4_update_delay(&exception.timeout);
} else
lseg = pnfs_layout_process(lgp);
out:
trace_nfs4_layoutget(lgp->args.ctx,
&lgp->args.range,
&lgp->res.range,
&lgp->res.stateid,
status);
rpc_put_task(task);
dprintk("<-- %s status=%d\n", __func__, status);
if (status)
return ERR_PTR(status);
return lseg;
}
static void
nfs4_layoutreturn_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutreturn *lrp = calldata;
nfs4_setup_sequence(lrp->clp,
&lrp->args.seq_args,
&lrp->res.seq_res,
task);
if (!pnfs_layout_is_valid(lrp->args.layout))
rpc_exit(task, 0);
}
static void nfs4_layoutreturn_done(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutreturn *lrp = calldata;
struct nfs_server *server;
if (!nfs41_sequence_process(task, &lrp->res.seq_res))
return;
/*
* Was there an RPC level error? Assume the call succeeded,
* and that we need to release the layout
*/
if (task->tk_rpc_status != 0 && RPC_WAS_SENT(task)) {
lrp->res.lrs_present = 0;
return;
}
server = NFS_SERVER(lrp->args.inode);
switch (task->tk_status) {
case -NFS4ERR_OLD_STATEID:
if (nfs4_layout_refresh_old_stateid(&lrp->args.stateid,
&lrp->args.range,
lrp->args.inode))
goto out_restart;
fallthrough;
default:
task->tk_status = 0;
fallthrough;
case 0:
break;
case -NFS4ERR_DELAY:
if (nfs4_async_handle_error(task, server, NULL, NULL) != -EAGAIN)
break;
goto out_restart;
}
return;
out_restart:
task->tk_status = 0;
nfs4_sequence_free_slot(&lrp->res.seq_res);
rpc_restart_call_prepare(task);
}
static void nfs4_layoutreturn_release(void *calldata)
{
struct nfs4_layoutreturn *lrp = calldata;
struct pnfs_layout_hdr *lo = lrp->args.layout;
pnfs_layoutreturn_free_lsegs(lo, &lrp->args.stateid, &lrp->args.range,
lrp->res.lrs_present ? &lrp->res.stateid : NULL);
nfs4_sequence_free_slot(&lrp->res.seq_res);
if (lrp->ld_private.ops && lrp->ld_private.ops->free)
lrp->ld_private.ops->free(&lrp->ld_private);
pnfs_put_layout_hdr(lrp->args.layout);
nfs_iput_and_deactive(lrp->inode);
put_cred(lrp->cred);
kfree(calldata);
}
static const struct rpc_call_ops nfs4_layoutreturn_call_ops = {
.rpc_call_prepare = nfs4_layoutreturn_prepare,
.rpc_call_done = nfs4_layoutreturn_done,
.rpc_release = nfs4_layoutreturn_release,
};
int nfs4_proc_layoutreturn(struct nfs4_layoutreturn *lrp, bool sync)
{
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTRETURN],
.rpc_argp = &lrp->args,
.rpc_resp = &lrp->res,
.rpc_cred = lrp->cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = NFS_SERVER(lrp->args.inode)->client,
.rpc_message = &msg,
.callback_ops = &nfs4_layoutreturn_call_ops,
.callback_data = lrp,
.flags = RPC_TASK_MOVEABLE,
};
int status = 0;
nfs4_state_protect(NFS_SERVER(lrp->args.inode)->nfs_client,
NFS_SP4_MACH_CRED_PNFS_CLEANUP,
&task_setup_data.rpc_client, &msg);
lrp->inode = nfs_igrab_and_active(lrp->args.inode);
if (!sync) {
if (!lrp->inode) {
nfs4_layoutreturn_release(lrp);
return -EAGAIN;
}
task_setup_data.flags |= RPC_TASK_ASYNC;
}
if (!lrp->inode)
nfs4_init_sequence(&lrp->args.seq_args, &lrp->res.seq_res, 1,
1);
else
nfs4_init_sequence(&lrp->args.seq_args, &lrp->res.seq_res, 1,
0);
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
if (sync)
status = task->tk_status;
trace_nfs4_layoutreturn(lrp->args.inode, &lrp->args.stateid, status);
dprintk("<-- %s status=%d\n", __func__, status);
rpc_put_task(task);
return status;
}
static int
_nfs4_proc_getdeviceinfo(struct nfs_server *server,
struct pnfs_device *pdev,
const struct cred *cred)
{
struct nfs4_getdeviceinfo_args args = {
.pdev = pdev,
.notify_types = NOTIFY_DEVICEID4_CHANGE |
NOTIFY_DEVICEID4_DELETE,
};
struct nfs4_getdeviceinfo_res res = {
.pdev = pdev,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETDEVICEINFO],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
int status;
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
if (res.notification & ~args.notify_types)
dprintk("%s: unsupported notification\n", __func__);
if (res.notification != args.notify_types)
pdev->nocache = 1;
trace_nfs4_getdeviceinfo(server, &pdev->dev_id, status);
dprintk("<-- %s status=%d\n", __func__, status);
return status;
}
int nfs4_proc_getdeviceinfo(struct nfs_server *server,
struct pnfs_device *pdev,
const struct cred *cred)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_getdeviceinfo(server, pdev, cred),
&exception);
} while (exception.retry);
return err;
}
EXPORT_SYMBOL_GPL(nfs4_proc_getdeviceinfo);
static void nfs4_layoutcommit_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutcommit_data *data = calldata;
struct nfs_server *server = NFS_SERVER(data->args.inode);
nfs4_setup_sequence(server->nfs_client,
&data->args.seq_args,
&data->res.seq_res,
task);
}
static void
nfs4_layoutcommit_done(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutcommit_data *data = calldata;
struct nfs_server *server = NFS_SERVER(data->args.inode);
if (!nfs41_sequence_done(task, &data->res.seq_res))
return;
switch (task->tk_status) { /* Just ignore these failures */
case -NFS4ERR_DELEG_REVOKED: /* layout was recalled */
case -NFS4ERR_BADIOMODE: /* no IOMODE_RW layout for range */
case -NFS4ERR_BADLAYOUT: /* no layout */
case -NFS4ERR_GRACE: /* loca_recalim always false */
task->tk_status = 0;
break;
case 0:
break;
default:
if (nfs4_async_handle_error(task, server, NULL, NULL) == -EAGAIN) {
rpc_restart_call_prepare(task);
return;
}
}
}
static void nfs4_layoutcommit_release(void *calldata)
{
struct nfs4_layoutcommit_data *data = calldata;
pnfs_cleanup_layoutcommit(data);
nfs_post_op_update_inode_force_wcc(data->args.inode,
data->res.fattr);
put_cred(data->cred);
nfs_iput_and_deactive(data->inode);
kfree(data);
}
static const struct rpc_call_ops nfs4_layoutcommit_ops = {
.rpc_call_prepare = nfs4_layoutcommit_prepare,
.rpc_call_done = nfs4_layoutcommit_done,
.rpc_release = nfs4_layoutcommit_release,
};
int
nfs4_proc_layoutcommit(struct nfs4_layoutcommit_data *data, bool sync)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTCOMMIT],
.rpc_argp = &data->args,
.rpc_resp = &data->res,
.rpc_cred = data->cred,
};
struct rpc_task_setup task_setup_data = {
.task = &data->task,
.rpc_client = NFS_CLIENT(data->args.inode),
.rpc_message = &msg,
.callback_ops = &nfs4_layoutcommit_ops,
.callback_data = data,
.flags = RPC_TASK_MOVEABLE,
};
struct rpc_task *task;
int status = 0;
dprintk("NFS: initiating layoutcommit call. sync %d "
"lbw: %llu inode %lu\n", sync,
data->args.lastbytewritten,
data->args.inode->i_ino);
if (!sync) {
data->inode = nfs_igrab_and_active(data->args.inode);
if (data->inode == NULL) {
nfs4_layoutcommit_release(data);
return -EAGAIN;
}
task_setup_data.flags = RPC_TASK_ASYNC;
}
nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 1, 0);
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
if (sync)
status = task->tk_status;
trace_nfs4_layoutcommit(data->args.inode, &data->args.stateid, status);
dprintk("%s: status %d\n", __func__, status);
rpc_put_task(task);
return status;
}
/*
* Use the state managment nfs_client cl_rpcclient, which uses krb5i (if
* possible) as per RFC3530bis and RFC5661 Security Considerations sections
*/
static int
_nfs41_proc_secinfo_no_name(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info,
struct nfs4_secinfo_flavors *flavors, bool use_integrity)
{
struct nfs41_secinfo_no_name_args args = {
.style = SECINFO_STYLE_CURRENT_FH,
};
struct nfs4_secinfo_res res = {
.flavors = flavors,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SECINFO_NO_NAME],
.rpc_argp = &args,
.rpc_resp = &res,
};
struct nfs4_call_sync_data data = {
.seq_server = server,
.seq_args = &args.seq_args,
.seq_res = &res.seq_res,
};
struct rpc_task_setup task_setup = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = server->nfs_client->cl_mvops->call_sync_ops,
.callback_data = &data,
.flags = RPC_TASK_NO_ROUND_ROBIN,
};
const struct cred *cred = NULL;
int status;
if (use_integrity) {
task_setup.rpc_client = server->nfs_client->cl_rpcclient;
cred = nfs4_get_clid_cred(server->nfs_client);
msg.rpc_cred = cred;
}
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 0);
status = nfs4_call_sync_custom(&task_setup);
dprintk("<-- %s status=%d\n", __func__, status);
put_cred(cred);
return status;
}
static int
nfs41_proc_secinfo_no_name(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info, struct nfs4_secinfo_flavors *flavors)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
/* first try using integrity protection */
err = -NFS4ERR_WRONGSEC;
/* try to use integrity protection with machine cred */
if (_nfs4_is_integrity_protected(server->nfs_client))
err = _nfs41_proc_secinfo_no_name(server, fhandle, info,
flavors, true);
/*
* if unable to use integrity protection, or SECINFO with
* integrity protection returns NFS4ERR_WRONGSEC (which is
* disallowed by spec, but exists in deployed servers) use
* the current filesystem's rpc_client and the user cred.
*/
if (err == -NFS4ERR_WRONGSEC)
err = _nfs41_proc_secinfo_no_name(server, fhandle, info,
flavors, false);
switch (err) {
case 0:
case -NFS4ERR_WRONGSEC:
case -ENOTSUPP:
goto out;
default:
err = nfs4_handle_exception(server, err, &exception);
}
} while (exception.retry);
out:
return err;
}
static int
nfs41_find_root_sec(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
int err;
struct page *page;
rpc_authflavor_t flavor = RPC_AUTH_MAXFLAVOR;
struct nfs4_secinfo_flavors *flavors;
struct nfs4_secinfo4 *secinfo;
int i;
page = alloc_page(GFP_KERNEL);
if (!page) {
err = -ENOMEM;
goto out;
}
flavors = page_address(page);
err = nfs41_proc_secinfo_no_name(server, fhandle, info, flavors);
/*
* Fall back on "guess and check" method if
* the server doesn't support SECINFO_NO_NAME
*/
if (err == -NFS4ERR_WRONGSEC || err == -ENOTSUPP) {
err = nfs4_find_root_sec(server, fhandle, info);
goto out_freepage;
}
if (err)
goto out_freepage;
for (i = 0; i < flavors->num_flavors; i++) {
secinfo = &flavors->flavors[i];
switch (secinfo->flavor) {
case RPC_AUTH_NULL:
case RPC_AUTH_UNIX:
case RPC_AUTH_GSS:
flavor = rpcauth_get_pseudoflavor(secinfo->flavor,
&secinfo->flavor_info);
break;
default:
flavor = RPC_AUTH_MAXFLAVOR;
break;
}
if (!nfs_auth_info_match(&server->auth_info, flavor))
flavor = RPC_AUTH_MAXFLAVOR;
if (flavor != RPC_AUTH_MAXFLAVOR) {
err = nfs4_lookup_root_sec(server, fhandle,
info, flavor);
if (!err)
break;
}
}
if (flavor == RPC_AUTH_MAXFLAVOR)
err = -EPERM;
out_freepage:
put_page(page);
if (err == -EACCES)
return -EPERM;
out:
return err;
}
static int _nfs41_test_stateid(struct nfs_server *server,
nfs4_stateid *stateid,
const struct cred *cred)
{
int status;
struct nfs41_test_stateid_args args = {
.stateid = stateid,
};
struct nfs41_test_stateid_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_TEST_STATEID],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
struct rpc_clnt *rpc_client = server->client;
nfs4_state_protect(server->nfs_client, NFS_SP4_MACH_CRED_STATEID,
&rpc_client, &msg);
dprintk("NFS call test_stateid %p\n", stateid);
nfs4_init_sequence(&args.seq_args, &res.seq_res, 0, 1);
status = nfs4_call_sync_sequence(rpc_client, server, &msg,
&args.seq_args, &res.seq_res);
if (status != NFS_OK) {
dprintk("NFS reply test_stateid: failed, %d\n", status);
return status;
}
dprintk("NFS reply test_stateid: succeeded, %d\n", -res.status);
return -res.status;
}
static void nfs4_handle_delay_or_session_error(struct nfs_server *server,
int err, struct nfs4_exception *exception)
{
exception->retry = 0;
switch(err) {
case -NFS4ERR_DELAY:
case -NFS4ERR_RETRY_UNCACHED_REP:
nfs4_handle_exception(server, err, exception);
break;
case -NFS4ERR_BADSESSION:
case -NFS4ERR_BADSLOT:
case -NFS4ERR_BAD_HIGH_SLOT:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
case -NFS4ERR_DEADSESSION:
nfs4_do_handle_exception(server, err, exception);
}
}
/**
* nfs41_test_stateid - perform a TEST_STATEID operation
*
* @server: server / transport on which to perform the operation
* @stateid: state ID to test
* @cred: credential
*
* Returns NFS_OK if the server recognizes that "stateid" is valid.
* Otherwise a negative NFS4ERR value is returned if the operation
* failed or the state ID is not currently valid.
*/
static int nfs41_test_stateid(struct nfs_server *server,
nfs4_stateid *stateid,
const struct cred *cred)
{
struct nfs4_exception exception = {
.interruptible = true,
};
int err;
do {
err = _nfs41_test_stateid(server, stateid, cred);
nfs4_handle_delay_or_session_error(server, err, &exception);
} while (exception.retry);
return err;
}
struct nfs_free_stateid_data {
struct nfs_server *server;
struct nfs41_free_stateid_args args;
struct nfs41_free_stateid_res res;
};
static void nfs41_free_stateid_prepare(struct rpc_task *task, void *calldata)
{
struct nfs_free_stateid_data *data = calldata;
nfs4_setup_sequence(data->server->nfs_client,
&data->args.seq_args,
&data->res.seq_res,
task);
}
static void nfs41_free_stateid_done(struct rpc_task *task, void *calldata)
{
struct nfs_free_stateid_data *data = calldata;
nfs41_sequence_done(task, &data->res.seq_res);
switch (task->tk_status) {
case -NFS4ERR_DELAY:
if (nfs4_async_handle_error(task, data->server, NULL, NULL) == -EAGAIN)
rpc_restart_call_prepare(task);
}
}
static void nfs41_free_stateid_release(void *calldata)
{
struct nfs_free_stateid_data *data = calldata;
struct nfs_client *clp = data->server->nfs_client;
nfs_put_client(clp);
kfree(calldata);
}
static const struct rpc_call_ops nfs41_free_stateid_ops = {
.rpc_call_prepare = nfs41_free_stateid_prepare,
.rpc_call_done = nfs41_free_stateid_done,
.rpc_release = nfs41_free_stateid_release,
};
/**
* nfs41_free_stateid - perform a FREE_STATEID operation
*
* @server: server / transport on which to perform the operation
* @stateid: state ID to release
* @cred: credential
* @privileged: set to true if this call needs to be privileged
*
* Note: this function is always asynchronous.
*/
static int nfs41_free_stateid(struct nfs_server *server,
const nfs4_stateid *stateid,
const struct cred *cred,
bool privileged)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FREE_STATEID],
.rpc_cred = cred,
};
struct rpc_task_setup task_setup = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs41_free_stateid_ops,
.flags = RPC_TASK_ASYNC | RPC_TASK_MOVEABLE,
};
struct nfs_free_stateid_data *data;
struct rpc_task *task;
struct nfs_client *clp = server->nfs_client;
if (!refcount_inc_not_zero(&clp->cl_count))
return -EIO;
nfs4_state_protect(server->nfs_client, NFS_SP4_MACH_CRED_STATEID,
&task_setup.rpc_client, &msg);
dprintk("NFS call free_stateid %p\n", stateid);
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->server = server;
nfs4_stateid_copy(&data->args.stateid, stateid);
task_setup.callback_data = data;
msg.rpc_argp = &data->args;
msg.rpc_resp = &data->res;
nfs4_init_sequence(&data->args.seq_args, &data->res.seq_res, 1, privileged);
task = rpc_run_task(&task_setup);
if (IS_ERR(task))
return PTR_ERR(task);
rpc_put_task(task);
return 0;
}
static void
nfs41_free_lock_state(struct nfs_server *server, struct nfs4_lock_state *lsp)
{
const struct cred *cred = lsp->ls_state->owner->so_cred;
nfs41_free_stateid(server, &lsp->ls_stateid, cred, false);
nfs4_free_lock_state(server, lsp);
}
static bool nfs41_match_stateid(const nfs4_stateid *s1,
const nfs4_stateid *s2)
{
if (s1->type != s2->type)
return false;
if (memcmp(s1->other, s2->other, sizeof(s1->other)) != 0)
return false;
if (s1->seqid == s2->seqid)
return true;
return s1->seqid == 0 || s2->seqid == 0;
}
#endif /* CONFIG_NFS_V4_1 */
static bool nfs4_match_stateid(const nfs4_stateid *s1,
const nfs4_stateid *s2)
{
return nfs4_stateid_match(s1, s2);
}
static const struct nfs4_state_recovery_ops nfs40_reboot_recovery_ops = {
.owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT,
.state_flag_bit = NFS_STATE_RECLAIM_REBOOT,
.recover_open = nfs4_open_reclaim,
.recover_lock = nfs4_lock_reclaim,
.establish_clid = nfs4_init_clientid,
.detect_trunking = nfs40_discover_server_trunking,
};
#if defined(CONFIG_NFS_V4_1)
static const struct nfs4_state_recovery_ops nfs41_reboot_recovery_ops = {
.owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT,
.state_flag_bit = NFS_STATE_RECLAIM_REBOOT,
.recover_open = nfs4_open_reclaim,
.recover_lock = nfs4_lock_reclaim,
.establish_clid = nfs41_init_clientid,
.reclaim_complete = nfs41_proc_reclaim_complete,
.detect_trunking = nfs41_discover_server_trunking,
};
#endif /* CONFIG_NFS_V4_1 */
static const struct nfs4_state_recovery_ops nfs40_nograce_recovery_ops = {
.owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE,
.state_flag_bit = NFS_STATE_RECLAIM_NOGRACE,
.recover_open = nfs40_open_expired,
.recover_lock = nfs4_lock_expired,
.establish_clid = nfs4_init_clientid,
};
#if defined(CONFIG_NFS_V4_1)
static const struct nfs4_state_recovery_ops nfs41_nograce_recovery_ops = {
.owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE,
.state_flag_bit = NFS_STATE_RECLAIM_NOGRACE,
.recover_open = nfs41_open_expired,
.recover_lock = nfs41_lock_expired,
.establish_clid = nfs41_init_clientid,
};
#endif /* CONFIG_NFS_V4_1 */
static const struct nfs4_state_maintenance_ops nfs40_state_renewal_ops = {
.sched_state_renewal = nfs4_proc_async_renew,
.get_state_renewal_cred = nfs4_get_renew_cred,
.renew_lease = nfs4_proc_renew,
};
#if defined(CONFIG_NFS_V4_1)
static const struct nfs4_state_maintenance_ops nfs41_state_renewal_ops = {
.sched_state_renewal = nfs41_proc_async_sequence,
.get_state_renewal_cred = nfs4_get_machine_cred,
.renew_lease = nfs4_proc_sequence,
};
#endif
static const struct nfs4_mig_recovery_ops nfs40_mig_recovery_ops = {
.get_locations = _nfs40_proc_get_locations,
.fsid_present = _nfs40_proc_fsid_present,
};
#if defined(CONFIG_NFS_V4_1)
static const struct nfs4_mig_recovery_ops nfs41_mig_recovery_ops = {
.get_locations = _nfs41_proc_get_locations,
.fsid_present = _nfs41_proc_fsid_present,
};
#endif /* CONFIG_NFS_V4_1 */
static const struct nfs4_minor_version_ops nfs_v4_0_minor_ops = {
.minor_version = 0,
.init_caps = NFS_CAP_READDIRPLUS
| NFS_CAP_ATOMIC_OPEN
| NFS_CAP_POSIX_LOCK,
.init_client = nfs40_init_client,
.shutdown_client = nfs40_shutdown_client,
.match_stateid = nfs4_match_stateid,
.find_root_sec = nfs4_find_root_sec,
.free_lock_state = nfs4_release_lockowner,
.test_and_free_expired = nfs40_test_and_free_expired_stateid,
.alloc_seqid = nfs_alloc_seqid,
.call_sync_ops = &nfs40_call_sync_ops,
.reboot_recovery_ops = &nfs40_reboot_recovery_ops,
.nograce_recovery_ops = &nfs40_nograce_recovery_ops,
.state_renewal_ops = &nfs40_state_renewal_ops,
.mig_recovery_ops = &nfs40_mig_recovery_ops,
};
#if defined(CONFIG_NFS_V4_1)
static struct nfs_seqid *
nfs_alloc_no_seqid(struct nfs_seqid_counter *arg1, gfp_t arg2)
{
return NULL;
}
static const struct nfs4_minor_version_ops nfs_v4_1_minor_ops = {
.minor_version = 1,
.init_caps = NFS_CAP_READDIRPLUS
| NFS_CAP_ATOMIC_OPEN
| NFS_CAP_POSIX_LOCK
| NFS_CAP_STATEID_NFSV41
| NFS_CAP_ATOMIC_OPEN_V1
| NFS_CAP_LGOPEN
| NFS_CAP_MOVEABLE,
.init_client = nfs41_init_client,
.shutdown_client = nfs41_shutdown_client,
.match_stateid = nfs41_match_stateid,
.find_root_sec = nfs41_find_root_sec,
.free_lock_state = nfs41_free_lock_state,
.test_and_free_expired = nfs41_test_and_free_expired_stateid,
.alloc_seqid = nfs_alloc_no_seqid,
.session_trunk = nfs4_test_session_trunk,
.call_sync_ops = &nfs41_call_sync_ops,
.reboot_recovery_ops = &nfs41_reboot_recovery_ops,
.nograce_recovery_ops = &nfs41_nograce_recovery_ops,
.state_renewal_ops = &nfs41_state_renewal_ops,
.mig_recovery_ops = &nfs41_mig_recovery_ops,
};
#endif
#if defined(CONFIG_NFS_V4_2)
static const struct nfs4_minor_version_ops nfs_v4_2_minor_ops = {
.minor_version = 2,
.init_caps = NFS_CAP_READDIRPLUS
| NFS_CAP_ATOMIC_OPEN
| NFS_CAP_POSIX_LOCK
| NFS_CAP_STATEID_NFSV41
| NFS_CAP_ATOMIC_OPEN_V1
| NFS_CAP_LGOPEN
| NFS_CAP_ALLOCATE
| NFS_CAP_COPY
| NFS_CAP_OFFLOAD_CANCEL
| NFS_CAP_COPY_NOTIFY
| NFS_CAP_DEALLOCATE
| NFS_CAP_SEEK
| NFS_CAP_LAYOUTSTATS
| NFS_CAP_CLONE
| NFS_CAP_LAYOUTERROR
| NFS_CAP_READ_PLUS
| NFS_CAP_MOVEABLE,
.init_client = nfs41_init_client,
.shutdown_client = nfs41_shutdown_client,
.match_stateid = nfs41_match_stateid,
.find_root_sec = nfs41_find_root_sec,
.free_lock_state = nfs41_free_lock_state,
.call_sync_ops = &nfs41_call_sync_ops,
.test_and_free_expired = nfs41_test_and_free_expired_stateid,
.alloc_seqid = nfs_alloc_no_seqid,
.session_trunk = nfs4_test_session_trunk,
.reboot_recovery_ops = &nfs41_reboot_recovery_ops,
.nograce_recovery_ops = &nfs41_nograce_recovery_ops,
.state_renewal_ops = &nfs41_state_renewal_ops,
.mig_recovery_ops = &nfs41_mig_recovery_ops,
};
#endif
const struct nfs4_minor_version_ops *nfs_v4_minor_ops[] = {
[0] = &nfs_v4_0_minor_ops,
#if defined(CONFIG_NFS_V4_1)
[1] = &nfs_v4_1_minor_ops,
#endif
#if defined(CONFIG_NFS_V4_2)
[2] = &nfs_v4_2_minor_ops,
#endif
};
static ssize_t nfs4_listxattr(struct dentry *dentry, char *list, size_t size)
{
ssize_t error, error2, error3;
error = generic_listxattr(dentry, list, size);
if (error < 0)
return error;
if (list) {
list += error;
size -= error;
}
error2 = nfs4_listxattr_nfs4_label(d_inode(dentry), list, size);
if (error2 < 0)
return error2;
if (list) {
list += error2;
size -= error2;
}
error3 = nfs4_listxattr_nfs4_user(d_inode(dentry), list, size);
if (error3 < 0)
return error3;
return error + error2 + error3;
}
static void nfs4_enable_swap(struct inode *inode)
{
/* The state manager thread must always be running.
* It will notice the client is a swapper, and stay put.
*/
struct nfs_client *clp = NFS_SERVER(inode)->nfs_client;
nfs4_schedule_state_manager(clp);
}
static void nfs4_disable_swap(struct inode *inode)
{
/* The state manager thread will now exit once it is
* woken.
*/
wake_up_var(&NFS_SERVER(inode)->nfs_client->cl_state);
}
static const struct inode_operations nfs4_dir_inode_operations = {
.create = nfs_create,
.lookup = nfs_lookup,
.atomic_open = nfs_atomic_open,
.link = nfs_link,
.unlink = nfs_unlink,
.symlink = nfs_symlink,
.mkdir = nfs_mkdir,
.rmdir = nfs_rmdir,
.mknod = nfs_mknod,
.rename = nfs_rename,
.permission = nfs_permission,
.getattr = nfs_getattr,
.setattr = nfs_setattr,
.listxattr = nfs4_listxattr,
};
static const struct inode_operations nfs4_file_inode_operations = {
.permission = nfs_permission,
.getattr = nfs_getattr,
.setattr = nfs_setattr,
.listxattr = nfs4_listxattr,
};
const struct nfs_rpc_ops nfs_v4_clientops = {
.version = 4, /* protocol version */
.dentry_ops = &nfs4_dentry_operations,
.dir_inode_ops = &nfs4_dir_inode_operations,
.file_inode_ops = &nfs4_file_inode_operations,
.file_ops = &nfs4_file_operations,
.getroot = nfs4_proc_get_root,
.submount = nfs4_submount,
.try_get_tree = nfs4_try_get_tree,
.getattr = nfs4_proc_getattr,
.setattr = nfs4_proc_setattr,
.lookup = nfs4_proc_lookup,
.lookupp = nfs4_proc_lookupp,
.access = nfs4_proc_access,
.readlink = nfs4_proc_readlink,
.create = nfs4_proc_create,
.remove = nfs4_proc_remove,
.unlink_setup = nfs4_proc_unlink_setup,
.unlink_rpc_prepare = nfs4_proc_unlink_rpc_prepare,
.unlink_done = nfs4_proc_unlink_done,
.rename_setup = nfs4_proc_rename_setup,
.rename_rpc_prepare = nfs4_proc_rename_rpc_prepare,
.rename_done = nfs4_proc_rename_done,
.link = nfs4_proc_link,
.symlink = nfs4_proc_symlink,
.mkdir = nfs4_proc_mkdir,
.rmdir = nfs4_proc_rmdir,
.readdir = nfs4_proc_readdir,
.mknod = nfs4_proc_mknod,
.statfs = nfs4_proc_statfs,
.fsinfo = nfs4_proc_fsinfo,
.pathconf = nfs4_proc_pathconf,
.set_capabilities = nfs4_server_capabilities,
.decode_dirent = nfs4_decode_dirent,
.pgio_rpc_prepare = nfs4_proc_pgio_rpc_prepare,
.read_setup = nfs4_proc_read_setup,
.read_done = nfs4_read_done,
.write_setup = nfs4_proc_write_setup,
.write_done = nfs4_write_done,
.commit_setup = nfs4_proc_commit_setup,
.commit_rpc_prepare = nfs4_proc_commit_rpc_prepare,
.commit_done = nfs4_commit_done,
.lock = nfs4_proc_lock,
.clear_acl_cache = nfs4_zap_acl_attr,
.close_context = nfs4_close_context,
.open_context = nfs4_atomic_open,
.have_delegation = nfs4_have_delegation,
.alloc_client = nfs4_alloc_client,
.init_client = nfs4_init_client,
.free_client = nfs4_free_client,
.create_server = nfs4_create_server,
.clone_server = nfs_clone_server,
.discover_trunking = nfs4_discover_trunking,
.enable_swap = nfs4_enable_swap,
.disable_swap = nfs4_disable_swap,
};
static const struct xattr_handler nfs4_xattr_nfs4_acl_handler = {
.name = XATTR_NAME_NFSV4_ACL,
.list = nfs4_xattr_list_nfs4_acl,
.get = nfs4_xattr_get_nfs4_acl,
.set = nfs4_xattr_set_nfs4_acl,
};
#if defined(CONFIG_NFS_V4_1)
static const struct xattr_handler nfs4_xattr_nfs4_dacl_handler = {
.name = XATTR_NAME_NFSV4_DACL,
.list = nfs4_xattr_list_nfs4_dacl,
.get = nfs4_xattr_get_nfs4_dacl,
.set = nfs4_xattr_set_nfs4_dacl,
};
static const struct xattr_handler nfs4_xattr_nfs4_sacl_handler = {
.name = XATTR_NAME_NFSV4_SACL,
.list = nfs4_xattr_list_nfs4_sacl,
.get = nfs4_xattr_get_nfs4_sacl,
.set = nfs4_xattr_set_nfs4_sacl,
};
#endif
#ifdef CONFIG_NFS_V4_2
static const struct xattr_handler nfs4_xattr_nfs4_user_handler = {
.prefix = XATTR_USER_PREFIX,
.get = nfs4_xattr_get_nfs4_user,
.set = nfs4_xattr_set_nfs4_user,
};
#endif
const struct xattr_handler *nfs4_xattr_handlers[] = {
&nfs4_xattr_nfs4_acl_handler,
#if defined(CONFIG_NFS_V4_1)
&nfs4_xattr_nfs4_dacl_handler,
&nfs4_xattr_nfs4_sacl_handler,
#endif
#ifdef CONFIG_NFS_V4_SECURITY_LABEL
&nfs4_xattr_nfs4_label_handler,
#endif
#ifdef CONFIG_NFS_V4_2
&nfs4_xattr_nfs4_user_handler,
#endif
NULL
};