mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-16 13:34:30 +00:00
964877dc26
AMD driver uses amd_iommu_domain_flush_complete() function to make sure IOMMU processed invalidation commands before proceeding. Ideally this should be called from functions which updates DTE/invalidates caches. There is no need to call this function explicitly. This patches makes below changes : - Rename amd_iommu_domain_flush_complete() -> domain_flush_complete() and make it as static function. - Rearrage domain_flush_complete() to avoid forward declaration. - Update amd_iommu_update_and_flush_device_table() to call domain_flush_complete(). Signed-off-by: Vasant Hegde <vasant.hegde@amd.com> Reviewed-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Link: https://lore.kernel.org/r/20240828111029.5429-7-vasant.hegde@amd.com Signed-off-by: Joerg Roedel <jroedel@suse.de>
3868 lines
94 KiB
C
3868 lines
94 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
|
|
* Author: Joerg Roedel <jroedel@suse.de>
|
|
* Leo Duran <leo.duran@amd.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "AMD-Vi: " fmt
|
|
#define dev_fmt(fmt) pr_fmt(fmt)
|
|
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/pci-ats.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/dma-map-ops.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/iommu-helper.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/amd-iommu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/export.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/io-pgtable.h>
|
|
#include <linux/cc_platform.h>
|
|
#include <asm/irq_remapping.h>
|
|
#include <asm/io_apic.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/gart.h>
|
|
#include <asm/dma.h>
|
|
#include <uapi/linux/iommufd.h>
|
|
|
|
#include "amd_iommu.h"
|
|
#include "../dma-iommu.h"
|
|
#include "../irq_remapping.h"
|
|
#include "../iommu-pages.h"
|
|
|
|
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
|
|
|
|
/* Reserved IOVA ranges */
|
|
#define MSI_RANGE_START (0xfee00000)
|
|
#define MSI_RANGE_END (0xfeefffff)
|
|
#define HT_RANGE_START (0xfd00000000ULL)
|
|
#define HT_RANGE_END (0xffffffffffULL)
|
|
|
|
#define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL
|
|
|
|
static DEFINE_SPINLOCK(pd_bitmap_lock);
|
|
|
|
LIST_HEAD(ioapic_map);
|
|
LIST_HEAD(hpet_map);
|
|
LIST_HEAD(acpihid_map);
|
|
|
|
const struct iommu_ops amd_iommu_ops;
|
|
static const struct iommu_dirty_ops amd_dirty_ops;
|
|
|
|
int amd_iommu_max_glx_val = -1;
|
|
|
|
/*
|
|
* general struct to manage commands send to an IOMMU
|
|
*/
|
|
struct iommu_cmd {
|
|
u32 data[4];
|
|
};
|
|
|
|
struct kmem_cache *amd_iommu_irq_cache;
|
|
|
|
static void detach_device(struct device *dev);
|
|
|
|
static void set_dte_entry(struct amd_iommu *iommu,
|
|
struct iommu_dev_data *dev_data);
|
|
|
|
/****************************************************************************
|
|
*
|
|
* Helper functions
|
|
*
|
|
****************************************************************************/
|
|
|
|
static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
|
|
{
|
|
return (pdom && (pdom->pd_mode == PD_MODE_V2));
|
|
}
|
|
|
|
static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom)
|
|
{
|
|
return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY);
|
|
}
|
|
|
|
/*
|
|
* We cannot support PASID w/ existing v1 page table in the same domain
|
|
* since it will be nested. However, existing domain w/ v2 page table
|
|
* or passthrough mode can be used for PASID.
|
|
*/
|
|
static inline bool pdom_is_sva_capable(struct protection_domain *pdom)
|
|
{
|
|
return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom);
|
|
}
|
|
|
|
static inline int get_acpihid_device_id(struct device *dev,
|
|
struct acpihid_map_entry **entry)
|
|
{
|
|
struct acpi_device *adev = ACPI_COMPANION(dev);
|
|
struct acpihid_map_entry *p;
|
|
|
|
if (!adev)
|
|
return -ENODEV;
|
|
|
|
list_for_each_entry(p, &acpihid_map, list) {
|
|
if (acpi_dev_hid_uid_match(adev, p->hid,
|
|
p->uid[0] ? p->uid : NULL)) {
|
|
if (entry)
|
|
*entry = p;
|
|
return p->devid;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static inline int get_device_sbdf_id(struct device *dev)
|
|
{
|
|
int sbdf;
|
|
|
|
if (dev_is_pci(dev))
|
|
sbdf = get_pci_sbdf_id(to_pci_dev(dev));
|
|
else
|
|
sbdf = get_acpihid_device_id(dev, NULL);
|
|
|
|
return sbdf;
|
|
}
|
|
|
|
struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
|
|
{
|
|
struct dev_table_entry *dev_table;
|
|
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
|
|
|
|
BUG_ON(pci_seg == NULL);
|
|
dev_table = pci_seg->dev_table;
|
|
BUG_ON(dev_table == NULL);
|
|
|
|
return dev_table;
|
|
}
|
|
|
|
static inline u16 get_device_segment(struct device *dev)
|
|
{
|
|
u16 seg;
|
|
|
|
if (dev_is_pci(dev)) {
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
|
|
seg = pci_domain_nr(pdev->bus);
|
|
} else {
|
|
u32 devid = get_acpihid_device_id(dev, NULL);
|
|
|
|
seg = PCI_SBDF_TO_SEGID(devid);
|
|
}
|
|
|
|
return seg;
|
|
}
|
|
|
|
/* Writes the specific IOMMU for a device into the PCI segment rlookup table */
|
|
void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
|
|
|
|
pci_seg->rlookup_table[devid] = iommu;
|
|
}
|
|
|
|
static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
|
|
{
|
|
struct amd_iommu_pci_seg *pci_seg;
|
|
|
|
for_each_pci_segment(pci_seg) {
|
|
if (pci_seg->id == seg)
|
|
return pci_seg->rlookup_table[devid];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
|
|
{
|
|
u16 seg = get_device_segment(dev);
|
|
int devid = get_device_sbdf_id(dev);
|
|
|
|
if (devid < 0)
|
|
return NULL;
|
|
return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
|
|
}
|
|
|
|
static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
|
|
|
|
dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
|
|
if (!dev_data)
|
|
return NULL;
|
|
|
|
spin_lock_init(&dev_data->lock);
|
|
dev_data->devid = devid;
|
|
ratelimit_default_init(&dev_data->rs);
|
|
|
|
llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
|
|
return dev_data;
|
|
}
|
|
|
|
static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
struct llist_node *node;
|
|
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
|
|
|
|
if (llist_empty(&pci_seg->dev_data_list))
|
|
return NULL;
|
|
|
|
node = pci_seg->dev_data_list.first;
|
|
llist_for_each_entry(dev_data, node, dev_data_list) {
|
|
if (dev_data->devid == devid)
|
|
return dev_data;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
struct dev_table_entry *dev_table;
|
|
u16 devid = pci_dev_id(pdev);
|
|
|
|
if (devid == alias)
|
|
return 0;
|
|
|
|
iommu = rlookup_amd_iommu(&pdev->dev);
|
|
if (!iommu)
|
|
return 0;
|
|
|
|
amd_iommu_set_rlookup_table(iommu, alias);
|
|
dev_table = get_dev_table(iommu);
|
|
memcpy(dev_table[alias].data,
|
|
dev_table[devid].data,
|
|
sizeof(dev_table[alias].data));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
if (!dev_is_pci(dev))
|
|
return;
|
|
pdev = to_pci_dev(dev);
|
|
|
|
/*
|
|
* The IVRS alias stored in the alias table may not be
|
|
* part of the PCI DMA aliases if it's bus differs
|
|
* from the original device.
|
|
*/
|
|
clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
|
|
|
|
pci_for_each_dma_alias(pdev, clone_alias, NULL);
|
|
}
|
|
|
|
static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
|
|
u16 ivrs_alias;
|
|
|
|
/* For ACPI HID devices, there are no aliases */
|
|
if (!dev_is_pci(dev))
|
|
return;
|
|
|
|
/*
|
|
* Add the IVRS alias to the pci aliases if it is on the same
|
|
* bus. The IVRS table may know about a quirk that we don't.
|
|
*/
|
|
ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
|
|
if (ivrs_alias != pci_dev_id(pdev) &&
|
|
PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
|
|
pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
|
|
|
|
clone_aliases(iommu, dev);
|
|
}
|
|
|
|
static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
dev_data = search_dev_data(iommu, devid);
|
|
|
|
if (dev_data == NULL) {
|
|
dev_data = alloc_dev_data(iommu, devid);
|
|
if (!dev_data)
|
|
return NULL;
|
|
|
|
if (translation_pre_enabled(iommu))
|
|
dev_data->defer_attach = true;
|
|
}
|
|
|
|
return dev_data;
|
|
}
|
|
|
|
/*
|
|
* Find or create an IOMMU group for a acpihid device.
|
|
*/
|
|
static struct iommu_group *acpihid_device_group(struct device *dev)
|
|
{
|
|
struct acpihid_map_entry *p, *entry = NULL;
|
|
int devid;
|
|
|
|
devid = get_acpihid_device_id(dev, &entry);
|
|
if (devid < 0)
|
|
return ERR_PTR(devid);
|
|
|
|
list_for_each_entry(p, &acpihid_map, list) {
|
|
if ((devid == p->devid) && p->group)
|
|
entry->group = p->group;
|
|
}
|
|
|
|
if (!entry->group)
|
|
entry->group = generic_device_group(dev);
|
|
else
|
|
iommu_group_ref_get(entry->group);
|
|
|
|
return entry->group;
|
|
}
|
|
|
|
static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
|
|
{
|
|
return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
|
|
}
|
|
|
|
static u32 pdev_get_caps(struct pci_dev *pdev)
|
|
{
|
|
int features;
|
|
u32 flags = 0;
|
|
|
|
if (pci_ats_supported(pdev))
|
|
flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
|
|
|
|
if (pci_pri_supported(pdev))
|
|
flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
|
|
|
|
features = pci_pasid_features(pdev);
|
|
if (features >= 0) {
|
|
flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
|
|
|
|
if (features & PCI_PASID_CAP_EXEC)
|
|
flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
|
|
|
|
if (features & PCI_PASID_CAP_PRIV)
|
|
flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
|
|
}
|
|
|
|
return flags;
|
|
}
|
|
|
|
static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
|
|
{
|
|
struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
|
|
int ret = -EINVAL;
|
|
|
|
if (dev_data->ats_enabled)
|
|
return 0;
|
|
|
|
if (amd_iommu_iotlb_sup &&
|
|
(dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
|
|
ret = pci_enable_ats(pdev, PAGE_SHIFT);
|
|
if (!ret) {
|
|
dev_data->ats_enabled = 1;
|
|
dev_data->ats_qdep = pci_ats_queue_depth(pdev);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
|
|
{
|
|
struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
|
|
|
|
if (dev_data->ats_enabled) {
|
|
pci_disable_ats(pdev);
|
|
dev_data->ats_enabled = 0;
|
|
}
|
|
}
|
|
|
|
static inline int pdev_enable_cap_pri(struct pci_dev *pdev)
|
|
{
|
|
struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
|
|
int ret = -EINVAL;
|
|
|
|
if (dev_data->pri_enabled)
|
|
return 0;
|
|
|
|
if (!dev_data->ats_enabled)
|
|
return 0;
|
|
|
|
if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
|
|
/*
|
|
* First reset the PRI state of the device.
|
|
* FIXME: Hardcode number of outstanding requests for now
|
|
*/
|
|
if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
|
|
dev_data->pri_enabled = 1;
|
|
dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
|
|
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void pdev_disable_cap_pri(struct pci_dev *pdev)
|
|
{
|
|
struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
|
|
|
|
if (dev_data->pri_enabled) {
|
|
pci_disable_pri(pdev);
|
|
dev_data->pri_enabled = 0;
|
|
}
|
|
}
|
|
|
|
static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
|
|
{
|
|
struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
|
|
int ret = -EINVAL;
|
|
|
|
if (dev_data->pasid_enabled)
|
|
return 0;
|
|
|
|
if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
|
|
/* Only allow access to user-accessible pages */
|
|
ret = pci_enable_pasid(pdev, 0);
|
|
if (!ret)
|
|
dev_data->pasid_enabled = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
|
|
{
|
|
struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
|
|
|
|
if (dev_data->pasid_enabled) {
|
|
pci_disable_pasid(pdev);
|
|
dev_data->pasid_enabled = 0;
|
|
}
|
|
}
|
|
|
|
static void pdev_enable_caps(struct pci_dev *pdev)
|
|
{
|
|
pdev_enable_cap_ats(pdev);
|
|
pdev_enable_cap_pasid(pdev);
|
|
pdev_enable_cap_pri(pdev);
|
|
}
|
|
|
|
static void pdev_disable_caps(struct pci_dev *pdev)
|
|
{
|
|
pdev_disable_cap_ats(pdev);
|
|
pdev_disable_cap_pasid(pdev);
|
|
pdev_disable_cap_pri(pdev);
|
|
}
|
|
|
|
/*
|
|
* This function checks if the driver got a valid device from the caller to
|
|
* avoid dereferencing invalid pointers.
|
|
*/
|
|
static bool check_device(struct device *dev)
|
|
{
|
|
struct amd_iommu_pci_seg *pci_seg;
|
|
struct amd_iommu *iommu;
|
|
int devid, sbdf;
|
|
|
|
if (!dev)
|
|
return false;
|
|
|
|
sbdf = get_device_sbdf_id(dev);
|
|
if (sbdf < 0)
|
|
return false;
|
|
devid = PCI_SBDF_TO_DEVID(sbdf);
|
|
|
|
iommu = rlookup_amd_iommu(dev);
|
|
if (!iommu)
|
|
return false;
|
|
|
|
/* Out of our scope? */
|
|
pci_seg = iommu->pci_seg;
|
|
if (devid > pci_seg->last_bdf)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
int devid, sbdf;
|
|
|
|
if (dev_iommu_priv_get(dev))
|
|
return 0;
|
|
|
|
sbdf = get_device_sbdf_id(dev);
|
|
if (sbdf < 0)
|
|
return sbdf;
|
|
|
|
devid = PCI_SBDF_TO_DEVID(sbdf);
|
|
dev_data = find_dev_data(iommu, devid);
|
|
if (!dev_data)
|
|
return -ENOMEM;
|
|
|
|
dev_data->dev = dev;
|
|
setup_aliases(iommu, dev);
|
|
|
|
/*
|
|
* By default we use passthrough mode for IOMMUv2 capable device.
|
|
* But if amd_iommu=force_isolation is set (e.g. to debug DMA to
|
|
* invalid address), we ignore the capability for the device so
|
|
* it'll be forced to go into translation mode.
|
|
*/
|
|
if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
|
|
dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
|
|
dev_data->flags = pdev_get_caps(to_pci_dev(dev));
|
|
}
|
|
|
|
dev_iommu_priv_set(dev, dev_data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
|
|
{
|
|
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
|
|
struct dev_table_entry *dev_table = get_dev_table(iommu);
|
|
int devid, sbdf;
|
|
|
|
sbdf = get_device_sbdf_id(dev);
|
|
if (sbdf < 0)
|
|
return;
|
|
|
|
devid = PCI_SBDF_TO_DEVID(sbdf);
|
|
pci_seg->rlookup_table[devid] = NULL;
|
|
memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
|
|
|
|
setup_aliases(iommu, dev);
|
|
}
|
|
|
|
static void amd_iommu_uninit_device(struct device *dev)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
dev_data = dev_iommu_priv_get(dev);
|
|
if (!dev_data)
|
|
return;
|
|
|
|
if (dev_data->domain)
|
|
detach_device(dev);
|
|
|
|
/*
|
|
* We keep dev_data around for unplugged devices and reuse it when the
|
|
* device is re-plugged - not doing so would introduce a ton of races.
|
|
*/
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* Interrupt handling functions
|
|
*
|
|
****************************************************************************/
|
|
|
|
static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
int i;
|
|
struct dev_table_entry *dev_table = get_dev_table(iommu);
|
|
|
|
for (i = 0; i < 4; ++i)
|
|
pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
|
|
}
|
|
|
|
static void dump_command(unsigned long phys_addr)
|
|
{
|
|
struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
|
|
int i;
|
|
|
|
for (i = 0; i < 4; ++i)
|
|
pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
|
|
}
|
|
|
|
static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
|
|
{
|
|
struct iommu_dev_data *dev_data = NULL;
|
|
int devid, vmg_tag, flags;
|
|
struct pci_dev *pdev;
|
|
u64 spa;
|
|
|
|
devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
|
|
vmg_tag = (event[1]) & 0xFFFF;
|
|
flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
|
|
spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
|
|
|
|
pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
|
|
devid & 0xff);
|
|
if (pdev)
|
|
dev_data = dev_iommu_priv_get(&pdev->dev);
|
|
|
|
if (dev_data) {
|
|
if (__ratelimit(&dev_data->rs)) {
|
|
pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
|
|
vmg_tag, spa, flags);
|
|
}
|
|
} else {
|
|
pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
|
|
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
vmg_tag, spa, flags);
|
|
}
|
|
|
|
if (pdev)
|
|
pci_dev_put(pdev);
|
|
}
|
|
|
|
static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
|
|
{
|
|
struct iommu_dev_data *dev_data = NULL;
|
|
int devid, flags_rmp, vmg_tag, flags;
|
|
struct pci_dev *pdev;
|
|
u64 gpa;
|
|
|
|
devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
|
|
flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
|
|
vmg_tag = (event[1]) & 0xFFFF;
|
|
flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
|
|
gpa = ((u64)event[3] << 32) | event[2];
|
|
|
|
pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
|
|
devid & 0xff);
|
|
if (pdev)
|
|
dev_data = dev_iommu_priv_get(&pdev->dev);
|
|
|
|
if (dev_data) {
|
|
if (__ratelimit(&dev_data->rs)) {
|
|
pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
|
|
vmg_tag, gpa, flags_rmp, flags);
|
|
}
|
|
} else {
|
|
pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
|
|
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
vmg_tag, gpa, flags_rmp, flags);
|
|
}
|
|
|
|
if (pdev)
|
|
pci_dev_put(pdev);
|
|
}
|
|
|
|
#define IS_IOMMU_MEM_TRANSACTION(flags) \
|
|
(((flags) & EVENT_FLAG_I) == 0)
|
|
|
|
#define IS_WRITE_REQUEST(flags) \
|
|
((flags) & EVENT_FLAG_RW)
|
|
|
|
static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
|
|
u16 devid, u16 domain_id,
|
|
u64 address, int flags)
|
|
{
|
|
struct iommu_dev_data *dev_data = NULL;
|
|
struct pci_dev *pdev;
|
|
|
|
pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
|
|
devid & 0xff);
|
|
if (pdev)
|
|
dev_data = dev_iommu_priv_get(&pdev->dev);
|
|
|
|
if (dev_data) {
|
|
/*
|
|
* If this is a DMA fault (for which the I(nterrupt)
|
|
* bit will be unset), allow report_iommu_fault() to
|
|
* prevent logging it.
|
|
*/
|
|
if (IS_IOMMU_MEM_TRANSACTION(flags)) {
|
|
/* Device not attached to domain properly */
|
|
if (dev_data->domain == NULL) {
|
|
pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
|
|
pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n",
|
|
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
|
|
PCI_FUNC(devid), domain_id);
|
|
goto out;
|
|
}
|
|
|
|
if (!report_iommu_fault(&dev_data->domain->domain,
|
|
&pdev->dev, address,
|
|
IS_WRITE_REQUEST(flags) ?
|
|
IOMMU_FAULT_WRITE :
|
|
IOMMU_FAULT_READ))
|
|
goto out;
|
|
}
|
|
|
|
if (__ratelimit(&dev_data->rs)) {
|
|
pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
|
|
domain_id, address, flags);
|
|
}
|
|
} else {
|
|
pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
|
|
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
domain_id, address, flags);
|
|
}
|
|
|
|
out:
|
|
if (pdev)
|
|
pci_dev_put(pdev);
|
|
}
|
|
|
|
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
|
|
{
|
|
struct device *dev = iommu->iommu.dev;
|
|
int type, devid, flags, tag;
|
|
volatile u32 *event = __evt;
|
|
int count = 0;
|
|
u64 address;
|
|
u32 pasid;
|
|
|
|
retry:
|
|
type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
|
|
devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
|
|
pasid = (event[0] & EVENT_DOMID_MASK_HI) |
|
|
(event[1] & EVENT_DOMID_MASK_LO);
|
|
flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
|
|
address = (u64)(((u64)event[3]) << 32) | event[2];
|
|
|
|
if (type == 0) {
|
|
/* Did we hit the erratum? */
|
|
if (++count == LOOP_TIMEOUT) {
|
|
pr_err("No event written to event log\n");
|
|
return;
|
|
}
|
|
udelay(1);
|
|
goto retry;
|
|
}
|
|
|
|
if (type == EVENT_TYPE_IO_FAULT) {
|
|
amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
|
|
return;
|
|
}
|
|
|
|
switch (type) {
|
|
case EVENT_TYPE_ILL_DEV:
|
|
dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
|
|
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
pasid, address, flags);
|
|
dump_dte_entry(iommu, devid);
|
|
break;
|
|
case EVENT_TYPE_DEV_TAB_ERR:
|
|
dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
|
|
"address=0x%llx flags=0x%04x]\n",
|
|
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
address, flags);
|
|
break;
|
|
case EVENT_TYPE_PAGE_TAB_ERR:
|
|
dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
|
|
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
pasid, address, flags);
|
|
break;
|
|
case EVENT_TYPE_ILL_CMD:
|
|
dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
|
|
dump_command(address);
|
|
break;
|
|
case EVENT_TYPE_CMD_HARD_ERR:
|
|
dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
|
|
address, flags);
|
|
break;
|
|
case EVENT_TYPE_IOTLB_INV_TO:
|
|
dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
|
|
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
address);
|
|
break;
|
|
case EVENT_TYPE_INV_DEV_REQ:
|
|
dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
|
|
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
pasid, address, flags);
|
|
break;
|
|
case EVENT_TYPE_RMP_FAULT:
|
|
amd_iommu_report_rmp_fault(iommu, event);
|
|
break;
|
|
case EVENT_TYPE_RMP_HW_ERR:
|
|
amd_iommu_report_rmp_hw_error(iommu, event);
|
|
break;
|
|
case EVENT_TYPE_INV_PPR_REQ:
|
|
pasid = PPR_PASID(*((u64 *)__evt));
|
|
tag = event[1] & 0x03FF;
|
|
dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
|
|
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
pasid, address, flags, tag);
|
|
break;
|
|
default:
|
|
dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
|
|
event[0], event[1], event[2], event[3]);
|
|
}
|
|
|
|
/*
|
|
* To detect the hardware errata 732 we need to clear the
|
|
* entry back to zero. This issue does not exist on SNP
|
|
* enabled system. Also this buffer is not writeable on
|
|
* SNP enabled system.
|
|
*/
|
|
if (!amd_iommu_snp_en)
|
|
memset(__evt, 0, 4 * sizeof(u32));
|
|
}
|
|
|
|
static void iommu_poll_events(struct amd_iommu *iommu)
|
|
{
|
|
u32 head, tail;
|
|
|
|
head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
|
|
tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
|
|
|
|
while (head != tail) {
|
|
iommu_print_event(iommu, iommu->evt_buf + head);
|
|
|
|
/* Update head pointer of hardware ring-buffer */
|
|
head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
|
|
writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef CONFIG_IRQ_REMAP
|
|
static int (*iommu_ga_log_notifier)(u32);
|
|
|
|
int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
|
|
{
|
|
iommu_ga_log_notifier = notifier;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
|
|
|
|
static void iommu_poll_ga_log(struct amd_iommu *iommu)
|
|
{
|
|
u32 head, tail;
|
|
|
|
if (iommu->ga_log == NULL)
|
|
return;
|
|
|
|
head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
|
|
tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
|
|
|
|
while (head != tail) {
|
|
volatile u64 *raw;
|
|
u64 log_entry;
|
|
|
|
raw = (u64 *)(iommu->ga_log + head);
|
|
|
|
/* Avoid memcpy function-call overhead */
|
|
log_entry = *raw;
|
|
|
|
/* Update head pointer of hardware ring-buffer */
|
|
head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
|
|
writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
|
|
|
|
/* Handle GA entry */
|
|
switch (GA_REQ_TYPE(log_entry)) {
|
|
case GA_GUEST_NR:
|
|
if (!iommu_ga_log_notifier)
|
|
break;
|
|
|
|
pr_debug("%s: devid=%#x, ga_tag=%#x\n",
|
|
__func__, GA_DEVID(log_entry),
|
|
GA_TAG(log_entry));
|
|
|
|
if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
|
|
pr_err("GA log notifier failed.\n");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
|
|
{
|
|
if (!irq_remapping_enabled || !dev_is_pci(dev) ||
|
|
!pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
|
|
return;
|
|
|
|
dev_set_msi_domain(dev, iommu->ir_domain);
|
|
}
|
|
|
|
#else /* CONFIG_IRQ_REMAP */
|
|
static inline void
|
|
amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
|
|
#endif /* !CONFIG_IRQ_REMAP */
|
|
|
|
static void amd_iommu_handle_irq(void *data, const char *evt_type,
|
|
u32 int_mask, u32 overflow_mask,
|
|
void (*int_handler)(struct amd_iommu *),
|
|
void (*overflow_handler)(struct amd_iommu *))
|
|
{
|
|
struct amd_iommu *iommu = (struct amd_iommu *) data;
|
|
u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
|
|
u32 mask = int_mask | overflow_mask;
|
|
|
|
while (status & mask) {
|
|
/* Enable interrupt sources again */
|
|
writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
|
|
|
|
if (int_handler) {
|
|
pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
|
|
iommu->index, evt_type);
|
|
int_handler(iommu);
|
|
}
|
|
|
|
if ((status & overflow_mask) && overflow_handler)
|
|
overflow_handler(iommu);
|
|
|
|
/*
|
|
* Hardware bug: ERBT1312
|
|
* When re-enabling interrupt (by writing 1
|
|
* to clear the bit), the hardware might also try to set
|
|
* the interrupt bit in the event status register.
|
|
* In this scenario, the bit will be set, and disable
|
|
* subsequent interrupts.
|
|
*
|
|
* Workaround: The IOMMU driver should read back the
|
|
* status register and check if the interrupt bits are cleared.
|
|
* If not, driver will need to go through the interrupt handler
|
|
* again and re-clear the bits
|
|
*/
|
|
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
|
|
}
|
|
}
|
|
|
|
irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
|
|
{
|
|
amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
|
|
MMIO_STATUS_EVT_OVERFLOW_MASK,
|
|
iommu_poll_events, amd_iommu_restart_event_logging);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
|
|
{
|
|
amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
|
|
MMIO_STATUS_PPR_OVERFLOW_MASK,
|
|
amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
|
|
{
|
|
#ifdef CONFIG_IRQ_REMAP
|
|
amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
|
|
MMIO_STATUS_GALOG_OVERFLOW_MASK,
|
|
iommu_poll_ga_log, amd_iommu_restart_ga_log);
|
|
#endif
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
irqreturn_t amd_iommu_int_thread(int irq, void *data)
|
|
{
|
|
amd_iommu_int_thread_evtlog(irq, data);
|
|
amd_iommu_int_thread_pprlog(irq, data);
|
|
amd_iommu_int_thread_galog(irq, data);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
irqreturn_t amd_iommu_int_handler(int irq, void *data)
|
|
{
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* IOMMU command queuing functions
|
|
*
|
|
****************************************************************************/
|
|
|
|
static int wait_on_sem(struct amd_iommu *iommu, u64 data)
|
|
{
|
|
int i = 0;
|
|
|
|
while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
|
|
udelay(1);
|
|
i += 1;
|
|
}
|
|
|
|
if (i == LOOP_TIMEOUT) {
|
|
pr_alert("Completion-Wait loop timed out\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void copy_cmd_to_buffer(struct amd_iommu *iommu,
|
|
struct iommu_cmd *cmd)
|
|
{
|
|
u8 *target;
|
|
u32 tail;
|
|
|
|
/* Copy command to buffer */
|
|
tail = iommu->cmd_buf_tail;
|
|
target = iommu->cmd_buf + tail;
|
|
memcpy(target, cmd, sizeof(*cmd));
|
|
|
|
tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
|
|
iommu->cmd_buf_tail = tail;
|
|
|
|
/* Tell the IOMMU about it */
|
|
writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
|
|
}
|
|
|
|
static void build_completion_wait(struct iommu_cmd *cmd,
|
|
struct amd_iommu *iommu,
|
|
u64 data)
|
|
{
|
|
u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
|
|
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
|
|
cmd->data[1] = upper_32_bits(paddr);
|
|
cmd->data[2] = lower_32_bits(data);
|
|
cmd->data[3] = upper_32_bits(data);
|
|
CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
|
|
}
|
|
|
|
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->data[0] = devid;
|
|
CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
|
|
}
|
|
|
|
/*
|
|
* Builds an invalidation address which is suitable for one page or multiple
|
|
* pages. Sets the size bit (S) as needed is more than one page is flushed.
|
|
*/
|
|
static inline u64 build_inv_address(u64 address, size_t size)
|
|
{
|
|
u64 pages, end, msb_diff;
|
|
|
|
pages = iommu_num_pages(address, size, PAGE_SIZE);
|
|
|
|
if (pages == 1)
|
|
return address & PAGE_MASK;
|
|
|
|
end = address + size - 1;
|
|
|
|
/*
|
|
* msb_diff would hold the index of the most significant bit that
|
|
* flipped between the start and end.
|
|
*/
|
|
msb_diff = fls64(end ^ address) - 1;
|
|
|
|
/*
|
|
* Bits 63:52 are sign extended. If for some reason bit 51 is different
|
|
* between the start and the end, invalidate everything.
|
|
*/
|
|
if (unlikely(msb_diff > 51)) {
|
|
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
|
|
} else {
|
|
/*
|
|
* The msb-bit must be clear on the address. Just set all the
|
|
* lower bits.
|
|
*/
|
|
address |= (1ull << msb_diff) - 1;
|
|
}
|
|
|
|
/* Clear bits 11:0 */
|
|
address &= PAGE_MASK;
|
|
|
|
/* Set the size bit - we flush more than one 4kb page */
|
|
return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
|
|
}
|
|
|
|
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
|
|
size_t size, u16 domid,
|
|
ioasid_t pasid, bool gn)
|
|
{
|
|
u64 inv_address = build_inv_address(address, size);
|
|
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
|
|
cmd->data[1] |= domid;
|
|
cmd->data[2] = lower_32_bits(inv_address);
|
|
cmd->data[3] = upper_32_bits(inv_address);
|
|
/* PDE bit - we want to flush everything, not only the PTEs */
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
|
|
if (gn) {
|
|
cmd->data[0] |= pasid;
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
|
|
}
|
|
CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
|
|
}
|
|
|
|
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
|
|
u64 address, size_t size,
|
|
ioasid_t pasid, bool gn)
|
|
{
|
|
u64 inv_address = build_inv_address(address, size);
|
|
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
|
|
cmd->data[0] = devid;
|
|
cmd->data[0] |= (qdep & 0xff) << 24;
|
|
cmd->data[1] = devid;
|
|
cmd->data[2] = lower_32_bits(inv_address);
|
|
cmd->data[3] = upper_32_bits(inv_address);
|
|
if (gn) {
|
|
cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
|
|
cmd->data[1] |= (pasid & 0xff) << 16;
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
|
|
}
|
|
|
|
CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
|
|
}
|
|
|
|
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
|
|
int status, int tag, u8 gn)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
|
|
cmd->data[0] = devid;
|
|
if (gn) {
|
|
cmd->data[1] = pasid;
|
|
cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
|
|
}
|
|
cmd->data[3] = tag & 0x1ff;
|
|
cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
|
|
|
|
CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
|
|
}
|
|
|
|
static void build_inv_all(struct iommu_cmd *cmd)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
CMD_SET_TYPE(cmd, CMD_INV_ALL);
|
|
}
|
|
|
|
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->data[0] = devid;
|
|
CMD_SET_TYPE(cmd, CMD_INV_IRT);
|
|
}
|
|
|
|
/*
|
|
* Writes the command to the IOMMUs command buffer and informs the
|
|
* hardware about the new command.
|
|
*/
|
|
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
|
|
struct iommu_cmd *cmd,
|
|
bool sync)
|
|
{
|
|
unsigned int count = 0;
|
|
u32 left, next_tail;
|
|
|
|
next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
|
|
again:
|
|
left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
|
|
|
|
if (left <= 0x20) {
|
|
/* Skip udelay() the first time around */
|
|
if (count++) {
|
|
if (count == LOOP_TIMEOUT) {
|
|
pr_err("Command buffer timeout\n");
|
|
return -EIO;
|
|
}
|
|
|
|
udelay(1);
|
|
}
|
|
|
|
/* Update head and recheck remaining space */
|
|
iommu->cmd_buf_head = readl(iommu->mmio_base +
|
|
MMIO_CMD_HEAD_OFFSET);
|
|
|
|
goto again;
|
|
}
|
|
|
|
copy_cmd_to_buffer(iommu, cmd);
|
|
|
|
/* Do we need to make sure all commands are processed? */
|
|
iommu->need_sync = sync;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iommu_queue_command_sync(struct amd_iommu *iommu,
|
|
struct iommu_cmd *cmd,
|
|
bool sync)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
raw_spin_lock_irqsave(&iommu->lock, flags);
|
|
ret = __iommu_queue_command_sync(iommu, cmd, sync);
|
|
raw_spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
|
|
{
|
|
return iommu_queue_command_sync(iommu, cmd, true);
|
|
}
|
|
|
|
/*
|
|
* This function queues a completion wait command into the command
|
|
* buffer of an IOMMU
|
|
*/
|
|
static int iommu_completion_wait(struct amd_iommu *iommu)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
unsigned long flags;
|
|
int ret;
|
|
u64 data;
|
|
|
|
if (!iommu->need_sync)
|
|
return 0;
|
|
|
|
data = atomic64_add_return(1, &iommu->cmd_sem_val);
|
|
build_completion_wait(&cmd, iommu, data);
|
|
|
|
raw_spin_lock_irqsave(&iommu->lock, flags);
|
|
|
|
ret = __iommu_queue_command_sync(iommu, &cmd, false);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = wait_on_sem(iommu, data);
|
|
|
|
out_unlock:
|
|
raw_spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void domain_flush_complete(struct protection_domain *domain)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
|
|
if (domain && !domain->dev_iommu[i])
|
|
continue;
|
|
|
|
/*
|
|
* Devices of this domain are behind this IOMMU
|
|
* We need to wait for completion of all commands.
|
|
*/
|
|
iommu_completion_wait(amd_iommus[i]);
|
|
}
|
|
}
|
|
|
|
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
|
|
build_inv_dte(&cmd, devid);
|
|
|
|
return iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
|
|
{
|
|
u32 devid;
|
|
u16 last_bdf = iommu->pci_seg->last_bdf;
|
|
|
|
for (devid = 0; devid <= last_bdf; ++devid)
|
|
iommu_flush_dte(iommu, devid);
|
|
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
/*
|
|
* This function uses heavy locking and may disable irqs for some time. But
|
|
* this is no issue because it is only called during resume.
|
|
*/
|
|
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
|
|
{
|
|
u32 dom_id;
|
|
u16 last_bdf = iommu->pci_seg->last_bdf;
|
|
|
|
for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
|
|
struct iommu_cmd cmd;
|
|
build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
|
|
dom_id, IOMMU_NO_PASID, false);
|
|
iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
|
|
build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
|
|
dom_id, IOMMU_NO_PASID, false);
|
|
iommu_queue_command(iommu, &cmd);
|
|
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
static void amd_iommu_flush_all(struct amd_iommu *iommu)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
|
|
build_inv_all(&cmd);
|
|
|
|
iommu_queue_command(iommu, &cmd);
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
|
|
build_inv_irt(&cmd, devid);
|
|
|
|
iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
|
|
{
|
|
u32 devid;
|
|
u16 last_bdf = iommu->pci_seg->last_bdf;
|
|
|
|
if (iommu->irtcachedis_enabled)
|
|
return;
|
|
|
|
for (devid = 0; devid <= last_bdf; devid++)
|
|
iommu_flush_irt(iommu, devid);
|
|
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
|
|
{
|
|
if (check_feature(FEATURE_IA)) {
|
|
amd_iommu_flush_all(iommu);
|
|
} else {
|
|
amd_iommu_flush_dte_all(iommu);
|
|
amd_iommu_flush_irt_all(iommu);
|
|
amd_iommu_flush_tlb_all(iommu);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Command send function for flushing on-device TLB
|
|
*/
|
|
static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
|
|
size_t size, ioasid_t pasid, bool gn)
|
|
{
|
|
struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
|
|
struct iommu_cmd cmd;
|
|
int qdep = dev_data->ats_qdep;
|
|
|
|
build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
|
|
size, pasid, gn);
|
|
|
|
return iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
|
|
{
|
|
struct amd_iommu *iommu = data;
|
|
|
|
return iommu_flush_dte(iommu, alias);
|
|
}
|
|
|
|
/*
|
|
* Command send function for invalidating a device table entry
|
|
*/
|
|
static int device_flush_dte(struct iommu_dev_data *dev_data)
|
|
{
|
|
struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
|
|
struct pci_dev *pdev = NULL;
|
|
struct amd_iommu_pci_seg *pci_seg;
|
|
u16 alias;
|
|
int ret;
|
|
|
|
if (dev_is_pci(dev_data->dev))
|
|
pdev = to_pci_dev(dev_data->dev);
|
|
|
|
if (pdev)
|
|
ret = pci_for_each_dma_alias(pdev,
|
|
device_flush_dte_alias, iommu);
|
|
else
|
|
ret = iommu_flush_dte(iommu, dev_data->devid);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pci_seg = iommu->pci_seg;
|
|
alias = pci_seg->alias_table[dev_data->devid];
|
|
if (alias != dev_data->devid) {
|
|
ret = iommu_flush_dte(iommu, alias);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (dev_data->ats_enabled) {
|
|
/* Invalidate the entire contents of an IOTLB */
|
|
ret = device_flush_iotlb(dev_data, 0, ~0UL,
|
|
IOMMU_NO_PASID, false);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int domain_flush_pages_v2(struct protection_domain *pdom,
|
|
u64 address, size_t size)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
struct iommu_cmd cmd;
|
|
int ret = 0;
|
|
|
|
list_for_each_entry(dev_data, &pdom->dev_list, list) {
|
|
struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
|
|
u16 domid = dev_data->gcr3_info.domid;
|
|
|
|
build_inv_iommu_pages(&cmd, address, size,
|
|
domid, IOMMU_NO_PASID, true);
|
|
|
|
ret |= iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int domain_flush_pages_v1(struct protection_domain *pdom,
|
|
u64 address, size_t size)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
int ret = 0, i;
|
|
|
|
build_inv_iommu_pages(&cmd, address, size,
|
|
pdom->id, IOMMU_NO_PASID, false);
|
|
|
|
for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
|
|
if (!pdom->dev_iommu[i])
|
|
continue;
|
|
|
|
/*
|
|
* Devices of this domain are behind this IOMMU
|
|
* We need a TLB flush
|
|
*/
|
|
ret |= iommu_queue_command(amd_iommus[i], &cmd);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* TLB invalidation function which is called from the mapping functions.
|
|
* It flushes range of PTEs of the domain.
|
|
*/
|
|
static void __domain_flush_pages(struct protection_domain *domain,
|
|
u64 address, size_t size)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
int ret = 0;
|
|
ioasid_t pasid = IOMMU_NO_PASID;
|
|
bool gn = false;
|
|
|
|
if (pdom_is_v2_pgtbl_mode(domain)) {
|
|
gn = true;
|
|
ret = domain_flush_pages_v2(domain, address, size);
|
|
} else {
|
|
ret = domain_flush_pages_v1(domain, address, size);
|
|
}
|
|
|
|
list_for_each_entry(dev_data, &domain->dev_list, list) {
|
|
|
|
if (!dev_data->ats_enabled)
|
|
continue;
|
|
|
|
ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
|
|
}
|
|
|
|
WARN_ON(ret);
|
|
}
|
|
|
|
void amd_iommu_domain_flush_pages(struct protection_domain *domain,
|
|
u64 address, size_t size)
|
|
{
|
|
if (likely(!amd_iommu_np_cache)) {
|
|
__domain_flush_pages(domain, address, size);
|
|
|
|
/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
|
|
domain_flush_complete(domain);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* When NpCache is on, we infer that we run in a VM and use a vIOMMU.
|
|
* In such setups it is best to avoid flushes of ranges which are not
|
|
* naturally aligned, since it would lead to flushes of unmodified
|
|
* PTEs. Such flushes would require the hypervisor to do more work than
|
|
* necessary. Therefore, perform repeated flushes of aligned ranges
|
|
* until you cover the range. Each iteration flushes the smaller
|
|
* between the natural alignment of the address that we flush and the
|
|
* greatest naturally aligned region that fits in the range.
|
|
*/
|
|
while (size != 0) {
|
|
int addr_alignment = __ffs(address);
|
|
int size_alignment = __fls(size);
|
|
int min_alignment;
|
|
size_t flush_size;
|
|
|
|
/*
|
|
* size is always non-zero, but address might be zero, causing
|
|
* addr_alignment to be negative. As the casting of the
|
|
* argument in __ffs(address) to long might trim the high bits
|
|
* of the address on x86-32, cast to long when doing the check.
|
|
*/
|
|
if (likely((unsigned long)address != 0))
|
|
min_alignment = min(addr_alignment, size_alignment);
|
|
else
|
|
min_alignment = size_alignment;
|
|
|
|
flush_size = 1ul << min_alignment;
|
|
|
|
__domain_flush_pages(domain, address, flush_size);
|
|
address += flush_size;
|
|
size -= flush_size;
|
|
}
|
|
|
|
/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
|
|
domain_flush_complete(domain);
|
|
}
|
|
|
|
/* Flush the whole IO/TLB for a given protection domain - including PDE */
|
|
static void amd_iommu_domain_flush_all(struct protection_domain *domain)
|
|
{
|
|
amd_iommu_domain_flush_pages(domain, 0,
|
|
CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
|
|
}
|
|
|
|
void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
|
|
ioasid_t pasid, u64 address, size_t size)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
|
|
|
|
build_inv_iommu_pages(&cmd, address, size,
|
|
dev_data->gcr3_info.domid, pasid, true);
|
|
iommu_queue_command(iommu, &cmd);
|
|
|
|
if (dev_data->ats_enabled)
|
|
device_flush_iotlb(dev_data, address, size, pasid, true);
|
|
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
static void dev_flush_pasid_all(struct iommu_dev_data *dev_data,
|
|
ioasid_t pasid)
|
|
{
|
|
amd_iommu_dev_flush_pasid_pages(dev_data, 0,
|
|
CMD_INV_IOMMU_ALL_PAGES_ADDRESS, pasid);
|
|
}
|
|
|
|
/* Flush the not present cache if it exists */
|
|
static void domain_flush_np_cache(struct protection_domain *domain,
|
|
dma_addr_t iova, size_t size)
|
|
{
|
|
if (unlikely(amd_iommu_np_cache)) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
amd_iommu_domain_flush_pages(domain, iova, size);
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* This function flushes the DTEs for all devices in domain
|
|
*/
|
|
static void domain_flush_devices(struct protection_domain *domain)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
list_for_each_entry(dev_data, &domain->dev_list, list)
|
|
device_flush_dte(dev_data);
|
|
}
|
|
|
|
static void update_device_table(struct protection_domain *domain)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
list_for_each_entry(dev_data, &domain->dev_list, list) {
|
|
struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
|
|
|
|
set_dte_entry(iommu, dev_data);
|
|
clone_aliases(iommu, dev_data->dev);
|
|
}
|
|
}
|
|
|
|
void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
|
|
{
|
|
update_device_table(domain);
|
|
domain_flush_devices(domain);
|
|
domain_flush_complete(domain);
|
|
}
|
|
|
|
void amd_iommu_domain_update(struct protection_domain *domain)
|
|
{
|
|
/* Update device table */
|
|
amd_iommu_update_and_flush_device_table(domain);
|
|
|
|
/* Flush domain TLB(s) and wait for completion */
|
|
amd_iommu_domain_flush_all(domain);
|
|
}
|
|
|
|
int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
struct amd_iommu *iommu;
|
|
struct iommu_cmd cmd;
|
|
|
|
dev_data = dev_iommu_priv_get(dev);
|
|
iommu = get_amd_iommu_from_dev(dev);
|
|
|
|
build_complete_ppr(&cmd, dev_data->devid, pasid, status,
|
|
tag, dev_data->pri_tlp);
|
|
|
|
return iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The next functions belong to the domain allocation. A domain is
|
|
* allocated for every IOMMU as the default domain. If device isolation
|
|
* is enabled, every device get its own domain. The most important thing
|
|
* about domains is the page table mapping the DMA address space they
|
|
* contain.
|
|
*
|
|
****************************************************************************/
|
|
|
|
static u16 domain_id_alloc(void)
|
|
{
|
|
unsigned long flags;
|
|
int id;
|
|
|
|
spin_lock_irqsave(&pd_bitmap_lock, flags);
|
|
id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
|
|
BUG_ON(id == 0);
|
|
if (id > 0 && id < MAX_DOMAIN_ID)
|
|
__set_bit(id, amd_iommu_pd_alloc_bitmap);
|
|
else
|
|
id = 0;
|
|
spin_unlock_irqrestore(&pd_bitmap_lock, flags);
|
|
|
|
return id;
|
|
}
|
|
|
|
static void domain_id_free(int id)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pd_bitmap_lock, flags);
|
|
if (id > 0 && id < MAX_DOMAIN_ID)
|
|
__clear_bit(id, amd_iommu_pd_alloc_bitmap);
|
|
spin_unlock_irqrestore(&pd_bitmap_lock, flags);
|
|
}
|
|
|
|
static void free_gcr3_tbl_level1(u64 *tbl)
|
|
{
|
|
u64 *ptr;
|
|
int i;
|
|
|
|
for (i = 0; i < 512; ++i) {
|
|
if (!(tbl[i] & GCR3_VALID))
|
|
continue;
|
|
|
|
ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
|
|
|
|
iommu_free_page(ptr);
|
|
}
|
|
}
|
|
|
|
static void free_gcr3_tbl_level2(u64 *tbl)
|
|
{
|
|
u64 *ptr;
|
|
int i;
|
|
|
|
for (i = 0; i < 512; ++i) {
|
|
if (!(tbl[i] & GCR3_VALID))
|
|
continue;
|
|
|
|
ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
|
|
|
|
free_gcr3_tbl_level1(ptr);
|
|
}
|
|
}
|
|
|
|
static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
|
|
{
|
|
if (gcr3_info->glx == 2)
|
|
free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
|
|
else if (gcr3_info->glx == 1)
|
|
free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
|
|
else
|
|
WARN_ON_ONCE(gcr3_info->glx != 0);
|
|
|
|
gcr3_info->glx = 0;
|
|
|
|
/* Free per device domain ID */
|
|
domain_id_free(gcr3_info->domid);
|
|
|
|
iommu_free_page(gcr3_info->gcr3_tbl);
|
|
gcr3_info->gcr3_tbl = NULL;
|
|
}
|
|
|
|
/*
|
|
* Number of GCR3 table levels required. Level must be 4-Kbyte
|
|
* page and can contain up to 512 entries.
|
|
*/
|
|
static int get_gcr3_levels(int pasids)
|
|
{
|
|
int levels;
|
|
|
|
if (pasids == -1)
|
|
return amd_iommu_max_glx_val;
|
|
|
|
levels = get_count_order(pasids);
|
|
|
|
return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
|
|
}
|
|
|
|
static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
|
|
struct amd_iommu *iommu, int pasids)
|
|
{
|
|
int levels = get_gcr3_levels(pasids);
|
|
int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
|
|
|
|
if (levels > amd_iommu_max_glx_val)
|
|
return -EINVAL;
|
|
|
|
if (gcr3_info->gcr3_tbl)
|
|
return -EBUSY;
|
|
|
|
/* Allocate per device domain ID */
|
|
gcr3_info->domid = domain_id_alloc();
|
|
|
|
gcr3_info->gcr3_tbl = iommu_alloc_page_node(nid, GFP_ATOMIC);
|
|
if (gcr3_info->gcr3_tbl == NULL) {
|
|
domain_id_free(gcr3_info->domid);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
gcr3_info->glx = levels;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
|
|
ioasid_t pasid, bool alloc)
|
|
{
|
|
int index;
|
|
u64 *pte;
|
|
u64 *root = gcr3_info->gcr3_tbl;
|
|
int level = gcr3_info->glx;
|
|
|
|
while (true) {
|
|
|
|
index = (pasid >> (9 * level)) & 0x1ff;
|
|
pte = &root[index];
|
|
|
|
if (level == 0)
|
|
break;
|
|
|
|
if (!(*pte & GCR3_VALID)) {
|
|
if (!alloc)
|
|
return NULL;
|
|
|
|
root = (void *)get_zeroed_page(GFP_ATOMIC);
|
|
if (root == NULL)
|
|
return NULL;
|
|
|
|
*pte = iommu_virt_to_phys(root) | GCR3_VALID;
|
|
}
|
|
|
|
root = iommu_phys_to_virt(*pte & PAGE_MASK);
|
|
|
|
level -= 1;
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static int update_gcr3(struct iommu_dev_data *dev_data,
|
|
ioasid_t pasid, unsigned long gcr3, bool set)
|
|
{
|
|
struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
|
|
u64 *pte;
|
|
|
|
pte = __get_gcr3_pte(gcr3_info, pasid, true);
|
|
if (pte == NULL)
|
|
return -ENOMEM;
|
|
|
|
if (set)
|
|
*pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
|
|
else
|
|
*pte = 0;
|
|
|
|
dev_flush_pasid_all(dev_data, pasid);
|
|
return 0;
|
|
}
|
|
|
|
int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
|
|
unsigned long gcr3)
|
|
{
|
|
struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
|
|
int ret;
|
|
|
|
iommu_group_mutex_assert(dev_data->dev);
|
|
|
|
ret = update_gcr3(dev_data, pasid, gcr3, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
gcr3_info->pasid_cnt++;
|
|
return ret;
|
|
}
|
|
|
|
int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
|
|
{
|
|
struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
|
|
int ret;
|
|
|
|
iommu_group_mutex_assert(dev_data->dev);
|
|
|
|
ret = update_gcr3(dev_data, pasid, 0, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
gcr3_info->pasid_cnt--;
|
|
return ret;
|
|
}
|
|
|
|
static void set_dte_entry(struct amd_iommu *iommu,
|
|
struct iommu_dev_data *dev_data)
|
|
{
|
|
u64 pte_root = 0;
|
|
u64 flags = 0;
|
|
u32 old_domid;
|
|
u16 devid = dev_data->devid;
|
|
u16 domid;
|
|
struct protection_domain *domain = dev_data->domain;
|
|
struct dev_table_entry *dev_table = get_dev_table(iommu);
|
|
struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
|
|
|
|
if (gcr3_info && gcr3_info->gcr3_tbl)
|
|
domid = dev_data->gcr3_info.domid;
|
|
else
|
|
domid = domain->id;
|
|
|
|
if (domain->iop.mode != PAGE_MODE_NONE)
|
|
pte_root = iommu_virt_to_phys(domain->iop.root);
|
|
|
|
pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
|
|
<< DEV_ENTRY_MODE_SHIFT;
|
|
|
|
pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
|
|
|
|
/*
|
|
* When SNP is enabled, Only set TV bit when IOMMU
|
|
* page translation is in use.
|
|
*/
|
|
if (!amd_iommu_snp_en || (domid != 0))
|
|
pte_root |= DTE_FLAG_TV;
|
|
|
|
flags = dev_table[devid].data[1];
|
|
|
|
if (dev_data->ats_enabled)
|
|
flags |= DTE_FLAG_IOTLB;
|
|
|
|
if (dev_data->ppr)
|
|
pte_root |= 1ULL << DEV_ENTRY_PPR;
|
|
|
|
if (domain->dirty_tracking)
|
|
pte_root |= DTE_FLAG_HAD;
|
|
|
|
if (gcr3_info && gcr3_info->gcr3_tbl) {
|
|
u64 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
|
|
u64 glx = gcr3_info->glx;
|
|
u64 tmp;
|
|
|
|
pte_root |= DTE_FLAG_GV;
|
|
pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
|
|
|
|
/* First mask out possible old values for GCR3 table */
|
|
tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
|
|
flags &= ~tmp;
|
|
|
|
tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
|
|
flags &= ~tmp;
|
|
|
|
/* Encode GCR3 table into DTE */
|
|
tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
|
|
pte_root |= tmp;
|
|
|
|
tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
|
|
flags |= tmp;
|
|
|
|
tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
|
|
flags |= tmp;
|
|
|
|
if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
|
|
dev_table[devid].data[2] |=
|
|
((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT);
|
|
}
|
|
|
|
/* GIOV is supported with V2 page table mode only */
|
|
if (pdom_is_v2_pgtbl_mode(domain))
|
|
pte_root |= DTE_FLAG_GIOV;
|
|
}
|
|
|
|
flags &= ~DEV_DOMID_MASK;
|
|
flags |= domid;
|
|
|
|
old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
|
|
dev_table[devid].data[1] = flags;
|
|
dev_table[devid].data[0] = pte_root;
|
|
|
|
/*
|
|
* A kdump kernel might be replacing a domain ID that was copied from
|
|
* the previous kernel--if so, it needs to flush the translation cache
|
|
* entries for the old domain ID that is being overwritten
|
|
*/
|
|
if (old_domid) {
|
|
amd_iommu_flush_tlb_domid(iommu, old_domid);
|
|
}
|
|
}
|
|
|
|
static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
struct dev_table_entry *dev_table = get_dev_table(iommu);
|
|
|
|
/* remove entry from the device table seen by the hardware */
|
|
dev_table[devid].data[0] = DTE_FLAG_V;
|
|
|
|
if (!amd_iommu_snp_en)
|
|
dev_table[devid].data[0] |= DTE_FLAG_TV;
|
|
|
|
dev_table[devid].data[1] &= DTE_FLAG_MASK;
|
|
|
|
amd_iommu_apply_erratum_63(iommu, devid);
|
|
}
|
|
|
|
/* Update and flush DTE for the given device */
|
|
void amd_iommu_dev_update_dte(struct iommu_dev_data *dev_data, bool set)
|
|
{
|
|
struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
|
|
|
|
if (set)
|
|
set_dte_entry(iommu, dev_data);
|
|
else
|
|
clear_dte_entry(iommu, dev_data->devid);
|
|
|
|
clone_aliases(iommu, dev_data->dev);
|
|
device_flush_dte(dev_data);
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
/*
|
|
* If domain is SVA capable then initialize GCR3 table. Also if domain is
|
|
* in v2 page table mode then update GCR3[0].
|
|
*/
|
|
static int init_gcr3_table(struct iommu_dev_data *dev_data,
|
|
struct protection_domain *pdom)
|
|
{
|
|
struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
|
|
int max_pasids = dev_data->max_pasids;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* If domain is in pt mode then setup GCR3 table only if device
|
|
* is PASID capable
|
|
*/
|
|
if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data))
|
|
return ret;
|
|
|
|
/*
|
|
* By default, setup GCR3 table to support MAX PASIDs
|
|
* supported by the device/IOMMU.
|
|
*/
|
|
ret = setup_gcr3_table(&dev_data->gcr3_info, iommu,
|
|
max_pasids > 0 ? max_pasids : 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Setup GCR3[0] only if domain is setup with v2 page table mode */
|
|
if (!pdom_is_v2_pgtbl_mode(pdom))
|
|
return ret;
|
|
|
|
ret = update_gcr3(dev_data, 0, iommu_virt_to_phys(pdom->iop.pgd), true);
|
|
if (ret)
|
|
free_gcr3_table(&dev_data->gcr3_info);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void destroy_gcr3_table(struct iommu_dev_data *dev_data,
|
|
struct protection_domain *pdom)
|
|
{
|
|
struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
|
|
|
|
if (pdom_is_v2_pgtbl_mode(pdom))
|
|
update_gcr3(dev_data, 0, 0, false);
|
|
|
|
if (gcr3_info->gcr3_tbl == NULL)
|
|
return;
|
|
|
|
free_gcr3_table(gcr3_info);
|
|
}
|
|
|
|
static int do_attach(struct iommu_dev_data *dev_data,
|
|
struct protection_domain *domain)
|
|
{
|
|
struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
|
|
int ret = 0;
|
|
|
|
/* Update data structures */
|
|
dev_data->domain = domain;
|
|
list_add(&dev_data->list, &domain->dev_list);
|
|
|
|
/* Update NUMA Node ID */
|
|
if (domain->nid == NUMA_NO_NODE)
|
|
domain->nid = dev_to_node(dev_data->dev);
|
|
|
|
/* Do reference counting */
|
|
domain->dev_iommu[iommu->index] += 1;
|
|
domain->dev_cnt += 1;
|
|
|
|
/* Setup GCR3 table */
|
|
if (pdom_is_sva_capable(domain)) {
|
|
ret = init_gcr3_table(dev_data, domain);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void do_detach(struct iommu_dev_data *dev_data)
|
|
{
|
|
struct protection_domain *domain = dev_data->domain;
|
|
struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
|
|
|
|
/* Clear DTE and flush the entry */
|
|
amd_iommu_dev_update_dte(dev_data, false);
|
|
|
|
/* Flush IOTLB and wait for the flushes to finish */
|
|
amd_iommu_domain_flush_all(domain);
|
|
|
|
/* Clear GCR3 table */
|
|
if (pdom_is_sva_capable(domain))
|
|
destroy_gcr3_table(dev_data, domain);
|
|
|
|
/* Update data structures */
|
|
dev_data->domain = NULL;
|
|
list_del(&dev_data->list);
|
|
|
|
/* decrease reference counters - needs to happen after the flushes */
|
|
domain->dev_iommu[iommu->index] -= 1;
|
|
domain->dev_cnt -= 1;
|
|
}
|
|
|
|
/*
|
|
* If a device is not yet associated with a domain, this function makes the
|
|
* device visible in the domain
|
|
*/
|
|
static int attach_device(struct device *dev,
|
|
struct protection_domain *domain)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
dev_data = dev_iommu_priv_get(dev);
|
|
|
|
spin_lock(&dev_data->lock);
|
|
|
|
if (dev_data->domain != NULL) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
ret = do_attach(dev_data, domain);
|
|
|
|
out:
|
|
spin_unlock(&dev_data->lock);
|
|
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Removes a device from a protection domain (with devtable_lock held)
|
|
*/
|
|
static void detach_device(struct device *dev)
|
|
{
|
|
struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
|
|
struct protection_domain *domain = dev_data->domain;
|
|
struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
|
|
unsigned long flags;
|
|
bool ppr = dev_data->ppr;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
spin_lock(&dev_data->lock);
|
|
|
|
/*
|
|
* First check if the device is still attached. It might already
|
|
* be detached from its domain because the generic
|
|
* iommu_detach_group code detached it and we try again here in
|
|
* our alias handling.
|
|
*/
|
|
if (WARN_ON(!dev_data->domain))
|
|
goto out;
|
|
|
|
if (ppr) {
|
|
iopf_queue_flush_dev(dev);
|
|
|
|
/* Updated here so that it gets reflected in DTE */
|
|
dev_data->ppr = false;
|
|
}
|
|
|
|
do_detach(dev_data);
|
|
|
|
out:
|
|
spin_unlock(&dev_data->lock);
|
|
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
/* Remove IOPF handler */
|
|
if (ppr)
|
|
amd_iommu_iopf_remove_device(iommu, dev_data);
|
|
|
|
if (dev_is_pci(dev))
|
|
pdev_disable_caps(to_pci_dev(dev));
|
|
|
|
}
|
|
|
|
static struct iommu_device *amd_iommu_probe_device(struct device *dev)
|
|
{
|
|
struct iommu_device *iommu_dev;
|
|
struct amd_iommu *iommu;
|
|
struct iommu_dev_data *dev_data;
|
|
int ret;
|
|
|
|
if (!check_device(dev))
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
iommu = rlookup_amd_iommu(dev);
|
|
if (!iommu)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
/* Not registered yet? */
|
|
if (!iommu->iommu.ops)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
if (dev_iommu_priv_get(dev))
|
|
return &iommu->iommu;
|
|
|
|
ret = iommu_init_device(iommu, dev);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
|
|
iommu_dev = ERR_PTR(ret);
|
|
iommu_ignore_device(iommu, dev);
|
|
goto out_err;
|
|
}
|
|
|
|
amd_iommu_set_pci_msi_domain(dev, iommu);
|
|
iommu_dev = &iommu->iommu;
|
|
|
|
/*
|
|
* If IOMMU and device supports PASID then it will contain max
|
|
* supported PASIDs, else it will be zero.
|
|
*/
|
|
dev_data = dev_iommu_priv_get(dev);
|
|
if (amd_iommu_pasid_supported() && dev_is_pci(dev) &&
|
|
pdev_pasid_supported(dev_data)) {
|
|
dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids,
|
|
pci_max_pasids(to_pci_dev(dev)));
|
|
}
|
|
|
|
out_err:
|
|
iommu_completion_wait(iommu);
|
|
|
|
return iommu_dev;
|
|
}
|
|
|
|
static void amd_iommu_release_device(struct device *dev)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
|
|
if (!check_device(dev))
|
|
return;
|
|
|
|
iommu = rlookup_amd_iommu(dev);
|
|
if (!iommu)
|
|
return;
|
|
|
|
amd_iommu_uninit_device(dev);
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
static struct iommu_group *amd_iommu_device_group(struct device *dev)
|
|
{
|
|
if (dev_is_pci(dev))
|
|
return pci_device_group(dev);
|
|
|
|
return acpihid_device_group(dev);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* The following functions belong to the exported interface of AMD IOMMU
|
|
*
|
|
* This interface allows access to lower level functions of the IOMMU
|
|
* like protection domain handling and assignement of devices to domains
|
|
* which is not possible with the dma_ops interface.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
static void cleanup_domain(struct protection_domain *domain)
|
|
{
|
|
struct iommu_dev_data *entry;
|
|
|
|
lockdep_assert_held(&domain->lock);
|
|
|
|
if (!domain->dev_cnt)
|
|
return;
|
|
|
|
while (!list_empty(&domain->dev_list)) {
|
|
entry = list_first_entry(&domain->dev_list,
|
|
struct iommu_dev_data, list);
|
|
BUG_ON(!entry->domain);
|
|
do_detach(entry);
|
|
}
|
|
WARN_ON(domain->dev_cnt != 0);
|
|
}
|
|
|
|
void protection_domain_free(struct protection_domain *domain)
|
|
{
|
|
if (!domain)
|
|
return;
|
|
|
|
if (domain->iop.pgtbl_cfg.tlb)
|
|
free_io_pgtable_ops(&domain->iop.iop.ops);
|
|
|
|
if (domain->iop.root)
|
|
iommu_free_page(domain->iop.root);
|
|
|
|
if (domain->id)
|
|
domain_id_free(domain->id);
|
|
|
|
kfree(domain);
|
|
}
|
|
|
|
static int protection_domain_init_v1(struct protection_domain *domain, int mode)
|
|
{
|
|
u64 *pt_root = NULL;
|
|
|
|
BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
|
|
|
|
if (mode != PAGE_MODE_NONE) {
|
|
pt_root = iommu_alloc_page(GFP_KERNEL);
|
|
if (!pt_root)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
domain->pd_mode = PD_MODE_V1;
|
|
amd_iommu_domain_set_pgtable(domain, pt_root, mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int protection_domain_init_v2(struct protection_domain *pdom)
|
|
{
|
|
pdom->pd_mode = PD_MODE_V2;
|
|
pdom->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct protection_domain *protection_domain_alloc(unsigned int type)
|
|
{
|
|
struct io_pgtable_ops *pgtbl_ops;
|
|
struct protection_domain *domain;
|
|
int pgtable;
|
|
int ret;
|
|
|
|
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
|
|
if (!domain)
|
|
return NULL;
|
|
|
|
domain->id = domain_id_alloc();
|
|
if (!domain->id)
|
|
goto out_err;
|
|
|
|
spin_lock_init(&domain->lock);
|
|
INIT_LIST_HEAD(&domain->dev_list);
|
|
INIT_LIST_HEAD(&domain->dev_data_list);
|
|
domain->nid = NUMA_NO_NODE;
|
|
|
|
switch (type) {
|
|
/* No need to allocate io pgtable ops in passthrough mode */
|
|
case IOMMU_DOMAIN_IDENTITY:
|
|
case IOMMU_DOMAIN_SVA:
|
|
return domain;
|
|
case IOMMU_DOMAIN_DMA:
|
|
pgtable = amd_iommu_pgtable;
|
|
break;
|
|
/*
|
|
* Force IOMMU v1 page table when allocating
|
|
* domain for pass-through devices.
|
|
*/
|
|
case IOMMU_DOMAIN_UNMANAGED:
|
|
pgtable = AMD_IOMMU_V1;
|
|
break;
|
|
default:
|
|
goto out_err;
|
|
}
|
|
|
|
switch (pgtable) {
|
|
case AMD_IOMMU_V1:
|
|
ret = protection_domain_init_v1(domain, DEFAULT_PGTABLE_LEVEL);
|
|
break;
|
|
case AMD_IOMMU_V2:
|
|
ret = protection_domain_init_v2(domain);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
|
|
if (!pgtbl_ops)
|
|
goto out_err;
|
|
|
|
return domain;
|
|
out_err:
|
|
protection_domain_free(domain);
|
|
return NULL;
|
|
}
|
|
|
|
static inline u64 dma_max_address(void)
|
|
{
|
|
if (amd_iommu_pgtable == AMD_IOMMU_V1)
|
|
return ~0ULL;
|
|
|
|
/* V2 with 4/5 level page table */
|
|
return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
|
|
}
|
|
|
|
static bool amd_iommu_hd_support(struct amd_iommu *iommu)
|
|
{
|
|
return iommu && (iommu->features & FEATURE_HDSUP);
|
|
}
|
|
|
|
static struct iommu_domain *do_iommu_domain_alloc(unsigned int type,
|
|
struct device *dev, u32 flags)
|
|
{
|
|
bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
|
|
struct protection_domain *domain;
|
|
struct amd_iommu *iommu = NULL;
|
|
|
|
if (dev)
|
|
iommu = get_amd_iommu_from_dev(dev);
|
|
|
|
/*
|
|
* Since DTE[Mode]=0 is prohibited on SNP-enabled system,
|
|
* default to use IOMMU_DOMAIN_DMA[_FQ].
|
|
*/
|
|
if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (dirty_tracking && !amd_iommu_hd_support(iommu))
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
|
|
domain = protection_domain_alloc(type);
|
|
if (!domain)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
domain->domain.geometry.aperture_start = 0;
|
|
domain->domain.geometry.aperture_end = dma_max_address();
|
|
domain->domain.geometry.force_aperture = true;
|
|
|
|
if (iommu) {
|
|
domain->domain.type = type;
|
|
domain->domain.pgsize_bitmap = iommu->iommu.ops->pgsize_bitmap;
|
|
domain->domain.ops = iommu->iommu.ops->default_domain_ops;
|
|
|
|
if (dirty_tracking)
|
|
domain->domain.dirty_ops = &amd_dirty_ops;
|
|
}
|
|
|
|
return &domain->domain;
|
|
}
|
|
|
|
static struct iommu_domain *amd_iommu_domain_alloc(unsigned int type)
|
|
{
|
|
struct iommu_domain *domain;
|
|
|
|
domain = do_iommu_domain_alloc(type, NULL, 0);
|
|
if (IS_ERR(domain))
|
|
return NULL;
|
|
|
|
return domain;
|
|
}
|
|
|
|
static struct iommu_domain *
|
|
amd_iommu_domain_alloc_user(struct device *dev, u32 flags,
|
|
struct iommu_domain *parent,
|
|
const struct iommu_user_data *user_data)
|
|
|
|
{
|
|
unsigned int type = IOMMU_DOMAIN_UNMANAGED;
|
|
|
|
if ((flags & ~IOMMU_HWPT_ALLOC_DIRTY_TRACKING) || parent || user_data)
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
|
|
return do_iommu_domain_alloc(type, dev, flags);
|
|
}
|
|
|
|
void amd_iommu_domain_free(struct iommu_domain *dom)
|
|
{
|
|
struct protection_domain *domain;
|
|
unsigned long flags;
|
|
|
|
if (!dom)
|
|
return;
|
|
|
|
domain = to_pdomain(dom);
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
cleanup_domain(domain);
|
|
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
protection_domain_free(domain);
|
|
}
|
|
|
|
static int blocked_domain_attach_device(struct iommu_domain *domain,
|
|
struct device *dev)
|
|
{
|
|
struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
|
|
|
|
if (dev_data->domain)
|
|
detach_device(dev);
|
|
|
|
/* Clear DTE and flush the entry */
|
|
spin_lock(&dev_data->lock);
|
|
amd_iommu_dev_update_dte(dev_data, false);
|
|
spin_unlock(&dev_data->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct iommu_domain blocked_domain = {
|
|
.type = IOMMU_DOMAIN_BLOCKED,
|
|
.ops = &(const struct iommu_domain_ops) {
|
|
.attach_dev = blocked_domain_attach_device,
|
|
}
|
|
};
|
|
|
|
static int amd_iommu_attach_device(struct iommu_domain *dom,
|
|
struct device *dev)
|
|
{
|
|
struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
|
|
struct pci_dev *pdev;
|
|
int ret;
|
|
|
|
/*
|
|
* Skip attach device to domain if new domain is same as
|
|
* devices current domain
|
|
*/
|
|
if (dev_data->domain == domain)
|
|
return 0;
|
|
|
|
dev_data->defer_attach = false;
|
|
|
|
/*
|
|
* Restrict to devices with compatible IOMMU hardware support
|
|
* when enforcement of dirty tracking is enabled.
|
|
*/
|
|
if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
|
|
return -EINVAL;
|
|
|
|
if (dev_data->domain)
|
|
detach_device(dev);
|
|
|
|
ret = attach_device(dev, domain);
|
|
|
|
#ifdef CONFIG_IRQ_REMAP
|
|
if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
|
|
if (dom->type == IOMMU_DOMAIN_UNMANAGED)
|
|
dev_data->use_vapic = 1;
|
|
else
|
|
dev_data->use_vapic = 0;
|
|
}
|
|
#endif
|
|
|
|
pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL;
|
|
if (pdev && pdom_is_sva_capable(domain)) {
|
|
pdev_enable_caps(pdev);
|
|
|
|
/*
|
|
* Device can continue to function even if IOPF
|
|
* enablement failed. Hence in error path just
|
|
* disable device PRI support.
|
|
*/
|
|
if (amd_iommu_iopf_add_device(iommu, dev_data))
|
|
pdev_disable_cap_pri(pdev);
|
|
} else if (pdev) {
|
|
pdev_enable_cap_ats(pdev);
|
|
}
|
|
|
|
/* Update device table */
|
|
amd_iommu_dev_update_dte(dev_data, true);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
|
|
unsigned long iova, size_t size)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
struct io_pgtable_ops *ops = &domain->iop.iop.ops;
|
|
|
|
if (ops->map_pages)
|
|
domain_flush_np_cache(domain, iova, size);
|
|
return 0;
|
|
}
|
|
|
|
static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
|
|
phys_addr_t paddr, size_t pgsize, size_t pgcount,
|
|
int iommu_prot, gfp_t gfp, size_t *mapped)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
struct io_pgtable_ops *ops = &domain->iop.iop.ops;
|
|
int prot = 0;
|
|
int ret = -EINVAL;
|
|
|
|
if ((domain->pd_mode == PD_MODE_V1) &&
|
|
(domain->iop.mode == PAGE_MODE_NONE))
|
|
return -EINVAL;
|
|
|
|
if (iommu_prot & IOMMU_READ)
|
|
prot |= IOMMU_PROT_IR;
|
|
if (iommu_prot & IOMMU_WRITE)
|
|
prot |= IOMMU_PROT_IW;
|
|
|
|
if (ops->map_pages) {
|
|
ret = ops->map_pages(ops, iova, paddr, pgsize,
|
|
pgcount, prot, gfp, mapped);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
|
|
struct iommu_iotlb_gather *gather,
|
|
unsigned long iova, size_t size)
|
|
{
|
|
/*
|
|
* AMD's IOMMU can flush as many pages as necessary in a single flush.
|
|
* Unless we run in a virtual machine, which can be inferred according
|
|
* to whether "non-present cache" is on, it is probably best to prefer
|
|
* (potentially) too extensive TLB flushing (i.e., more misses) over
|
|
* mutliple TLB flushes (i.e., more flushes). For virtual machines the
|
|
* hypervisor needs to synchronize the host IOMMU PTEs with those of
|
|
* the guest, and the trade-off is different: unnecessary TLB flushes
|
|
* should be avoided.
|
|
*/
|
|
if (amd_iommu_np_cache &&
|
|
iommu_iotlb_gather_is_disjoint(gather, iova, size))
|
|
iommu_iotlb_sync(domain, gather);
|
|
|
|
iommu_iotlb_gather_add_range(gather, iova, size);
|
|
}
|
|
|
|
static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
|
|
size_t pgsize, size_t pgcount,
|
|
struct iommu_iotlb_gather *gather)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
struct io_pgtable_ops *ops = &domain->iop.iop.ops;
|
|
size_t r;
|
|
|
|
if ((domain->pd_mode == PD_MODE_V1) &&
|
|
(domain->iop.mode == PAGE_MODE_NONE))
|
|
return 0;
|
|
|
|
r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
|
|
|
|
if (r)
|
|
amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
|
|
|
|
return r;
|
|
}
|
|
|
|
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
|
|
dma_addr_t iova)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
struct io_pgtable_ops *ops = &domain->iop.iop.ops;
|
|
|
|
return ops->iova_to_phys(ops, iova);
|
|
}
|
|
|
|
static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
|
|
{
|
|
switch (cap) {
|
|
case IOMMU_CAP_CACHE_COHERENCY:
|
|
return true;
|
|
case IOMMU_CAP_NOEXEC:
|
|
return false;
|
|
case IOMMU_CAP_PRE_BOOT_PROTECTION:
|
|
return amdr_ivrs_remap_support;
|
|
case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
|
|
return true;
|
|
case IOMMU_CAP_DEFERRED_FLUSH:
|
|
return true;
|
|
case IOMMU_CAP_DIRTY_TRACKING: {
|
|
struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
|
|
|
|
return amd_iommu_hd_support(iommu);
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
|
|
bool enable)
|
|
{
|
|
struct protection_domain *pdomain = to_pdomain(domain);
|
|
struct dev_table_entry *dev_table;
|
|
struct iommu_dev_data *dev_data;
|
|
bool domain_flush = false;
|
|
struct amd_iommu *iommu;
|
|
unsigned long flags;
|
|
u64 pte_root;
|
|
|
|
spin_lock_irqsave(&pdomain->lock, flags);
|
|
if (!(pdomain->dirty_tracking ^ enable)) {
|
|
spin_unlock_irqrestore(&pdomain->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
list_for_each_entry(dev_data, &pdomain->dev_list, list) {
|
|
iommu = get_amd_iommu_from_dev_data(dev_data);
|
|
|
|
dev_table = get_dev_table(iommu);
|
|
pte_root = dev_table[dev_data->devid].data[0];
|
|
|
|
pte_root = (enable ? pte_root | DTE_FLAG_HAD :
|
|
pte_root & ~DTE_FLAG_HAD);
|
|
|
|
/* Flush device DTE */
|
|
dev_table[dev_data->devid].data[0] = pte_root;
|
|
device_flush_dte(dev_data);
|
|
domain_flush = true;
|
|
}
|
|
|
|
/* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
|
|
if (domain_flush)
|
|
amd_iommu_domain_flush_all(pdomain);
|
|
|
|
pdomain->dirty_tracking = enable;
|
|
spin_unlock_irqrestore(&pdomain->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
|
|
unsigned long iova, size_t size,
|
|
unsigned long flags,
|
|
struct iommu_dirty_bitmap *dirty)
|
|
{
|
|
struct protection_domain *pdomain = to_pdomain(domain);
|
|
struct io_pgtable_ops *ops = &pdomain->iop.iop.ops;
|
|
unsigned long lflags;
|
|
|
|
if (!ops || !ops->read_and_clear_dirty)
|
|
return -EOPNOTSUPP;
|
|
|
|
spin_lock_irqsave(&pdomain->lock, lflags);
|
|
if (!pdomain->dirty_tracking && dirty->bitmap) {
|
|
spin_unlock_irqrestore(&pdomain->lock, lflags);
|
|
return -EINVAL;
|
|
}
|
|
spin_unlock_irqrestore(&pdomain->lock, lflags);
|
|
|
|
return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
|
|
}
|
|
|
|
static void amd_iommu_get_resv_regions(struct device *dev,
|
|
struct list_head *head)
|
|
{
|
|
struct iommu_resv_region *region;
|
|
struct unity_map_entry *entry;
|
|
struct amd_iommu *iommu;
|
|
struct amd_iommu_pci_seg *pci_seg;
|
|
int devid, sbdf;
|
|
|
|
sbdf = get_device_sbdf_id(dev);
|
|
if (sbdf < 0)
|
|
return;
|
|
|
|
devid = PCI_SBDF_TO_DEVID(sbdf);
|
|
iommu = get_amd_iommu_from_dev(dev);
|
|
pci_seg = iommu->pci_seg;
|
|
|
|
list_for_each_entry(entry, &pci_seg->unity_map, list) {
|
|
int type, prot = 0;
|
|
size_t length;
|
|
|
|
if (devid < entry->devid_start || devid > entry->devid_end)
|
|
continue;
|
|
|
|
type = IOMMU_RESV_DIRECT;
|
|
length = entry->address_end - entry->address_start;
|
|
if (entry->prot & IOMMU_PROT_IR)
|
|
prot |= IOMMU_READ;
|
|
if (entry->prot & IOMMU_PROT_IW)
|
|
prot |= IOMMU_WRITE;
|
|
if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
|
|
/* Exclusion range */
|
|
type = IOMMU_RESV_RESERVED;
|
|
|
|
region = iommu_alloc_resv_region(entry->address_start,
|
|
length, prot, type,
|
|
GFP_KERNEL);
|
|
if (!region) {
|
|
dev_err(dev, "Out of memory allocating dm-regions\n");
|
|
return;
|
|
}
|
|
list_add_tail(®ion->list, head);
|
|
}
|
|
|
|
region = iommu_alloc_resv_region(MSI_RANGE_START,
|
|
MSI_RANGE_END - MSI_RANGE_START + 1,
|
|
0, IOMMU_RESV_MSI, GFP_KERNEL);
|
|
if (!region)
|
|
return;
|
|
list_add_tail(®ion->list, head);
|
|
|
|
region = iommu_alloc_resv_region(HT_RANGE_START,
|
|
HT_RANGE_END - HT_RANGE_START + 1,
|
|
0, IOMMU_RESV_RESERVED, GFP_KERNEL);
|
|
if (!region)
|
|
return;
|
|
list_add_tail(®ion->list, head);
|
|
}
|
|
|
|
static bool amd_iommu_is_attach_deferred(struct device *dev)
|
|
{
|
|
struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
|
|
|
|
return dev_data->defer_attach;
|
|
}
|
|
|
|
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
|
|
{
|
|
struct protection_domain *dom = to_pdomain(domain);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dom->lock, flags);
|
|
amd_iommu_domain_flush_all(dom);
|
|
spin_unlock_irqrestore(&dom->lock, flags);
|
|
}
|
|
|
|
static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
|
|
struct iommu_iotlb_gather *gather)
|
|
{
|
|
struct protection_domain *dom = to_pdomain(domain);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dom->lock, flags);
|
|
amd_iommu_domain_flush_pages(dom, gather->start,
|
|
gather->end - gather->start + 1);
|
|
spin_unlock_irqrestore(&dom->lock, flags);
|
|
}
|
|
|
|
static int amd_iommu_def_domain_type(struct device *dev)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
dev_data = dev_iommu_priv_get(dev);
|
|
if (!dev_data)
|
|
return 0;
|
|
|
|
/* Always use DMA domain for untrusted device */
|
|
if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
|
|
return IOMMU_DOMAIN_DMA;
|
|
|
|
/*
|
|
* Do not identity map IOMMUv2 capable devices when:
|
|
* - memory encryption is active, because some of those devices
|
|
* (AMD GPUs) don't have the encryption bit in their DMA-mask
|
|
* and require remapping.
|
|
* - SNP is enabled, because it prohibits DTE[Mode]=0.
|
|
*/
|
|
if (pdev_pasid_supported(dev_data) &&
|
|
!cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
|
|
!amd_iommu_snp_en) {
|
|
return IOMMU_DOMAIN_IDENTITY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
|
|
{
|
|
/* IOMMU_PTE_FC is always set */
|
|
return true;
|
|
}
|
|
|
|
static const struct iommu_dirty_ops amd_dirty_ops = {
|
|
.set_dirty_tracking = amd_iommu_set_dirty_tracking,
|
|
.read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
|
|
};
|
|
|
|
static int amd_iommu_dev_enable_feature(struct device *dev,
|
|
enum iommu_dev_features feat)
|
|
{
|
|
int ret = 0;
|
|
|
|
switch (feat) {
|
|
case IOMMU_DEV_FEAT_IOPF:
|
|
case IOMMU_DEV_FEAT_SVA:
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int amd_iommu_dev_disable_feature(struct device *dev,
|
|
enum iommu_dev_features feat)
|
|
{
|
|
int ret = 0;
|
|
|
|
switch (feat) {
|
|
case IOMMU_DEV_FEAT_IOPF:
|
|
case IOMMU_DEV_FEAT_SVA:
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
const struct iommu_ops amd_iommu_ops = {
|
|
.capable = amd_iommu_capable,
|
|
.blocked_domain = &blocked_domain,
|
|
.domain_alloc = amd_iommu_domain_alloc,
|
|
.domain_alloc_user = amd_iommu_domain_alloc_user,
|
|
.domain_alloc_sva = amd_iommu_domain_alloc_sva,
|
|
.probe_device = amd_iommu_probe_device,
|
|
.release_device = amd_iommu_release_device,
|
|
.device_group = amd_iommu_device_group,
|
|
.get_resv_regions = amd_iommu_get_resv_regions,
|
|
.is_attach_deferred = amd_iommu_is_attach_deferred,
|
|
.pgsize_bitmap = AMD_IOMMU_PGSIZES,
|
|
.def_domain_type = amd_iommu_def_domain_type,
|
|
.dev_enable_feat = amd_iommu_dev_enable_feature,
|
|
.dev_disable_feat = amd_iommu_dev_disable_feature,
|
|
.remove_dev_pasid = amd_iommu_remove_dev_pasid,
|
|
.page_response = amd_iommu_page_response,
|
|
.default_domain_ops = &(const struct iommu_domain_ops) {
|
|
.attach_dev = amd_iommu_attach_device,
|
|
.map_pages = amd_iommu_map_pages,
|
|
.unmap_pages = amd_iommu_unmap_pages,
|
|
.iotlb_sync_map = amd_iommu_iotlb_sync_map,
|
|
.iova_to_phys = amd_iommu_iova_to_phys,
|
|
.flush_iotlb_all = amd_iommu_flush_iotlb_all,
|
|
.iotlb_sync = amd_iommu_iotlb_sync,
|
|
.free = amd_iommu_domain_free,
|
|
.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
|
|
}
|
|
};
|
|
|
|
#ifdef CONFIG_IRQ_REMAP
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* Interrupt Remapping Implementation
|
|
*
|
|
*****************************************************************************/
|
|
|
|
static struct irq_chip amd_ir_chip;
|
|
static DEFINE_SPINLOCK(iommu_table_lock);
|
|
|
|
static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
int ret;
|
|
u64 data;
|
|
unsigned long flags;
|
|
struct iommu_cmd cmd, cmd2;
|
|
|
|
if (iommu->irtcachedis_enabled)
|
|
return;
|
|
|
|
build_inv_irt(&cmd, devid);
|
|
data = atomic64_add_return(1, &iommu->cmd_sem_val);
|
|
build_completion_wait(&cmd2, iommu, data);
|
|
|
|
raw_spin_lock_irqsave(&iommu->lock, flags);
|
|
ret = __iommu_queue_command_sync(iommu, &cmd, true);
|
|
if (ret)
|
|
goto out;
|
|
ret = __iommu_queue_command_sync(iommu, &cmd2, false);
|
|
if (ret)
|
|
goto out;
|
|
wait_on_sem(iommu, data);
|
|
out:
|
|
raw_spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
|
|
struct irq_remap_table *table)
|
|
{
|
|
u64 dte;
|
|
struct dev_table_entry *dev_table = get_dev_table(iommu);
|
|
|
|
dte = dev_table[devid].data[2];
|
|
dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
|
|
dte |= iommu_virt_to_phys(table->table);
|
|
dte |= DTE_IRQ_REMAP_INTCTL;
|
|
dte |= DTE_INTTABLEN;
|
|
dte |= DTE_IRQ_REMAP_ENABLE;
|
|
|
|
dev_table[devid].data[2] = dte;
|
|
}
|
|
|
|
static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
struct irq_remap_table *table;
|
|
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
|
|
|
|
if (WARN_ONCE(!pci_seg->rlookup_table[devid],
|
|
"%s: no iommu for devid %x:%x\n",
|
|
__func__, pci_seg->id, devid))
|
|
return NULL;
|
|
|
|
table = pci_seg->irq_lookup_table[devid];
|
|
if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
|
|
__func__, pci_seg->id, devid))
|
|
return NULL;
|
|
|
|
return table;
|
|
}
|
|
|
|
static struct irq_remap_table *__alloc_irq_table(void)
|
|
{
|
|
struct irq_remap_table *table;
|
|
|
|
table = kzalloc(sizeof(*table), GFP_KERNEL);
|
|
if (!table)
|
|
return NULL;
|
|
|
|
table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
|
|
if (!table->table) {
|
|
kfree(table);
|
|
return NULL;
|
|
}
|
|
raw_spin_lock_init(&table->lock);
|
|
|
|
if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
|
|
memset(table->table, 0,
|
|
MAX_IRQS_PER_TABLE * sizeof(u32));
|
|
else
|
|
memset(table->table, 0,
|
|
(MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
|
|
return table;
|
|
}
|
|
|
|
static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
|
|
struct irq_remap_table *table)
|
|
{
|
|
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
|
|
|
|
pci_seg->irq_lookup_table[devid] = table;
|
|
set_dte_irq_entry(iommu, devid, table);
|
|
iommu_flush_dte(iommu, devid);
|
|
}
|
|
|
|
static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
|
|
void *data)
|
|
{
|
|
struct irq_remap_table *table = data;
|
|
struct amd_iommu_pci_seg *pci_seg;
|
|
struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
|
|
|
|
if (!iommu)
|
|
return -EINVAL;
|
|
|
|
pci_seg = iommu->pci_seg;
|
|
pci_seg->irq_lookup_table[alias] = table;
|
|
set_dte_irq_entry(iommu, alias, table);
|
|
iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
|
|
u16 devid, struct pci_dev *pdev)
|
|
{
|
|
struct irq_remap_table *table = NULL;
|
|
struct irq_remap_table *new_table = NULL;
|
|
struct amd_iommu_pci_seg *pci_seg;
|
|
unsigned long flags;
|
|
u16 alias;
|
|
|
|
spin_lock_irqsave(&iommu_table_lock, flags);
|
|
|
|
pci_seg = iommu->pci_seg;
|
|
table = pci_seg->irq_lookup_table[devid];
|
|
if (table)
|
|
goto out_unlock;
|
|
|
|
alias = pci_seg->alias_table[devid];
|
|
table = pci_seg->irq_lookup_table[alias];
|
|
if (table) {
|
|
set_remap_table_entry(iommu, devid, table);
|
|
goto out_wait;
|
|
}
|
|
spin_unlock_irqrestore(&iommu_table_lock, flags);
|
|
|
|
/* Nothing there yet, allocate new irq remapping table */
|
|
new_table = __alloc_irq_table();
|
|
if (!new_table)
|
|
return NULL;
|
|
|
|
spin_lock_irqsave(&iommu_table_lock, flags);
|
|
|
|
table = pci_seg->irq_lookup_table[devid];
|
|
if (table)
|
|
goto out_unlock;
|
|
|
|
table = pci_seg->irq_lookup_table[alias];
|
|
if (table) {
|
|
set_remap_table_entry(iommu, devid, table);
|
|
goto out_wait;
|
|
}
|
|
|
|
table = new_table;
|
|
new_table = NULL;
|
|
|
|
if (pdev)
|
|
pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
|
|
table);
|
|
else
|
|
set_remap_table_entry(iommu, devid, table);
|
|
|
|
if (devid != alias)
|
|
set_remap_table_entry(iommu, alias, table);
|
|
|
|
out_wait:
|
|
iommu_completion_wait(iommu);
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&iommu_table_lock, flags);
|
|
|
|
if (new_table) {
|
|
kmem_cache_free(amd_iommu_irq_cache, new_table->table);
|
|
kfree(new_table);
|
|
}
|
|
return table;
|
|
}
|
|
|
|
static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
|
|
bool align, struct pci_dev *pdev)
|
|
{
|
|
struct irq_remap_table *table;
|
|
int index, c, alignment = 1;
|
|
unsigned long flags;
|
|
|
|
table = alloc_irq_table(iommu, devid, pdev);
|
|
if (!table)
|
|
return -ENODEV;
|
|
|
|
if (align)
|
|
alignment = roundup_pow_of_two(count);
|
|
|
|
raw_spin_lock_irqsave(&table->lock, flags);
|
|
|
|
/* Scan table for free entries */
|
|
for (index = ALIGN(table->min_index, alignment), c = 0;
|
|
index < MAX_IRQS_PER_TABLE;) {
|
|
if (!iommu->irte_ops->is_allocated(table, index)) {
|
|
c += 1;
|
|
} else {
|
|
c = 0;
|
|
index = ALIGN(index + 1, alignment);
|
|
continue;
|
|
}
|
|
|
|
if (c == count) {
|
|
for (; c != 0; --c)
|
|
iommu->irte_ops->set_allocated(table, index - c + 1);
|
|
|
|
index -= count - 1;
|
|
goto out;
|
|
}
|
|
|
|
index++;
|
|
}
|
|
|
|
index = -ENOSPC;
|
|
|
|
out:
|
|
raw_spin_unlock_irqrestore(&table->lock, flags);
|
|
|
|
return index;
|
|
}
|
|
|
|
static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
|
|
struct irte_ga *irte)
|
|
{
|
|
struct irq_remap_table *table;
|
|
struct irte_ga *entry;
|
|
unsigned long flags;
|
|
u128 old;
|
|
|
|
table = get_irq_table(iommu, devid);
|
|
if (!table)
|
|
return -ENOMEM;
|
|
|
|
raw_spin_lock_irqsave(&table->lock, flags);
|
|
|
|
entry = (struct irte_ga *)table->table;
|
|
entry = &entry[index];
|
|
|
|
/*
|
|
* We use cmpxchg16 to atomically update the 128-bit IRTE,
|
|
* and it cannot be updated by the hardware or other processors
|
|
* behind us, so the return value of cmpxchg16 should be the
|
|
* same as the old value.
|
|
*/
|
|
old = entry->irte;
|
|
WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
|
|
|
|
raw_spin_unlock_irqrestore(&table->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
|
|
struct irte_ga *irte)
|
|
{
|
|
bool ret;
|
|
|
|
ret = __modify_irte_ga(iommu, devid, index, irte);
|
|
if (ret)
|
|
return ret;
|
|
|
|
iommu_flush_irt_and_complete(iommu, devid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int modify_irte(struct amd_iommu *iommu,
|
|
u16 devid, int index, union irte *irte)
|
|
{
|
|
struct irq_remap_table *table;
|
|
unsigned long flags;
|
|
|
|
table = get_irq_table(iommu, devid);
|
|
if (!table)
|
|
return -ENOMEM;
|
|
|
|
raw_spin_lock_irqsave(&table->lock, flags);
|
|
table->table[index] = irte->val;
|
|
raw_spin_unlock_irqrestore(&table->lock, flags);
|
|
|
|
iommu_flush_irt_and_complete(iommu, devid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
|
|
{
|
|
struct irq_remap_table *table;
|
|
unsigned long flags;
|
|
|
|
table = get_irq_table(iommu, devid);
|
|
if (!table)
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&table->lock, flags);
|
|
iommu->irte_ops->clear_allocated(table, index);
|
|
raw_spin_unlock_irqrestore(&table->lock, flags);
|
|
|
|
iommu_flush_irt_and_complete(iommu, devid);
|
|
}
|
|
|
|
static void irte_prepare(void *entry,
|
|
u32 delivery_mode, bool dest_mode,
|
|
u8 vector, u32 dest_apicid, int devid)
|
|
{
|
|
union irte *irte = (union irte *) entry;
|
|
|
|
irte->val = 0;
|
|
irte->fields.vector = vector;
|
|
irte->fields.int_type = delivery_mode;
|
|
irte->fields.destination = dest_apicid;
|
|
irte->fields.dm = dest_mode;
|
|
irte->fields.valid = 1;
|
|
}
|
|
|
|
static void irte_ga_prepare(void *entry,
|
|
u32 delivery_mode, bool dest_mode,
|
|
u8 vector, u32 dest_apicid, int devid)
|
|
{
|
|
struct irte_ga *irte = (struct irte_ga *) entry;
|
|
|
|
irte->lo.val = 0;
|
|
irte->hi.val = 0;
|
|
irte->lo.fields_remap.int_type = delivery_mode;
|
|
irte->lo.fields_remap.dm = dest_mode;
|
|
irte->hi.fields.vector = vector;
|
|
irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
|
|
irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
|
|
irte->lo.fields_remap.valid = 1;
|
|
}
|
|
|
|
static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
|
|
{
|
|
union irte *irte = (union irte *) entry;
|
|
|
|
irte->fields.valid = 1;
|
|
modify_irte(iommu, devid, index, irte);
|
|
}
|
|
|
|
static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
|
|
{
|
|
struct irte_ga *irte = (struct irte_ga *) entry;
|
|
|
|
irte->lo.fields_remap.valid = 1;
|
|
modify_irte_ga(iommu, devid, index, irte);
|
|
}
|
|
|
|
static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
|
|
{
|
|
union irte *irte = (union irte *) entry;
|
|
|
|
irte->fields.valid = 0;
|
|
modify_irte(iommu, devid, index, irte);
|
|
}
|
|
|
|
static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
|
|
{
|
|
struct irte_ga *irte = (struct irte_ga *) entry;
|
|
|
|
irte->lo.fields_remap.valid = 0;
|
|
modify_irte_ga(iommu, devid, index, irte);
|
|
}
|
|
|
|
static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
|
|
u8 vector, u32 dest_apicid)
|
|
{
|
|
union irte *irte = (union irte *) entry;
|
|
|
|
irte->fields.vector = vector;
|
|
irte->fields.destination = dest_apicid;
|
|
modify_irte(iommu, devid, index, irte);
|
|
}
|
|
|
|
static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
|
|
u8 vector, u32 dest_apicid)
|
|
{
|
|
struct irte_ga *irte = (struct irte_ga *) entry;
|
|
|
|
if (!irte->lo.fields_remap.guest_mode) {
|
|
irte->hi.fields.vector = vector;
|
|
irte->lo.fields_remap.destination =
|
|
APICID_TO_IRTE_DEST_LO(dest_apicid);
|
|
irte->hi.fields.destination =
|
|
APICID_TO_IRTE_DEST_HI(dest_apicid);
|
|
modify_irte_ga(iommu, devid, index, irte);
|
|
}
|
|
}
|
|
|
|
#define IRTE_ALLOCATED (~1U)
|
|
static void irte_set_allocated(struct irq_remap_table *table, int index)
|
|
{
|
|
table->table[index] = IRTE_ALLOCATED;
|
|
}
|
|
|
|
static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
|
|
{
|
|
struct irte_ga *ptr = (struct irte_ga *)table->table;
|
|
struct irte_ga *irte = &ptr[index];
|
|
|
|
memset(&irte->lo.val, 0, sizeof(u64));
|
|
memset(&irte->hi.val, 0, sizeof(u64));
|
|
irte->hi.fields.vector = 0xff;
|
|
}
|
|
|
|
static bool irte_is_allocated(struct irq_remap_table *table, int index)
|
|
{
|
|
union irte *ptr = (union irte *)table->table;
|
|
union irte *irte = &ptr[index];
|
|
|
|
return irte->val != 0;
|
|
}
|
|
|
|
static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
|
|
{
|
|
struct irte_ga *ptr = (struct irte_ga *)table->table;
|
|
struct irte_ga *irte = &ptr[index];
|
|
|
|
return irte->hi.fields.vector != 0;
|
|
}
|
|
|
|
static void irte_clear_allocated(struct irq_remap_table *table, int index)
|
|
{
|
|
table->table[index] = 0;
|
|
}
|
|
|
|
static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
|
|
{
|
|
struct irte_ga *ptr = (struct irte_ga *)table->table;
|
|
struct irte_ga *irte = &ptr[index];
|
|
|
|
memset(&irte->lo.val, 0, sizeof(u64));
|
|
memset(&irte->hi.val, 0, sizeof(u64));
|
|
}
|
|
|
|
static int get_devid(struct irq_alloc_info *info)
|
|
{
|
|
switch (info->type) {
|
|
case X86_IRQ_ALLOC_TYPE_IOAPIC:
|
|
return get_ioapic_devid(info->devid);
|
|
case X86_IRQ_ALLOC_TYPE_HPET:
|
|
return get_hpet_devid(info->devid);
|
|
case X86_IRQ_ALLOC_TYPE_PCI_MSI:
|
|
case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
|
|
return get_device_sbdf_id(msi_desc_to_dev(info->desc));
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
struct irq_remap_ops amd_iommu_irq_ops = {
|
|
.prepare = amd_iommu_prepare,
|
|
.enable = amd_iommu_enable,
|
|
.disable = amd_iommu_disable,
|
|
.reenable = amd_iommu_reenable,
|
|
.enable_faulting = amd_iommu_enable_faulting,
|
|
};
|
|
|
|
static void fill_msi_msg(struct msi_msg *msg, u32 index)
|
|
{
|
|
msg->data = index;
|
|
msg->address_lo = 0;
|
|
msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
|
|
msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
|
|
}
|
|
|
|
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
|
|
struct irq_cfg *irq_cfg,
|
|
struct irq_alloc_info *info,
|
|
int devid, int index, int sub_handle)
|
|
{
|
|
struct irq_2_irte *irte_info = &data->irq_2_irte;
|
|
struct amd_iommu *iommu = data->iommu;
|
|
|
|
if (!iommu)
|
|
return;
|
|
|
|
data->irq_2_irte.devid = devid;
|
|
data->irq_2_irte.index = index + sub_handle;
|
|
iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
|
|
apic->dest_mode_logical, irq_cfg->vector,
|
|
irq_cfg->dest_apicid, devid);
|
|
|
|
switch (info->type) {
|
|
case X86_IRQ_ALLOC_TYPE_IOAPIC:
|
|
case X86_IRQ_ALLOC_TYPE_HPET:
|
|
case X86_IRQ_ALLOC_TYPE_PCI_MSI:
|
|
case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
|
|
fill_msi_msg(&data->msi_entry, irte_info->index);
|
|
break;
|
|
|
|
default:
|
|
BUG_ON(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
struct amd_irte_ops irte_32_ops = {
|
|
.prepare = irte_prepare,
|
|
.activate = irte_activate,
|
|
.deactivate = irte_deactivate,
|
|
.set_affinity = irte_set_affinity,
|
|
.set_allocated = irte_set_allocated,
|
|
.is_allocated = irte_is_allocated,
|
|
.clear_allocated = irte_clear_allocated,
|
|
};
|
|
|
|
struct amd_irte_ops irte_128_ops = {
|
|
.prepare = irte_ga_prepare,
|
|
.activate = irte_ga_activate,
|
|
.deactivate = irte_ga_deactivate,
|
|
.set_affinity = irte_ga_set_affinity,
|
|
.set_allocated = irte_ga_set_allocated,
|
|
.is_allocated = irte_ga_is_allocated,
|
|
.clear_allocated = irte_ga_clear_allocated,
|
|
};
|
|
|
|
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs, void *arg)
|
|
{
|
|
struct irq_alloc_info *info = arg;
|
|
struct irq_data *irq_data;
|
|
struct amd_ir_data *data = NULL;
|
|
struct amd_iommu *iommu;
|
|
struct irq_cfg *cfg;
|
|
int i, ret, devid, seg, sbdf;
|
|
int index;
|
|
|
|
if (!info)
|
|
return -EINVAL;
|
|
if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
|
|
return -EINVAL;
|
|
|
|
sbdf = get_devid(info);
|
|
if (sbdf < 0)
|
|
return -EINVAL;
|
|
|
|
seg = PCI_SBDF_TO_SEGID(sbdf);
|
|
devid = PCI_SBDF_TO_DEVID(sbdf);
|
|
iommu = __rlookup_amd_iommu(seg, devid);
|
|
if (!iommu)
|
|
return -EINVAL;
|
|
|
|
ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
|
|
struct irq_remap_table *table;
|
|
|
|
table = alloc_irq_table(iommu, devid, NULL);
|
|
if (table) {
|
|
if (!table->min_index) {
|
|
/*
|
|
* Keep the first 32 indexes free for IOAPIC
|
|
* interrupts.
|
|
*/
|
|
table->min_index = 32;
|
|
for (i = 0; i < 32; ++i)
|
|
iommu->irte_ops->set_allocated(table, i);
|
|
}
|
|
WARN_ON(table->min_index != 32);
|
|
index = info->ioapic.pin;
|
|
} else {
|
|
index = -ENOMEM;
|
|
}
|
|
} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
|
|
info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
|
|
bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
|
|
|
|
index = alloc_irq_index(iommu, devid, nr_irqs, align,
|
|
msi_desc_to_pci_dev(info->desc));
|
|
} else {
|
|
index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
|
|
}
|
|
|
|
if (index < 0) {
|
|
pr_warn("Failed to allocate IRTE\n");
|
|
ret = index;
|
|
goto out_free_parent;
|
|
}
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
irq_data = irq_domain_get_irq_data(domain, virq + i);
|
|
cfg = irq_data ? irqd_cfg(irq_data) : NULL;
|
|
if (!cfg) {
|
|
ret = -EINVAL;
|
|
goto out_free_data;
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
goto out_free_data;
|
|
|
|
if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
|
|
data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
|
|
else
|
|
data->entry = kzalloc(sizeof(struct irte_ga),
|
|
GFP_KERNEL);
|
|
if (!data->entry) {
|
|
kfree(data);
|
|
goto out_free_data;
|
|
}
|
|
|
|
data->iommu = iommu;
|
|
irq_data->hwirq = (devid << 16) + i;
|
|
irq_data->chip_data = data;
|
|
irq_data->chip = &amd_ir_chip;
|
|
irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
|
|
irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_free_data:
|
|
for (i--; i >= 0; i--) {
|
|
irq_data = irq_domain_get_irq_data(domain, virq + i);
|
|
if (irq_data)
|
|
kfree(irq_data->chip_data);
|
|
}
|
|
for (i = 0; i < nr_irqs; i++)
|
|
free_irte(iommu, devid, index + i);
|
|
out_free_parent:
|
|
irq_domain_free_irqs_common(domain, virq, nr_irqs);
|
|
return ret;
|
|
}
|
|
|
|
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs)
|
|
{
|
|
struct irq_2_irte *irte_info;
|
|
struct irq_data *irq_data;
|
|
struct amd_ir_data *data;
|
|
int i;
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
irq_data = irq_domain_get_irq_data(domain, virq + i);
|
|
if (irq_data && irq_data->chip_data) {
|
|
data = irq_data->chip_data;
|
|
irte_info = &data->irq_2_irte;
|
|
free_irte(data->iommu, irte_info->devid, irte_info->index);
|
|
kfree(data->entry);
|
|
kfree(data);
|
|
}
|
|
}
|
|
irq_domain_free_irqs_common(domain, virq, nr_irqs);
|
|
}
|
|
|
|
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
|
|
struct amd_ir_data *ir_data,
|
|
struct irq_2_irte *irte_info,
|
|
struct irq_cfg *cfg);
|
|
|
|
static int irq_remapping_activate(struct irq_domain *domain,
|
|
struct irq_data *irq_data, bool reserve)
|
|
{
|
|
struct amd_ir_data *data = irq_data->chip_data;
|
|
struct irq_2_irte *irte_info = &data->irq_2_irte;
|
|
struct amd_iommu *iommu = data->iommu;
|
|
struct irq_cfg *cfg = irqd_cfg(irq_data);
|
|
|
|
if (!iommu)
|
|
return 0;
|
|
|
|
iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
|
|
irte_info->index);
|
|
amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
|
|
return 0;
|
|
}
|
|
|
|
static void irq_remapping_deactivate(struct irq_domain *domain,
|
|
struct irq_data *irq_data)
|
|
{
|
|
struct amd_ir_data *data = irq_data->chip_data;
|
|
struct irq_2_irte *irte_info = &data->irq_2_irte;
|
|
struct amd_iommu *iommu = data->iommu;
|
|
|
|
if (iommu)
|
|
iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
|
|
irte_info->index);
|
|
}
|
|
|
|
static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
|
|
enum irq_domain_bus_token bus_token)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
int devid = -1;
|
|
|
|
if (!amd_iommu_irq_remap)
|
|
return 0;
|
|
|
|
if (x86_fwspec_is_ioapic(fwspec))
|
|
devid = get_ioapic_devid(fwspec->param[0]);
|
|
else if (x86_fwspec_is_hpet(fwspec))
|
|
devid = get_hpet_devid(fwspec->param[0]);
|
|
|
|
if (devid < 0)
|
|
return 0;
|
|
iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
|
|
|
|
return iommu && iommu->ir_domain == d;
|
|
}
|
|
|
|
static const struct irq_domain_ops amd_ir_domain_ops = {
|
|
.select = irq_remapping_select,
|
|
.alloc = irq_remapping_alloc,
|
|
.free = irq_remapping_free,
|
|
.activate = irq_remapping_activate,
|
|
.deactivate = irq_remapping_deactivate,
|
|
};
|
|
|
|
int amd_iommu_activate_guest_mode(void *data)
|
|
{
|
|
struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
|
|
struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
|
|
u64 valid;
|
|
|
|
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
|
|
return 0;
|
|
|
|
valid = entry->lo.fields_vapic.valid;
|
|
|
|
entry->lo.val = 0;
|
|
entry->hi.val = 0;
|
|
|
|
entry->lo.fields_vapic.valid = valid;
|
|
entry->lo.fields_vapic.guest_mode = 1;
|
|
entry->lo.fields_vapic.ga_log_intr = 1;
|
|
entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
|
|
entry->hi.fields.vector = ir_data->ga_vector;
|
|
entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
|
|
|
|
return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
|
|
ir_data->irq_2_irte.index, entry);
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
|
|
|
|
int amd_iommu_deactivate_guest_mode(void *data)
|
|
{
|
|
struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
|
|
struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
|
|
struct irq_cfg *cfg = ir_data->cfg;
|
|
u64 valid;
|
|
|
|
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
|
|
!entry || !entry->lo.fields_vapic.guest_mode)
|
|
return 0;
|
|
|
|
valid = entry->lo.fields_remap.valid;
|
|
|
|
entry->lo.val = 0;
|
|
entry->hi.val = 0;
|
|
|
|
entry->lo.fields_remap.valid = valid;
|
|
entry->lo.fields_remap.dm = apic->dest_mode_logical;
|
|
entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED;
|
|
entry->hi.fields.vector = cfg->vector;
|
|
entry->lo.fields_remap.destination =
|
|
APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
|
|
entry->hi.fields.destination =
|
|
APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
|
|
|
|
return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
|
|
ir_data->irq_2_irte.index, entry);
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
|
|
|
|
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
|
|
{
|
|
int ret;
|
|
struct amd_iommu_pi_data *pi_data = vcpu_info;
|
|
struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
|
|
struct amd_ir_data *ir_data = data->chip_data;
|
|
struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
if (ir_data->iommu == NULL)
|
|
return -EINVAL;
|
|
|
|
dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
|
|
|
|
/* Note:
|
|
* This device has never been set up for guest mode.
|
|
* we should not modify the IRTE
|
|
*/
|
|
if (!dev_data || !dev_data->use_vapic)
|
|
return 0;
|
|
|
|
ir_data->cfg = irqd_cfg(data);
|
|
pi_data->ir_data = ir_data;
|
|
|
|
/* Note:
|
|
* SVM tries to set up for VAPIC mode, but we are in
|
|
* legacy mode. So, we force legacy mode instead.
|
|
*/
|
|
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
|
|
pr_debug("%s: Fall back to using intr legacy remap\n",
|
|
__func__);
|
|
pi_data->is_guest_mode = false;
|
|
}
|
|
|
|
pi_data->prev_ga_tag = ir_data->cached_ga_tag;
|
|
if (pi_data->is_guest_mode) {
|
|
ir_data->ga_root_ptr = (pi_data->base >> 12);
|
|
ir_data->ga_vector = vcpu_pi_info->vector;
|
|
ir_data->ga_tag = pi_data->ga_tag;
|
|
ret = amd_iommu_activate_guest_mode(ir_data);
|
|
if (!ret)
|
|
ir_data->cached_ga_tag = pi_data->ga_tag;
|
|
} else {
|
|
ret = amd_iommu_deactivate_guest_mode(ir_data);
|
|
|
|
/*
|
|
* This communicates the ga_tag back to the caller
|
|
* so that it can do all the necessary clean up.
|
|
*/
|
|
if (!ret)
|
|
ir_data->cached_ga_tag = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
|
|
struct amd_ir_data *ir_data,
|
|
struct irq_2_irte *irte_info,
|
|
struct irq_cfg *cfg)
|
|
{
|
|
|
|
/*
|
|
* Atomically updates the IRTE with the new destination, vector
|
|
* and flushes the interrupt entry cache.
|
|
*/
|
|
iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
|
|
irte_info->index, cfg->vector,
|
|
cfg->dest_apicid);
|
|
}
|
|
|
|
static int amd_ir_set_affinity(struct irq_data *data,
|
|
const struct cpumask *mask, bool force)
|
|
{
|
|
struct amd_ir_data *ir_data = data->chip_data;
|
|
struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
|
|
struct irq_cfg *cfg = irqd_cfg(data);
|
|
struct irq_data *parent = data->parent_data;
|
|
struct amd_iommu *iommu = ir_data->iommu;
|
|
int ret;
|
|
|
|
if (!iommu)
|
|
return -ENODEV;
|
|
|
|
ret = parent->chip->irq_set_affinity(parent, mask, force);
|
|
if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
|
|
return ret;
|
|
|
|
amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
|
|
/*
|
|
* After this point, all the interrupts will start arriving
|
|
* at the new destination. So, time to cleanup the previous
|
|
* vector allocation.
|
|
*/
|
|
vector_schedule_cleanup(cfg);
|
|
|
|
return IRQ_SET_MASK_OK_DONE;
|
|
}
|
|
|
|
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
|
|
{
|
|
struct amd_ir_data *ir_data = irq_data->chip_data;
|
|
|
|
*msg = ir_data->msi_entry;
|
|
}
|
|
|
|
static struct irq_chip amd_ir_chip = {
|
|
.name = "AMD-IR",
|
|
.irq_ack = apic_ack_irq,
|
|
.irq_set_affinity = amd_ir_set_affinity,
|
|
.irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
|
|
.irq_compose_msi_msg = ir_compose_msi_msg,
|
|
};
|
|
|
|
static const struct msi_parent_ops amdvi_msi_parent_ops = {
|
|
.supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
|
|
.prefix = "IR-",
|
|
.init_dev_msi_info = msi_parent_init_dev_msi_info,
|
|
};
|
|
|
|
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
|
|
{
|
|
struct fwnode_handle *fn;
|
|
|
|
fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
|
|
if (!fn)
|
|
return -ENOMEM;
|
|
iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
|
|
fn, &amd_ir_domain_ops, iommu);
|
|
if (!iommu->ir_domain) {
|
|
irq_domain_free_fwnode(fn);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI);
|
|
iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
|
|
IRQ_DOMAIN_FLAG_ISOLATED_MSI;
|
|
iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int amd_iommu_update_ga(int cpu, bool is_run, void *data)
|
|
{
|
|
struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
|
|
struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
|
|
|
|
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
|
|
!entry || !entry->lo.fields_vapic.guest_mode)
|
|
return 0;
|
|
|
|
if (!ir_data->iommu)
|
|
return -ENODEV;
|
|
|
|
if (cpu >= 0) {
|
|
entry->lo.fields_vapic.destination =
|
|
APICID_TO_IRTE_DEST_LO(cpu);
|
|
entry->hi.fields.destination =
|
|
APICID_TO_IRTE_DEST_HI(cpu);
|
|
}
|
|
entry->lo.fields_vapic.is_run = is_run;
|
|
|
|
return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
|
|
ir_data->irq_2_irte.index, entry);
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_update_ga);
|
|
#endif
|