linux-next/drivers/hwmon/sht3x.c
Stefan Gloor 9d613d9b8a hwmon: (sht3x) read out sensor serial number
The temperature/humidity sensors of the STS3x/SHT3x family are
calibrated and factory-programmed with a unique serial number.
For some sensors, this serial number can be used to obtain a calibration
certificate via an API provided by the manufacturer (Sensirion).
Expose the serial number via debugfs.

Tested with: 2x STS31, 1x STS32, 1x SHT31

Signed-off-by: Stefan Gloor <code@stefan-gloor.ch>
Link: https://lore.kernel.org/r/20240131111512.25321-2-code@stefan-gloor.ch
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2024-02-25 12:37:36 -08:00

990 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* Sensirion SHT3x-DIS humidity and temperature sensor driver.
* The SHT3x comes in many different versions, this driver is for the
* I2C version only.
*
* Copyright (C) 2016 Sensirion AG, Switzerland
* Author: David Frey <david.frey@sensirion.com>
* Author: Pascal Sachs <pascal.sachs@sensirion.com>
*/
#include <asm/page.h>
#include <linux/crc8.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
/* commands (high repeatability mode) */
static const unsigned char sht3x_cmd_measure_single_hpm[] = { 0x24, 0x00 };
/* commands (medium repeatability mode) */
static const unsigned char sht3x_cmd_measure_single_mpm[] = { 0x24, 0x0b };
/* commands (low repeatability mode) */
static const unsigned char sht3x_cmd_measure_single_lpm[] = { 0x24, 0x16 };
/* commands for periodic mode */
static const unsigned char sht3x_cmd_measure_periodic_mode[] = { 0xe0, 0x00 };
static const unsigned char sht3x_cmd_break[] = { 0x30, 0x93 };
/* commands for heater control */
static const unsigned char sht3x_cmd_heater_on[] = { 0x30, 0x6d };
static const unsigned char sht3x_cmd_heater_off[] = { 0x30, 0x66 };
/* other commands */
static const unsigned char sht3x_cmd_read_status_reg[] = { 0xf3, 0x2d };
static const unsigned char sht3x_cmd_clear_status_reg[] = { 0x30, 0x41 };
static const unsigned char sht3x_cmd_read_serial_number[] = { 0x37, 0x80 };
static struct dentry *debugfs;
/* delays for single-shot mode i2c commands, both in us */
#define SHT3X_SINGLE_WAIT_TIME_HPM 15000
#define SHT3X_SINGLE_WAIT_TIME_MPM 6000
#define SHT3X_SINGLE_WAIT_TIME_LPM 4000
#define SHT3X_WORD_LEN 2
#define SHT3X_CMD_LENGTH 2
#define SHT3X_CRC8_LEN 1
#define SHT3X_RESPONSE_LENGTH 6
#define SHT3X_CRC8_POLYNOMIAL 0x31
#define SHT3X_CRC8_INIT 0xFF
#define SHT3X_MIN_TEMPERATURE -45000
#define SHT3X_MAX_TEMPERATURE 130000
#define SHT3X_MIN_HUMIDITY 0
#define SHT3X_MAX_HUMIDITY 100000
enum sht3x_chips {
sht3x,
sts3x,
};
enum sht3x_limits {
limit_max = 0,
limit_max_hyst,
limit_min,
limit_min_hyst,
};
enum sht3x_repeatability {
low_repeatability,
medium_repeatability,
high_repeatability,
};
DECLARE_CRC8_TABLE(sht3x_crc8_table);
/* periodic measure commands (high repeatability mode) */
static const char periodic_measure_commands_hpm[][SHT3X_CMD_LENGTH] = {
/* 0.5 measurements per second */
{0x20, 0x32},
/* 1 measurements per second */
{0x21, 0x30},
/* 2 measurements per second */
{0x22, 0x36},
/* 4 measurements per second */
{0x23, 0x34},
/* 10 measurements per second */
{0x27, 0x37},
};
/* periodic measure commands (medium repeatability) */
static const char periodic_measure_commands_mpm[][SHT3X_CMD_LENGTH] = {
/* 0.5 measurements per second */
{0x20, 0x24},
/* 1 measurements per second */
{0x21, 0x26},
/* 2 measurements per second */
{0x22, 0x20},
/* 4 measurements per second */
{0x23, 0x22},
/* 10 measurements per second */
{0x27, 0x21},
};
/* periodic measure commands (low repeatability mode) */
static const char periodic_measure_commands_lpm[][SHT3X_CMD_LENGTH] = {
/* 0.5 measurements per second */
{0x20, 0x2f},
/* 1 measurements per second */
{0x21, 0x2d},
/* 2 measurements per second */
{0x22, 0x2b},
/* 4 measurements per second */
{0x23, 0x29},
/* 10 measurements per second */
{0x27, 0x2a},
};
struct sht3x_limit_commands {
const char read_command[SHT3X_CMD_LENGTH];
const char write_command[SHT3X_CMD_LENGTH];
};
static const struct sht3x_limit_commands limit_commands[] = {
/* temp1_max, humidity1_max */
[limit_max] = { {0xe1, 0x1f}, {0x61, 0x1d} },
/* temp_1_max_hyst, humidity1_max_hyst */
[limit_max_hyst] = { {0xe1, 0x14}, {0x61, 0x16} },
/* temp1_min, humidity1_min */
[limit_min] = { {0xe1, 0x02}, {0x61, 0x00} },
/* temp_1_min_hyst, humidity1_min_hyst */
[limit_min_hyst] = { {0xe1, 0x09}, {0x61, 0x0B} },
};
#define SHT3X_NUM_LIMIT_CMD ARRAY_SIZE(limit_commands)
static const u16 mode_to_update_interval[] = {
0,
2000,
1000,
500,
250,
100,
};
static const struct hwmon_channel_info * const sht3x_channel_info[] = {
HWMON_CHANNEL_INFO(chip, HWMON_C_UPDATE_INTERVAL),
HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_MIN |
HWMON_T_MIN_HYST | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_ALARM),
HWMON_CHANNEL_INFO(humidity, HWMON_H_INPUT | HWMON_H_MIN |
HWMON_H_MIN_HYST | HWMON_H_MAX |
HWMON_H_MAX_HYST | HWMON_H_ALARM),
NULL,
};
struct sht3x_data {
struct i2c_client *client;
enum sht3x_chips chip_id;
struct mutex i2c_lock; /* lock for sending i2c commands */
struct mutex data_lock; /* lock for updating driver data */
struct dentry *sensor_dir;
u8 mode;
const unsigned char *command;
u32 wait_time; /* in us*/
unsigned long last_update; /* last update in periodic mode*/
enum sht3x_repeatability repeatability;
u32 serial_number;
/*
* cached values for temperature and humidity and limits
* the limits arrays have the following order:
* max, max_hyst, min, min_hyst
*/
int temperature;
int temperature_limits[SHT3X_NUM_LIMIT_CMD];
u32 humidity;
u32 humidity_limits[SHT3X_NUM_LIMIT_CMD];
};
static u8 get_mode_from_update_interval(u16 value)
{
size_t index;
u8 number_of_modes = ARRAY_SIZE(mode_to_update_interval);
if (value == 0)
return 0;
/* find next faster update interval */
for (index = 1; index < number_of_modes; index++) {
if (mode_to_update_interval[index] <= value)
return index;
}
return number_of_modes - 1;
}
static int sht3x_read_from_command(struct i2c_client *client,
struct sht3x_data *data,
const char *command,
char *buf, int length, u32 wait_time)
{
int ret;
mutex_lock(&data->i2c_lock);
ret = i2c_master_send(client, command, SHT3X_CMD_LENGTH);
if (ret != SHT3X_CMD_LENGTH) {
ret = ret < 0 ? ret : -EIO;
goto out;
}
if (wait_time)
usleep_range(wait_time, wait_time + 1000);
ret = i2c_master_recv(client, buf, length);
if (ret != length) {
ret = ret < 0 ? ret : -EIO;
goto out;
}
ret = 0;
out:
mutex_unlock(&data->i2c_lock);
return ret;
}
static int sht3x_extract_temperature(u16 raw)
{
/*
* From datasheet:
* T = -45 + 175 * ST / 2^16
* Adapted for integer fixed point (3 digit) arithmetic.
*/
return ((21875 * (int)raw) >> 13) - 45000;
}
static u32 sht3x_extract_humidity(u16 raw)
{
/*
* From datasheet:
* RH = 100 * SRH / 2^16
* Adapted for integer fixed point (3 digit) arithmetic.
*/
return (12500 * (u32)raw) >> 13;
}
static struct sht3x_data *sht3x_update_client(struct device *dev)
{
struct sht3x_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
u16 interval_ms = mode_to_update_interval[data->mode];
unsigned long interval_jiffies = msecs_to_jiffies(interval_ms);
unsigned char buf[SHT3X_RESPONSE_LENGTH];
u16 val;
int ret = 0;
mutex_lock(&data->data_lock);
/*
* Only update cached readings once per update interval in periodic
* mode. In single shot mode the sensor measures values on demand, so
* every time the sysfs interface is called, a measurement is triggered.
* In periodic mode however, the measurement process is handled
* internally by the sensor and reading out sensor values only makes
* sense if a new reading is available.
*/
if (time_after(jiffies, data->last_update + interval_jiffies)) {
ret = sht3x_read_from_command(client, data, data->command, buf,
sizeof(buf), data->wait_time);
if (ret)
goto out;
val = be16_to_cpup((__be16 *)buf);
data->temperature = sht3x_extract_temperature(val);
val = be16_to_cpup((__be16 *)(buf + 3));
data->humidity = sht3x_extract_humidity(val);
data->last_update = jiffies;
}
out:
mutex_unlock(&data->data_lock);
if (ret)
return ERR_PTR(ret);
return data;
}
static int temp1_input_read(struct device *dev)
{
struct sht3x_data *data = sht3x_update_client(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return data->temperature;
}
static int humidity1_input_read(struct device *dev)
{
struct sht3x_data *data = sht3x_update_client(dev);
if (IS_ERR(data))
return PTR_ERR(data);
return data->humidity;
}
/*
* limits_update must only be called from probe or with data_lock held
*/
static int limits_update(struct sht3x_data *data)
{
int ret;
u8 index;
int temperature;
u32 humidity;
u16 raw;
char buffer[SHT3X_RESPONSE_LENGTH];
const struct sht3x_limit_commands *commands;
struct i2c_client *client = data->client;
for (index = 0; index < SHT3X_NUM_LIMIT_CMD; index++) {
commands = &limit_commands[index];
ret = sht3x_read_from_command(client, data,
commands->read_command, buffer,
SHT3X_RESPONSE_LENGTH, 0);
if (ret)
return ret;
raw = be16_to_cpup((__be16 *)buffer);
temperature = sht3x_extract_temperature((raw & 0x01ff) << 7);
humidity = sht3x_extract_humidity(raw & 0xfe00);
data->temperature_limits[index] = temperature;
data->humidity_limits[index] = humidity;
}
return ret;
}
static int temp1_limit_read(struct device *dev, int index)
{
struct sht3x_data *data = dev_get_drvdata(dev);
return data->temperature_limits[index];
}
static int humidity1_limit_read(struct device *dev, int index)
{
struct sht3x_data *data = dev_get_drvdata(dev);
return data->humidity_limits[index];
}
/*
* limit_write must only be called with data_lock held
*/
static size_t limit_write(struct device *dev,
u8 index,
int temperature,
u32 humidity)
{
char buffer[SHT3X_CMD_LENGTH + SHT3X_WORD_LEN + SHT3X_CRC8_LEN];
char *position = buffer;
int ret;
u16 raw;
struct sht3x_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
const struct sht3x_limit_commands *commands;
commands = &limit_commands[index];
memcpy(position, commands->write_command, SHT3X_CMD_LENGTH);
position += SHT3X_CMD_LENGTH;
/*
* ST = (T + 45) / 175 * 2^16
* SRH = RH / 100 * 2^16
* adapted for fixed point arithmetic and packed the same as
* in limit_read()
*/
raw = ((u32)(temperature + 45000) * 24543) >> (16 + 7);
raw |= ((humidity * 42950) >> 16) & 0xfe00;
*((__be16 *)position) = cpu_to_be16(raw);
position += SHT3X_WORD_LEN;
*position = crc8(sht3x_crc8_table,
position - SHT3X_WORD_LEN,
SHT3X_WORD_LEN,
SHT3X_CRC8_INIT);
mutex_lock(&data->i2c_lock);
ret = i2c_master_send(client, buffer, sizeof(buffer));
mutex_unlock(&data->i2c_lock);
if (ret != sizeof(buffer))
return ret < 0 ? ret : -EIO;
data->temperature_limits[index] = temperature;
data->humidity_limits[index] = humidity;
return 0;
}
static int temp1_limit_write(struct device *dev, int index, int val)
{
int temperature;
int ret;
struct sht3x_data *data = dev_get_drvdata(dev);
temperature = clamp_val(val, SHT3X_MIN_TEMPERATURE,
SHT3X_MAX_TEMPERATURE);
mutex_lock(&data->data_lock);
ret = limit_write(dev, index, temperature,
data->humidity_limits[index]);
mutex_unlock(&data->data_lock);
return ret;
}
static int humidity1_limit_write(struct device *dev, int index, int val)
{
u32 humidity;
int ret;
struct sht3x_data *data = dev_get_drvdata(dev);
humidity = clamp_val(val, SHT3X_MIN_HUMIDITY, SHT3X_MAX_HUMIDITY);
mutex_lock(&data->data_lock);
ret = limit_write(dev, index, data->temperature_limits[index],
humidity);
mutex_unlock(&data->data_lock);
return ret;
}
static void sht3x_select_command(struct sht3x_data *data)
{
/*
* For single-shot mode, only non blocking mode is support,
* we have to wait ourselves for result.
*/
if (data->mode > 0) {
data->command = sht3x_cmd_measure_periodic_mode;
data->wait_time = 0;
} else {
if (data->repeatability == high_repeatability) {
data->command = sht3x_cmd_measure_single_hpm;
data->wait_time = SHT3X_SINGLE_WAIT_TIME_HPM;
} else if (data->repeatability == medium_repeatability) {
data->command = sht3x_cmd_measure_single_mpm;
data->wait_time = SHT3X_SINGLE_WAIT_TIME_MPM;
} else {
data->command = sht3x_cmd_measure_single_lpm;
data->wait_time = SHT3X_SINGLE_WAIT_TIME_LPM;
}
}
}
static int status_register_read(struct device *dev,
char *buffer, int length)
{
int ret;
struct sht3x_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
ret = sht3x_read_from_command(client, data, sht3x_cmd_read_status_reg,
buffer, length, 0);
return ret;
}
static int temp1_alarm_read(struct device *dev)
{
char buffer[SHT3X_WORD_LEN + SHT3X_CRC8_LEN];
int ret;
ret = status_register_read(dev, buffer,
SHT3X_WORD_LEN + SHT3X_CRC8_LEN);
if (ret)
return ret;
return !!(buffer[0] & 0x04);
}
static int humidity1_alarm_read(struct device *dev)
{
char buffer[SHT3X_WORD_LEN + SHT3X_CRC8_LEN];
int ret;
ret = status_register_read(dev, buffer,
SHT3X_WORD_LEN + SHT3X_CRC8_LEN);
if (ret)
return ret;
return !!(buffer[0] & 0x08);
}
static ssize_t heater_enable_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
char buffer[SHT3X_WORD_LEN + SHT3X_CRC8_LEN];
int ret;
ret = status_register_read(dev, buffer,
SHT3X_WORD_LEN + SHT3X_CRC8_LEN);
if (ret)
return ret;
return sysfs_emit(buf, "%d\n", !!(buffer[0] & 0x20));
}
static ssize_t heater_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct sht3x_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int ret;
bool status;
ret = kstrtobool(buf, &status);
if (ret)
return ret;
mutex_lock(&data->i2c_lock);
if (status)
ret = i2c_master_send(client, (char *)&sht3x_cmd_heater_on,
SHT3X_CMD_LENGTH);
else
ret = i2c_master_send(client, (char *)&sht3x_cmd_heater_off,
SHT3X_CMD_LENGTH);
mutex_unlock(&data->i2c_lock);
return ret;
}
static int update_interval_read(struct device *dev)
{
struct sht3x_data *data = dev_get_drvdata(dev);
return mode_to_update_interval[data->mode];
}
static int update_interval_write(struct device *dev, int val)
{
u8 mode;
int ret;
const char *command;
struct sht3x_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
mode = get_mode_from_update_interval(val);
mutex_lock(&data->data_lock);
/* mode did not change */
if (mode == data->mode) {
mutex_unlock(&data->data_lock);
return 0;
}
mutex_lock(&data->i2c_lock);
/*
* Abort periodic measure mode.
* To do any changes to the configuration while in periodic mode, we
* have to send a break command to the sensor, which then falls back
* to single shot (mode = 0).
*/
if (data->mode > 0) {
ret = i2c_master_send(client, sht3x_cmd_break,
SHT3X_CMD_LENGTH);
if (ret != SHT3X_CMD_LENGTH)
goto out;
data->mode = 0;
}
if (mode > 0) {
if (data->repeatability == high_repeatability)
command = periodic_measure_commands_hpm[mode - 1];
else if (data->repeatability == medium_repeatability)
command = periodic_measure_commands_mpm[mode - 1];
else
command = periodic_measure_commands_lpm[mode - 1];
/* select mode */
ret = i2c_master_send(client, command, SHT3X_CMD_LENGTH);
if (ret != SHT3X_CMD_LENGTH)
goto out;
}
/* select mode and command */
data->mode = mode;
sht3x_select_command(data);
out:
mutex_unlock(&data->i2c_lock);
mutex_unlock(&data->data_lock);
if (ret != SHT3X_CMD_LENGTH)
return ret < 0 ? ret : -EIO;
return 0;
}
static ssize_t repeatability_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct sht3x_data *data = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", data->repeatability);
}
static ssize_t repeatability_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
int ret;
u8 val;
struct sht3x_data *data = dev_get_drvdata(dev);
ret = kstrtou8(buf, 0, &val);
if (ret)
return ret;
if (val > 2)
return -EINVAL;
data->repeatability = val;
return count;
}
static SENSOR_DEVICE_ATTR_RW(heater_enable, heater_enable, 0);
static SENSOR_DEVICE_ATTR_RW(repeatability, repeatability, 0);
static struct attribute *sht3x_attrs[] = {
&sensor_dev_attr_heater_enable.dev_attr.attr,
&sensor_dev_attr_repeatability.dev_attr.attr,
NULL
};
ATTRIBUTE_GROUPS(sht3x);
static umode_t sht3x_is_visible(const void *data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct sht3x_data *chip_data = data;
switch (type) {
case hwmon_chip:
switch (attr) {
case hwmon_chip_update_interval:
return 0644;
default:
break;
}
break;
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_alarm:
return 0444;
case hwmon_temp_max:
case hwmon_temp_max_hyst:
case hwmon_temp_min:
case hwmon_temp_min_hyst:
return 0644;
default:
break;
}
break;
case hwmon_humidity:
if (chip_data->chip_id == sts3x)
break;
switch (attr) {
case hwmon_humidity_input:
case hwmon_humidity_alarm:
return 0444;
case hwmon_humidity_max:
case hwmon_humidity_max_hyst:
case hwmon_humidity_min:
case hwmon_humidity_min_hyst:
return 0644;
default:
break;
}
break;
default:
break;
}
return 0;
}
static int sht3x_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
enum sht3x_limits index;
switch (type) {
case hwmon_chip:
switch (attr) {
case hwmon_chip_update_interval:
*val = update_interval_read(dev);
break;
default:
return -EOPNOTSUPP;
}
break;
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
*val = temp1_input_read(dev);
break;
case hwmon_temp_alarm:
*val = temp1_alarm_read(dev);
break;
case hwmon_temp_max:
index = limit_max;
*val = temp1_limit_read(dev, index);
break;
case hwmon_temp_max_hyst:
index = limit_max_hyst;
*val = temp1_limit_read(dev, index);
break;
case hwmon_temp_min:
index = limit_min;
*val = temp1_limit_read(dev, index);
break;
case hwmon_temp_min_hyst:
index = limit_min_hyst;
*val = temp1_limit_read(dev, index);
break;
default:
return -EOPNOTSUPP;
}
break;
case hwmon_humidity:
switch (attr) {
case hwmon_humidity_input:
*val = humidity1_input_read(dev);
break;
case hwmon_humidity_alarm:
*val = humidity1_alarm_read(dev);
break;
case hwmon_humidity_max:
index = limit_max;
*val = humidity1_limit_read(dev, index);
break;
case hwmon_humidity_max_hyst:
index = limit_max_hyst;
*val = humidity1_limit_read(dev, index);
break;
case hwmon_humidity_min:
index = limit_min;
*val = humidity1_limit_read(dev, index);
break;
case hwmon_humidity_min_hyst:
index = limit_min_hyst;
*val = humidity1_limit_read(dev, index);
break;
default:
return -EOPNOTSUPP;
}
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int sht3x_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
enum sht3x_limits index;
switch (type) {
case hwmon_chip:
switch (attr) {
case hwmon_chip_update_interval:
return update_interval_write(dev, val);
default:
return -EOPNOTSUPP;
}
case hwmon_temp:
switch (attr) {
case hwmon_temp_max:
index = limit_max;
break;
case hwmon_temp_max_hyst:
index = limit_max_hyst;
break;
case hwmon_temp_min:
index = limit_min;
break;
case hwmon_temp_min_hyst:
index = limit_min_hyst;
break;
default:
return -EOPNOTSUPP;
}
return temp1_limit_write(dev, index, val);
case hwmon_humidity:
switch (attr) {
case hwmon_humidity_max:
index = limit_max;
break;
case hwmon_humidity_max_hyst:
index = limit_max_hyst;
break;
case hwmon_humidity_min:
index = limit_min;
break;
case hwmon_humidity_min_hyst:
index = limit_min_hyst;
break;
default:
return -EOPNOTSUPP;
}
return humidity1_limit_write(dev, index, val);
default:
return -EOPNOTSUPP;
}
}
static void sht3x_debugfs_init(struct sht3x_data *data)
{
char name[32];
snprintf(name, sizeof(name), "i2c%u-%02x",
data->client->adapter->nr, data->client->addr);
data->sensor_dir = debugfs_create_dir(name, debugfs);
debugfs_create_u32("serial_number", 0444,
data->sensor_dir, &data->serial_number);
}
static void sht3x_debugfs_remove(void *sensor_dir)
{
debugfs_remove_recursive(sensor_dir);
}
static int sht3x_serial_number_read(struct sht3x_data *data)
{
int ret;
char buffer[SHT3X_RESPONSE_LENGTH];
struct i2c_client *client = data->client;
ret = sht3x_read_from_command(client, data,
sht3x_cmd_read_serial_number,
buffer,
SHT3X_RESPONSE_LENGTH, 0);
if (ret)
return ret;
data->serial_number = (buffer[0] << 24) | (buffer[1] << 16) |
(buffer[3] << 8) | buffer[4];
return ret;
}
static const struct hwmon_ops sht3x_ops = {
.is_visible = sht3x_is_visible,
.read = sht3x_read,
.write = sht3x_write,
};
static const struct hwmon_chip_info sht3x_chip_info = {
.ops = &sht3x_ops,
.info = sht3x_channel_info,
};
/* device ID table */
static const struct i2c_device_id sht3x_ids[] = {
{"sht3x", sht3x},
{"sts3x", sts3x},
{}
};
MODULE_DEVICE_TABLE(i2c, sht3x_ids);
static int sht3x_probe(struct i2c_client *client)
{
int ret;
struct sht3x_data *data;
struct device *hwmon_dev;
struct i2c_adapter *adap = client->adapter;
struct device *dev = &client->dev;
/*
* we require full i2c support since the sht3x uses multi-byte read and
* writes as well as multi-byte commands which are not supported by
* the smbus protocol
*/
if (!i2c_check_functionality(adap, I2C_FUNC_I2C))
return -ENODEV;
ret = i2c_master_send(client, sht3x_cmd_clear_status_reg,
SHT3X_CMD_LENGTH);
if (ret != SHT3X_CMD_LENGTH)
return ret < 0 ? ret : -ENODEV;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->repeatability = high_repeatability;
data->mode = 0;
data->last_update = jiffies - msecs_to_jiffies(3000);
data->client = client;
data->chip_id = i2c_match_id(sht3x_ids, client)->driver_data;
crc8_populate_msb(sht3x_crc8_table, SHT3X_CRC8_POLYNOMIAL);
sht3x_select_command(data);
mutex_init(&data->i2c_lock);
mutex_init(&data->data_lock);
/*
* An attempt to read limits register too early
* causes a NACK response from the chip.
* Waiting for an empirical delay of 500 us solves the issue.
*/
usleep_range(500, 600);
ret = limits_update(data);
if (ret)
return ret;
ret = sht3x_serial_number_read(data);
if (ret) {
dev_dbg(dev, "unable to read serial number\n");
} else {
sht3x_debugfs_init(data);
ret = devm_add_action_or_reset(dev,
sht3x_debugfs_remove,
data->sensor_dir);
if (ret)
return ret;
}
hwmon_dev = devm_hwmon_device_register_with_info(dev,
client->name,
data,
&sht3x_chip_info,
sht3x_groups);
if (IS_ERR(hwmon_dev))
dev_dbg(dev, "unable to register hwmon device\n");
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static struct i2c_driver sht3x_i2c_driver = {
.driver.name = "sht3x",
.probe = sht3x_probe,
.id_table = sht3x_ids,
};
static int __init sht3x_init(void)
{
debugfs = debugfs_create_dir("sht3x", NULL);
return i2c_add_driver(&sht3x_i2c_driver);
}
module_init(sht3x_init);
static void __exit sht3x_cleanup(void)
{
debugfs_remove_recursive(debugfs);
i2c_del_driver(&sht3x_i2c_driver);
}
module_exit(sht3x_cleanup);
MODULE_AUTHOR("David Frey <david.frey@sensirion.com>");
MODULE_AUTHOR("Pascal Sachs <pascal.sachs@sensirion.com>");
MODULE_DESCRIPTION("Sensirion SHT3x humidity and temperature sensor driver");
MODULE_LICENSE("GPL");