mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-18 06:15:12 +00:00
9abf8a08bc
Impact: bug fix Currently if you do (e.g.) timec -e -1 ls, it will report 0 for the value of the cpu_clock counter. The reason is that the core assumes that a counter's count field is up-to-date when the counter is inactive, and doesn't call the counter's read function. However, the cpu_clock counter code only updates the count in the read function. This fixes it by making both the read and disable functions update the count. It also makes the counter ignore time passing while the counter is disabled, by making the enable function update the hw.prev_count field. Signed-off-by: Paul Mackerras <paulus@samba.org>
1701 lines
39 KiB
C
1701 lines
39 KiB
C
/*
|
|
* Performance counter core code
|
|
*
|
|
* Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
|
|
*
|
|
* For licencing details see kernel-base/COPYING
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/file.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/perf_counter.h>
|
|
|
|
/*
|
|
* Each CPU has a list of per CPU counters:
|
|
*/
|
|
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
|
|
|
|
int perf_max_counters __read_mostly = 1;
|
|
static int perf_reserved_percpu __read_mostly;
|
|
static int perf_overcommit __read_mostly = 1;
|
|
|
|
/*
|
|
* Mutex for (sysadmin-configurable) counter reservations:
|
|
*/
|
|
static DEFINE_MUTEX(perf_resource_mutex);
|
|
|
|
/*
|
|
* Architecture provided APIs - weak aliases:
|
|
*/
|
|
extern __weak const struct hw_perf_counter_ops *
|
|
hw_perf_counter_init(struct perf_counter *counter)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
u64 __weak hw_perf_save_disable(void) { return 0; }
|
|
void __weak hw_perf_restore(u64 ctrl) { barrier(); }
|
|
void __weak hw_perf_counter_setup(void) { barrier(); }
|
|
|
|
static void
|
|
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
|
|
{
|
|
struct perf_counter *group_leader = counter->group_leader;
|
|
|
|
/*
|
|
* Depending on whether it is a standalone or sibling counter,
|
|
* add it straight to the context's counter list, or to the group
|
|
* leader's sibling list:
|
|
*/
|
|
if (counter->group_leader == counter)
|
|
list_add_tail(&counter->list_entry, &ctx->counter_list);
|
|
else
|
|
list_add_tail(&counter->list_entry, &group_leader->sibling_list);
|
|
}
|
|
|
|
static void
|
|
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
|
|
{
|
|
struct perf_counter *sibling, *tmp;
|
|
|
|
list_del_init(&counter->list_entry);
|
|
|
|
/*
|
|
* If this was a group counter with sibling counters then
|
|
* upgrade the siblings to singleton counters by adding them
|
|
* to the context list directly:
|
|
*/
|
|
list_for_each_entry_safe(sibling, tmp,
|
|
&counter->sibling_list, list_entry) {
|
|
|
|
list_del_init(&sibling->list_entry);
|
|
list_add_tail(&sibling->list_entry, &ctx->counter_list);
|
|
sibling->group_leader = sibling;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Cross CPU call to remove a performance counter
|
|
*
|
|
* We disable the counter on the hardware level first. After that we
|
|
* remove it from the context list.
|
|
*/
|
|
static void __perf_counter_remove_from_context(void *info)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
|
|
struct perf_counter *counter = info;
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
unsigned long flags;
|
|
u64 perf_flags;
|
|
|
|
/*
|
|
* If this is a task context, we need to check whether it is
|
|
* the current task context of this cpu. If not it has been
|
|
* scheduled out before the smp call arrived.
|
|
*/
|
|
if (ctx->task && cpuctx->task_ctx != ctx)
|
|
return;
|
|
|
|
curr_rq_lock_irq_save(&flags);
|
|
spin_lock(&ctx->lock);
|
|
|
|
if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
|
|
counter->state = PERF_COUNTER_STATE_INACTIVE;
|
|
counter->hw_ops->disable(counter);
|
|
ctx->nr_active--;
|
|
cpuctx->active_oncpu--;
|
|
counter->task = NULL;
|
|
counter->oncpu = -1;
|
|
}
|
|
ctx->nr_counters--;
|
|
|
|
/*
|
|
* Protect the list operation against NMI by disabling the
|
|
* counters on a global level. NOP for non NMI based counters.
|
|
*/
|
|
perf_flags = hw_perf_save_disable();
|
|
list_del_counter(counter, ctx);
|
|
hw_perf_restore(perf_flags);
|
|
|
|
if (!ctx->task) {
|
|
/*
|
|
* Allow more per task counters with respect to the
|
|
* reservation:
|
|
*/
|
|
cpuctx->max_pertask =
|
|
min(perf_max_counters - ctx->nr_counters,
|
|
perf_max_counters - perf_reserved_percpu);
|
|
}
|
|
|
|
spin_unlock(&ctx->lock);
|
|
curr_rq_unlock_irq_restore(&flags);
|
|
}
|
|
|
|
|
|
/*
|
|
* Remove the counter from a task's (or a CPU's) list of counters.
|
|
*
|
|
* Must be called with counter->mutex held.
|
|
*
|
|
* CPU counters are removed with a smp call. For task counters we only
|
|
* call when the task is on a CPU.
|
|
*/
|
|
static void perf_counter_remove_from_context(struct perf_counter *counter)
|
|
{
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
struct task_struct *task = ctx->task;
|
|
|
|
if (!task) {
|
|
/*
|
|
* Per cpu counters are removed via an smp call and
|
|
* the removal is always sucessful.
|
|
*/
|
|
smp_call_function_single(counter->cpu,
|
|
__perf_counter_remove_from_context,
|
|
counter, 1);
|
|
return;
|
|
}
|
|
|
|
retry:
|
|
task_oncpu_function_call(task, __perf_counter_remove_from_context,
|
|
counter);
|
|
|
|
spin_lock_irq(&ctx->lock);
|
|
/*
|
|
* If the context is active we need to retry the smp call.
|
|
*/
|
|
if (ctx->nr_active && !list_empty(&counter->list_entry)) {
|
|
spin_unlock_irq(&ctx->lock);
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* The lock prevents that this context is scheduled in so we
|
|
* can remove the counter safely, if the call above did not
|
|
* succeed.
|
|
*/
|
|
if (!list_empty(&counter->list_entry)) {
|
|
ctx->nr_counters--;
|
|
list_del_counter(counter, ctx);
|
|
counter->task = NULL;
|
|
}
|
|
spin_unlock_irq(&ctx->lock);
|
|
}
|
|
|
|
static int
|
|
counter_sched_in(struct perf_counter *counter,
|
|
struct perf_cpu_context *cpuctx,
|
|
struct perf_counter_context *ctx,
|
|
int cpu)
|
|
{
|
|
if (counter->state == PERF_COUNTER_STATE_OFF)
|
|
return 0;
|
|
|
|
counter->state = PERF_COUNTER_STATE_ACTIVE;
|
|
counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
|
|
/*
|
|
* The new state must be visible before we turn it on in the hardware:
|
|
*/
|
|
smp_wmb();
|
|
|
|
if (counter->hw_ops->enable(counter)) {
|
|
counter->state = PERF_COUNTER_STATE_INACTIVE;
|
|
counter->oncpu = -1;
|
|
return -EAGAIN;
|
|
}
|
|
|
|
cpuctx->active_oncpu++;
|
|
ctx->nr_active++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Cross CPU call to install and enable a performance counter
|
|
*/
|
|
static void __perf_install_in_context(void *info)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
|
|
struct perf_counter *counter = info;
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
int cpu = smp_processor_id();
|
|
unsigned long flags;
|
|
u64 perf_flags;
|
|
|
|
/*
|
|
* If this is a task context, we need to check whether it is
|
|
* the current task context of this cpu. If not it has been
|
|
* scheduled out before the smp call arrived.
|
|
*/
|
|
if (ctx->task && cpuctx->task_ctx != ctx)
|
|
return;
|
|
|
|
curr_rq_lock_irq_save(&flags);
|
|
spin_lock(&ctx->lock);
|
|
|
|
/*
|
|
* Protect the list operation against NMI by disabling the
|
|
* counters on a global level. NOP for non NMI based counters.
|
|
*/
|
|
perf_flags = hw_perf_save_disable();
|
|
|
|
list_add_counter(counter, ctx);
|
|
ctx->nr_counters++;
|
|
|
|
counter_sched_in(counter, cpuctx, ctx, cpu);
|
|
|
|
if (!ctx->task && cpuctx->max_pertask)
|
|
cpuctx->max_pertask--;
|
|
|
|
hw_perf_restore(perf_flags);
|
|
|
|
spin_unlock(&ctx->lock);
|
|
curr_rq_unlock_irq_restore(&flags);
|
|
}
|
|
|
|
/*
|
|
* Attach a performance counter to a context
|
|
*
|
|
* First we add the counter to the list with the hardware enable bit
|
|
* in counter->hw_config cleared.
|
|
*
|
|
* If the counter is attached to a task which is on a CPU we use a smp
|
|
* call to enable it in the task context. The task might have been
|
|
* scheduled away, but we check this in the smp call again.
|
|
*/
|
|
static void
|
|
perf_install_in_context(struct perf_counter_context *ctx,
|
|
struct perf_counter *counter,
|
|
int cpu)
|
|
{
|
|
struct task_struct *task = ctx->task;
|
|
|
|
counter->ctx = ctx;
|
|
if (!task) {
|
|
/*
|
|
* Per cpu counters are installed via an smp call and
|
|
* the install is always sucessful.
|
|
*/
|
|
smp_call_function_single(cpu, __perf_install_in_context,
|
|
counter, 1);
|
|
return;
|
|
}
|
|
|
|
counter->task = task;
|
|
retry:
|
|
task_oncpu_function_call(task, __perf_install_in_context,
|
|
counter);
|
|
|
|
spin_lock_irq(&ctx->lock);
|
|
/*
|
|
* we need to retry the smp call.
|
|
*/
|
|
if (ctx->nr_active && list_empty(&counter->list_entry)) {
|
|
spin_unlock_irq(&ctx->lock);
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* The lock prevents that this context is scheduled in so we
|
|
* can add the counter safely, if it the call above did not
|
|
* succeed.
|
|
*/
|
|
if (list_empty(&counter->list_entry)) {
|
|
list_add_counter(counter, ctx);
|
|
ctx->nr_counters++;
|
|
}
|
|
spin_unlock_irq(&ctx->lock);
|
|
}
|
|
|
|
static void
|
|
counter_sched_out(struct perf_counter *counter,
|
|
struct perf_cpu_context *cpuctx,
|
|
struct perf_counter_context *ctx)
|
|
{
|
|
if (counter->state != PERF_COUNTER_STATE_ACTIVE)
|
|
return;
|
|
|
|
counter->state = PERF_COUNTER_STATE_INACTIVE;
|
|
counter->hw_ops->disable(counter);
|
|
counter->oncpu = -1;
|
|
|
|
cpuctx->active_oncpu--;
|
|
ctx->nr_active--;
|
|
}
|
|
|
|
static void
|
|
group_sched_out(struct perf_counter *group_counter,
|
|
struct perf_cpu_context *cpuctx,
|
|
struct perf_counter_context *ctx)
|
|
{
|
|
struct perf_counter *counter;
|
|
|
|
counter_sched_out(group_counter, cpuctx, ctx);
|
|
|
|
/*
|
|
* Schedule out siblings (if any):
|
|
*/
|
|
list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
|
|
counter_sched_out(counter, cpuctx, ctx);
|
|
}
|
|
|
|
void __perf_counter_sched_out(struct perf_counter_context *ctx,
|
|
struct perf_cpu_context *cpuctx)
|
|
{
|
|
struct perf_counter *counter;
|
|
|
|
if (likely(!ctx->nr_counters))
|
|
return;
|
|
|
|
spin_lock(&ctx->lock);
|
|
if (ctx->nr_active) {
|
|
list_for_each_entry(counter, &ctx->counter_list, list_entry)
|
|
group_sched_out(counter, cpuctx, ctx);
|
|
}
|
|
spin_unlock(&ctx->lock);
|
|
}
|
|
|
|
/*
|
|
* Called from scheduler to remove the counters of the current task,
|
|
* with interrupts disabled.
|
|
*
|
|
* We stop each counter and update the counter value in counter->count.
|
|
*
|
|
* This does not protect us against NMI, but disable()
|
|
* sets the disabled bit in the control field of counter _before_
|
|
* accessing the counter control register. If a NMI hits, then it will
|
|
* not restart the counter.
|
|
*/
|
|
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
|
|
struct perf_counter_context *ctx = &task->perf_counter_ctx;
|
|
|
|
if (likely(!cpuctx->task_ctx))
|
|
return;
|
|
|
|
__perf_counter_sched_out(ctx, cpuctx);
|
|
|
|
cpuctx->task_ctx = NULL;
|
|
}
|
|
|
|
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
|
|
{
|
|
__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
|
|
}
|
|
|
|
static int
|
|
group_sched_in(struct perf_counter *group_counter,
|
|
struct perf_cpu_context *cpuctx,
|
|
struct perf_counter_context *ctx,
|
|
int cpu)
|
|
{
|
|
struct perf_counter *counter, *partial_group;
|
|
int ret = 0;
|
|
|
|
if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* Schedule in siblings as one group (if any):
|
|
*/
|
|
list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
|
|
if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
|
|
partial_group = counter;
|
|
goto group_error;
|
|
}
|
|
ret = -EAGAIN;
|
|
}
|
|
|
|
return ret;
|
|
|
|
group_error:
|
|
/*
|
|
* Groups can be scheduled in as one unit only, so undo any
|
|
* partial group before returning:
|
|
*/
|
|
list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
|
|
if (counter == partial_group)
|
|
break;
|
|
counter_sched_out(counter, cpuctx, ctx);
|
|
}
|
|
counter_sched_out(group_counter, cpuctx, ctx);
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static void
|
|
__perf_counter_sched_in(struct perf_counter_context *ctx,
|
|
struct perf_cpu_context *cpuctx, int cpu)
|
|
{
|
|
struct perf_counter *counter;
|
|
|
|
if (likely(!ctx->nr_counters))
|
|
return;
|
|
|
|
spin_lock(&ctx->lock);
|
|
list_for_each_entry(counter, &ctx->counter_list, list_entry) {
|
|
/*
|
|
* Listen to the 'cpu' scheduling filter constraint
|
|
* of counters:
|
|
*/
|
|
if (counter->cpu != -1 && counter->cpu != cpu)
|
|
continue;
|
|
|
|
/*
|
|
* If we scheduled in a group atomically and
|
|
* exclusively, break out:
|
|
*/
|
|
if (group_sched_in(counter, cpuctx, ctx, cpu))
|
|
break;
|
|
}
|
|
spin_unlock(&ctx->lock);
|
|
}
|
|
|
|
/*
|
|
* Called from scheduler to add the counters of the current task
|
|
* with interrupts disabled.
|
|
*
|
|
* We restore the counter value and then enable it.
|
|
*
|
|
* This does not protect us against NMI, but enable()
|
|
* sets the enabled bit in the control field of counter _before_
|
|
* accessing the counter control register. If a NMI hits, then it will
|
|
* keep the counter running.
|
|
*/
|
|
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
|
|
struct perf_counter_context *ctx = &task->perf_counter_ctx;
|
|
|
|
__perf_counter_sched_in(ctx, cpuctx, cpu);
|
|
cpuctx->task_ctx = ctx;
|
|
}
|
|
|
|
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
|
|
{
|
|
struct perf_counter_context *ctx = &cpuctx->ctx;
|
|
|
|
__perf_counter_sched_in(ctx, cpuctx, cpu);
|
|
}
|
|
|
|
int perf_counter_task_disable(void)
|
|
{
|
|
struct task_struct *curr = current;
|
|
struct perf_counter_context *ctx = &curr->perf_counter_ctx;
|
|
struct perf_counter *counter;
|
|
unsigned long flags;
|
|
u64 perf_flags;
|
|
int cpu;
|
|
|
|
if (likely(!ctx->nr_counters))
|
|
return 0;
|
|
|
|
curr_rq_lock_irq_save(&flags);
|
|
cpu = smp_processor_id();
|
|
|
|
/* force the update of the task clock: */
|
|
__task_delta_exec(curr, 1);
|
|
|
|
perf_counter_task_sched_out(curr, cpu);
|
|
|
|
spin_lock(&ctx->lock);
|
|
|
|
/*
|
|
* Disable all the counters:
|
|
*/
|
|
perf_flags = hw_perf_save_disable();
|
|
|
|
list_for_each_entry(counter, &ctx->counter_list, list_entry)
|
|
counter->state = PERF_COUNTER_STATE_OFF;
|
|
|
|
hw_perf_restore(perf_flags);
|
|
|
|
spin_unlock(&ctx->lock);
|
|
|
|
curr_rq_unlock_irq_restore(&flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int perf_counter_task_enable(void)
|
|
{
|
|
struct task_struct *curr = current;
|
|
struct perf_counter_context *ctx = &curr->perf_counter_ctx;
|
|
struct perf_counter *counter;
|
|
unsigned long flags;
|
|
u64 perf_flags;
|
|
int cpu;
|
|
|
|
if (likely(!ctx->nr_counters))
|
|
return 0;
|
|
|
|
curr_rq_lock_irq_save(&flags);
|
|
cpu = smp_processor_id();
|
|
|
|
/* force the update of the task clock: */
|
|
__task_delta_exec(curr, 1);
|
|
|
|
perf_counter_task_sched_out(curr, cpu);
|
|
|
|
spin_lock(&ctx->lock);
|
|
|
|
/*
|
|
* Disable all the counters:
|
|
*/
|
|
perf_flags = hw_perf_save_disable();
|
|
|
|
list_for_each_entry(counter, &ctx->counter_list, list_entry) {
|
|
if (counter->state != PERF_COUNTER_STATE_OFF)
|
|
continue;
|
|
counter->state = PERF_COUNTER_STATE_INACTIVE;
|
|
counter->hw_event.disabled = 0;
|
|
}
|
|
hw_perf_restore(perf_flags);
|
|
|
|
spin_unlock(&ctx->lock);
|
|
|
|
perf_counter_task_sched_in(curr, cpu);
|
|
|
|
curr_rq_unlock_irq_restore(&flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Round-robin a context's counters:
|
|
*/
|
|
static void rotate_ctx(struct perf_counter_context *ctx)
|
|
{
|
|
struct perf_counter *counter;
|
|
u64 perf_flags;
|
|
|
|
if (!ctx->nr_counters)
|
|
return;
|
|
|
|
spin_lock(&ctx->lock);
|
|
/*
|
|
* Rotate the first entry last (works just fine for group counters too):
|
|
*/
|
|
perf_flags = hw_perf_save_disable();
|
|
list_for_each_entry(counter, &ctx->counter_list, list_entry) {
|
|
list_del(&counter->list_entry);
|
|
list_add_tail(&counter->list_entry, &ctx->counter_list);
|
|
break;
|
|
}
|
|
hw_perf_restore(perf_flags);
|
|
|
|
spin_unlock(&ctx->lock);
|
|
}
|
|
|
|
void perf_counter_task_tick(struct task_struct *curr, int cpu)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
|
|
struct perf_counter_context *ctx = &curr->perf_counter_ctx;
|
|
const int rotate_percpu = 0;
|
|
|
|
if (rotate_percpu)
|
|
perf_counter_cpu_sched_out(cpuctx);
|
|
perf_counter_task_sched_out(curr, cpu);
|
|
|
|
if (rotate_percpu)
|
|
rotate_ctx(&cpuctx->ctx);
|
|
rotate_ctx(ctx);
|
|
|
|
if (rotate_percpu)
|
|
perf_counter_cpu_sched_in(cpuctx, cpu);
|
|
perf_counter_task_sched_in(curr, cpu);
|
|
}
|
|
|
|
/*
|
|
* Cross CPU call to read the hardware counter
|
|
*/
|
|
static void __read(void *info)
|
|
{
|
|
struct perf_counter *counter = info;
|
|
unsigned long flags;
|
|
|
|
curr_rq_lock_irq_save(&flags);
|
|
counter->hw_ops->read(counter);
|
|
curr_rq_unlock_irq_restore(&flags);
|
|
}
|
|
|
|
static u64 perf_counter_read(struct perf_counter *counter)
|
|
{
|
|
/*
|
|
* If counter is enabled and currently active on a CPU, update the
|
|
* value in the counter structure:
|
|
*/
|
|
if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
|
|
smp_call_function_single(counter->oncpu,
|
|
__read, counter, 1);
|
|
}
|
|
|
|
return atomic64_read(&counter->count);
|
|
}
|
|
|
|
/*
|
|
* Cross CPU call to switch performance data pointers
|
|
*/
|
|
static void __perf_switch_irq_data(void *info)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
|
|
struct perf_counter *counter = info;
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
struct perf_data *oldirqdata = counter->irqdata;
|
|
|
|
/*
|
|
* If this is a task context, we need to check whether it is
|
|
* the current task context of this cpu. If not it has been
|
|
* scheduled out before the smp call arrived.
|
|
*/
|
|
if (ctx->task) {
|
|
if (cpuctx->task_ctx != ctx)
|
|
return;
|
|
spin_lock(&ctx->lock);
|
|
}
|
|
|
|
/* Change the pointer NMI safe */
|
|
atomic_long_set((atomic_long_t *)&counter->irqdata,
|
|
(unsigned long) counter->usrdata);
|
|
counter->usrdata = oldirqdata;
|
|
|
|
if (ctx->task)
|
|
spin_unlock(&ctx->lock);
|
|
}
|
|
|
|
static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
|
|
{
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
struct perf_data *oldirqdata = counter->irqdata;
|
|
struct task_struct *task = ctx->task;
|
|
|
|
if (!task) {
|
|
smp_call_function_single(counter->cpu,
|
|
__perf_switch_irq_data,
|
|
counter, 1);
|
|
return counter->usrdata;
|
|
}
|
|
|
|
retry:
|
|
spin_lock_irq(&ctx->lock);
|
|
if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
|
|
counter->irqdata = counter->usrdata;
|
|
counter->usrdata = oldirqdata;
|
|
spin_unlock_irq(&ctx->lock);
|
|
return oldirqdata;
|
|
}
|
|
spin_unlock_irq(&ctx->lock);
|
|
task_oncpu_function_call(task, __perf_switch_irq_data, counter);
|
|
/* Might have failed, because task was scheduled out */
|
|
if (counter->irqdata == oldirqdata)
|
|
goto retry;
|
|
|
|
return counter->usrdata;
|
|
}
|
|
|
|
static void put_context(struct perf_counter_context *ctx)
|
|
{
|
|
if (ctx->task)
|
|
put_task_struct(ctx->task);
|
|
}
|
|
|
|
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
|
|
{
|
|
struct perf_cpu_context *cpuctx;
|
|
struct perf_counter_context *ctx;
|
|
struct task_struct *task;
|
|
|
|
/*
|
|
* If cpu is not a wildcard then this is a percpu counter:
|
|
*/
|
|
if (cpu != -1) {
|
|
/* Must be root to operate on a CPU counter: */
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return ERR_PTR(-EACCES);
|
|
|
|
if (cpu < 0 || cpu > num_possible_cpus())
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/*
|
|
* We could be clever and allow to attach a counter to an
|
|
* offline CPU and activate it when the CPU comes up, but
|
|
* that's for later.
|
|
*/
|
|
if (!cpu_isset(cpu, cpu_online_map))
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
cpuctx = &per_cpu(perf_cpu_context, cpu);
|
|
ctx = &cpuctx->ctx;
|
|
|
|
return ctx;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
if (!pid)
|
|
task = current;
|
|
else
|
|
task = find_task_by_vpid(pid);
|
|
if (task)
|
|
get_task_struct(task);
|
|
rcu_read_unlock();
|
|
|
|
if (!task)
|
|
return ERR_PTR(-ESRCH);
|
|
|
|
ctx = &task->perf_counter_ctx;
|
|
ctx->task = task;
|
|
|
|
/* Reuse ptrace permission checks for now. */
|
|
if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
|
|
put_context(ctx);
|
|
return ERR_PTR(-EACCES);
|
|
}
|
|
|
|
return ctx;
|
|
}
|
|
|
|
/*
|
|
* Called when the last reference to the file is gone.
|
|
*/
|
|
static int perf_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct perf_counter *counter = file->private_data;
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
|
|
file->private_data = NULL;
|
|
|
|
mutex_lock(&counter->mutex);
|
|
|
|
perf_counter_remove_from_context(counter);
|
|
put_context(ctx);
|
|
|
|
mutex_unlock(&counter->mutex);
|
|
|
|
kfree(counter);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the performance counter - simple non blocking version for now
|
|
*/
|
|
static ssize_t
|
|
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
|
|
{
|
|
u64 cntval;
|
|
|
|
if (count != sizeof(cntval))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&counter->mutex);
|
|
cntval = perf_counter_read(counter);
|
|
mutex_unlock(&counter->mutex);
|
|
|
|
return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
|
|
}
|
|
|
|
static ssize_t
|
|
perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
|
|
{
|
|
if (!usrdata->len)
|
|
return 0;
|
|
|
|
count = min(count, (size_t)usrdata->len);
|
|
if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
|
|
return -EFAULT;
|
|
|
|
/* Adjust the counters */
|
|
usrdata->len -= count;
|
|
if (!usrdata->len)
|
|
usrdata->rd_idx = 0;
|
|
else
|
|
usrdata->rd_idx += count;
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t
|
|
perf_read_irq_data(struct perf_counter *counter,
|
|
char __user *buf,
|
|
size_t count,
|
|
int nonblocking)
|
|
{
|
|
struct perf_data *irqdata, *usrdata;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
ssize_t res;
|
|
|
|
irqdata = counter->irqdata;
|
|
usrdata = counter->usrdata;
|
|
|
|
if (usrdata->len + irqdata->len >= count)
|
|
goto read_pending;
|
|
|
|
if (nonblocking)
|
|
return -EAGAIN;
|
|
|
|
spin_lock_irq(&counter->waitq.lock);
|
|
__add_wait_queue(&counter->waitq, &wait);
|
|
for (;;) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (usrdata->len + irqdata->len >= count)
|
|
break;
|
|
|
|
if (signal_pending(current))
|
|
break;
|
|
|
|
spin_unlock_irq(&counter->waitq.lock);
|
|
schedule();
|
|
spin_lock_irq(&counter->waitq.lock);
|
|
}
|
|
__remove_wait_queue(&counter->waitq, &wait);
|
|
__set_current_state(TASK_RUNNING);
|
|
spin_unlock_irq(&counter->waitq.lock);
|
|
|
|
if (usrdata->len + irqdata->len < count)
|
|
return -ERESTARTSYS;
|
|
read_pending:
|
|
mutex_lock(&counter->mutex);
|
|
|
|
/* Drain pending data first: */
|
|
res = perf_copy_usrdata(usrdata, buf, count);
|
|
if (res < 0 || res == count)
|
|
goto out;
|
|
|
|
/* Switch irq buffer: */
|
|
usrdata = perf_switch_irq_data(counter);
|
|
if (perf_copy_usrdata(usrdata, buf + res, count - res) < 0) {
|
|
if (!res)
|
|
res = -EFAULT;
|
|
} else {
|
|
res = count;
|
|
}
|
|
out:
|
|
mutex_unlock(&counter->mutex);
|
|
|
|
return res;
|
|
}
|
|
|
|
static ssize_t
|
|
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
|
|
{
|
|
struct perf_counter *counter = file->private_data;
|
|
|
|
switch (counter->hw_event.record_type) {
|
|
case PERF_RECORD_SIMPLE:
|
|
return perf_read_hw(counter, buf, count);
|
|
|
|
case PERF_RECORD_IRQ:
|
|
case PERF_RECORD_GROUP:
|
|
return perf_read_irq_data(counter, buf, count,
|
|
file->f_flags & O_NONBLOCK);
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static unsigned int perf_poll(struct file *file, poll_table *wait)
|
|
{
|
|
struct perf_counter *counter = file->private_data;
|
|
unsigned int events = 0;
|
|
unsigned long flags;
|
|
|
|
poll_wait(file, &counter->waitq, wait);
|
|
|
|
spin_lock_irqsave(&counter->waitq.lock, flags);
|
|
if (counter->usrdata->len || counter->irqdata->len)
|
|
events |= POLLIN;
|
|
spin_unlock_irqrestore(&counter->waitq.lock, flags);
|
|
|
|
return events;
|
|
}
|
|
|
|
static const struct file_operations perf_fops = {
|
|
.release = perf_release,
|
|
.read = perf_read,
|
|
.poll = perf_poll,
|
|
};
|
|
|
|
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
atomic64_set(&counter->hw.prev_count, cpu_clock(cpu));
|
|
return 0;
|
|
}
|
|
|
|
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
s64 prev;
|
|
u64 now;
|
|
|
|
now = cpu_clock(cpu);
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
atomic64_set(&counter->hw.prev_count, now);
|
|
atomic64_add(now - prev, &counter->count);
|
|
}
|
|
|
|
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
|
|
{
|
|
cpu_clock_perf_counter_update(counter);
|
|
}
|
|
|
|
static void cpu_clock_perf_counter_read(struct perf_counter *counter)
|
|
{
|
|
cpu_clock_perf_counter_update(counter);
|
|
}
|
|
|
|
static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
|
|
.enable = cpu_clock_perf_counter_enable,
|
|
.disable = cpu_clock_perf_counter_disable,
|
|
.read = cpu_clock_perf_counter_read,
|
|
};
|
|
|
|
/*
|
|
* Called from within the scheduler:
|
|
*/
|
|
static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
|
|
{
|
|
struct task_struct *curr = counter->task;
|
|
u64 delta;
|
|
|
|
delta = __task_delta_exec(curr, update);
|
|
|
|
return curr->se.sum_exec_runtime + delta;
|
|
}
|
|
|
|
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
|
|
{
|
|
u64 prev;
|
|
s64 delta;
|
|
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
|
|
atomic64_set(&counter->hw.prev_count, now);
|
|
|
|
delta = now - prev;
|
|
|
|
atomic64_add(delta, &counter->count);
|
|
}
|
|
|
|
static void task_clock_perf_counter_read(struct perf_counter *counter)
|
|
{
|
|
u64 now = task_clock_perf_counter_val(counter, 1);
|
|
|
|
task_clock_perf_counter_update(counter, now);
|
|
}
|
|
|
|
static int task_clock_perf_counter_enable(struct perf_counter *counter)
|
|
{
|
|
u64 now = task_clock_perf_counter_val(counter, 0);
|
|
|
|
atomic64_set(&counter->hw.prev_count, now);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void task_clock_perf_counter_disable(struct perf_counter *counter)
|
|
{
|
|
u64 now = task_clock_perf_counter_val(counter, 0);
|
|
|
|
task_clock_perf_counter_update(counter, now);
|
|
}
|
|
|
|
static const struct hw_perf_counter_ops perf_ops_task_clock = {
|
|
.enable = task_clock_perf_counter_enable,
|
|
.disable = task_clock_perf_counter_disable,
|
|
.read = task_clock_perf_counter_read,
|
|
};
|
|
|
|
static u64 get_page_faults(void)
|
|
{
|
|
struct task_struct *curr = current;
|
|
|
|
return curr->maj_flt + curr->min_flt;
|
|
}
|
|
|
|
static void page_faults_perf_counter_update(struct perf_counter *counter)
|
|
{
|
|
u64 prev, now;
|
|
s64 delta;
|
|
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
now = get_page_faults();
|
|
|
|
atomic64_set(&counter->hw.prev_count, now);
|
|
|
|
delta = now - prev;
|
|
|
|
atomic64_add(delta, &counter->count);
|
|
}
|
|
|
|
static void page_faults_perf_counter_read(struct perf_counter *counter)
|
|
{
|
|
page_faults_perf_counter_update(counter);
|
|
}
|
|
|
|
static int page_faults_perf_counter_enable(struct perf_counter *counter)
|
|
{
|
|
/*
|
|
* page-faults is a per-task value already,
|
|
* so we dont have to clear it on switch-in.
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void page_faults_perf_counter_disable(struct perf_counter *counter)
|
|
{
|
|
page_faults_perf_counter_update(counter);
|
|
}
|
|
|
|
static const struct hw_perf_counter_ops perf_ops_page_faults = {
|
|
.enable = page_faults_perf_counter_enable,
|
|
.disable = page_faults_perf_counter_disable,
|
|
.read = page_faults_perf_counter_read,
|
|
};
|
|
|
|
static u64 get_context_switches(void)
|
|
{
|
|
struct task_struct *curr = current;
|
|
|
|
return curr->nvcsw + curr->nivcsw;
|
|
}
|
|
|
|
static void context_switches_perf_counter_update(struct perf_counter *counter)
|
|
{
|
|
u64 prev, now;
|
|
s64 delta;
|
|
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
now = get_context_switches();
|
|
|
|
atomic64_set(&counter->hw.prev_count, now);
|
|
|
|
delta = now - prev;
|
|
|
|
atomic64_add(delta, &counter->count);
|
|
}
|
|
|
|
static void context_switches_perf_counter_read(struct perf_counter *counter)
|
|
{
|
|
context_switches_perf_counter_update(counter);
|
|
}
|
|
|
|
static int context_switches_perf_counter_enable(struct perf_counter *counter)
|
|
{
|
|
/*
|
|
* ->nvcsw + curr->nivcsw is a per-task value already,
|
|
* so we dont have to clear it on switch-in.
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void context_switches_perf_counter_disable(struct perf_counter *counter)
|
|
{
|
|
context_switches_perf_counter_update(counter);
|
|
}
|
|
|
|
static const struct hw_perf_counter_ops perf_ops_context_switches = {
|
|
.enable = context_switches_perf_counter_enable,
|
|
.disable = context_switches_perf_counter_disable,
|
|
.read = context_switches_perf_counter_read,
|
|
};
|
|
|
|
static inline u64 get_cpu_migrations(void)
|
|
{
|
|
return current->se.nr_migrations;
|
|
}
|
|
|
|
static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
|
|
{
|
|
u64 prev, now;
|
|
s64 delta;
|
|
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
now = get_cpu_migrations();
|
|
|
|
atomic64_set(&counter->hw.prev_count, now);
|
|
|
|
delta = now - prev;
|
|
|
|
atomic64_add(delta, &counter->count);
|
|
}
|
|
|
|
static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
|
|
{
|
|
cpu_migrations_perf_counter_update(counter);
|
|
}
|
|
|
|
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
|
|
{
|
|
/*
|
|
* se.nr_migrations is a per-task value already,
|
|
* so we dont have to clear it on switch-in.
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
|
|
{
|
|
cpu_migrations_perf_counter_update(counter);
|
|
}
|
|
|
|
static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
|
|
.enable = cpu_migrations_perf_counter_enable,
|
|
.disable = cpu_migrations_perf_counter_disable,
|
|
.read = cpu_migrations_perf_counter_read,
|
|
};
|
|
|
|
static const struct hw_perf_counter_ops *
|
|
sw_perf_counter_init(struct perf_counter *counter)
|
|
{
|
|
const struct hw_perf_counter_ops *hw_ops = NULL;
|
|
|
|
switch (counter->hw_event.type) {
|
|
case PERF_COUNT_CPU_CLOCK:
|
|
hw_ops = &perf_ops_cpu_clock;
|
|
break;
|
|
case PERF_COUNT_TASK_CLOCK:
|
|
hw_ops = &perf_ops_task_clock;
|
|
break;
|
|
case PERF_COUNT_PAGE_FAULTS:
|
|
hw_ops = &perf_ops_page_faults;
|
|
break;
|
|
case PERF_COUNT_CONTEXT_SWITCHES:
|
|
hw_ops = &perf_ops_context_switches;
|
|
break;
|
|
case PERF_COUNT_CPU_MIGRATIONS:
|
|
hw_ops = &perf_ops_cpu_migrations;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return hw_ops;
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize a counter structure
|
|
*/
|
|
static struct perf_counter *
|
|
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
|
|
int cpu,
|
|
struct perf_counter *group_leader,
|
|
gfp_t gfpflags)
|
|
{
|
|
const struct hw_perf_counter_ops *hw_ops;
|
|
struct perf_counter *counter;
|
|
|
|
counter = kzalloc(sizeof(*counter), gfpflags);
|
|
if (!counter)
|
|
return NULL;
|
|
|
|
/*
|
|
* Single counters are their own group leaders, with an
|
|
* empty sibling list:
|
|
*/
|
|
if (!group_leader)
|
|
group_leader = counter;
|
|
|
|
mutex_init(&counter->mutex);
|
|
INIT_LIST_HEAD(&counter->list_entry);
|
|
INIT_LIST_HEAD(&counter->sibling_list);
|
|
init_waitqueue_head(&counter->waitq);
|
|
|
|
counter->irqdata = &counter->data[0];
|
|
counter->usrdata = &counter->data[1];
|
|
counter->cpu = cpu;
|
|
counter->hw_event = *hw_event;
|
|
counter->wakeup_pending = 0;
|
|
counter->group_leader = group_leader;
|
|
counter->hw_ops = NULL;
|
|
|
|
counter->state = PERF_COUNTER_STATE_INACTIVE;
|
|
if (hw_event->disabled)
|
|
counter->state = PERF_COUNTER_STATE_OFF;
|
|
|
|
hw_ops = NULL;
|
|
if (!hw_event->raw && hw_event->type < 0)
|
|
hw_ops = sw_perf_counter_init(counter);
|
|
if (!hw_ops)
|
|
hw_ops = hw_perf_counter_init(counter);
|
|
|
|
if (!hw_ops) {
|
|
kfree(counter);
|
|
return NULL;
|
|
}
|
|
counter->hw_ops = hw_ops;
|
|
|
|
return counter;
|
|
}
|
|
|
|
/**
|
|
* sys_perf_task_open - open a performance counter, associate it to a task/cpu
|
|
*
|
|
* @hw_event_uptr: event type attributes for monitoring/sampling
|
|
* @pid: target pid
|
|
* @cpu: target cpu
|
|
* @group_fd: group leader counter fd
|
|
*/
|
|
asmlinkage int
|
|
sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user,
|
|
pid_t pid, int cpu, int group_fd)
|
|
{
|
|
struct perf_counter *counter, *group_leader;
|
|
struct perf_counter_hw_event hw_event;
|
|
struct perf_counter_context *ctx;
|
|
struct file *counter_file = NULL;
|
|
struct file *group_file = NULL;
|
|
int fput_needed = 0;
|
|
int fput_needed2 = 0;
|
|
int ret;
|
|
|
|
if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* Get the target context (task or percpu):
|
|
*/
|
|
ctx = find_get_context(pid, cpu);
|
|
if (IS_ERR(ctx))
|
|
return PTR_ERR(ctx);
|
|
|
|
/*
|
|
* Look up the group leader (we will attach this counter to it):
|
|
*/
|
|
group_leader = NULL;
|
|
if (group_fd != -1) {
|
|
ret = -EINVAL;
|
|
group_file = fget_light(group_fd, &fput_needed);
|
|
if (!group_file)
|
|
goto err_put_context;
|
|
if (group_file->f_op != &perf_fops)
|
|
goto err_put_context;
|
|
|
|
group_leader = group_file->private_data;
|
|
/*
|
|
* Do not allow a recursive hierarchy (this new sibling
|
|
* becoming part of another group-sibling):
|
|
*/
|
|
if (group_leader->group_leader != group_leader)
|
|
goto err_put_context;
|
|
/*
|
|
* Do not allow to attach to a group in a different
|
|
* task or CPU context:
|
|
*/
|
|
if (group_leader->ctx != ctx)
|
|
goto err_put_context;
|
|
}
|
|
|
|
ret = -EINVAL;
|
|
counter = perf_counter_alloc(&hw_event, cpu, group_leader, GFP_KERNEL);
|
|
if (!counter)
|
|
goto err_put_context;
|
|
|
|
ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
|
|
if (ret < 0)
|
|
goto err_free_put_context;
|
|
|
|
counter_file = fget_light(ret, &fput_needed2);
|
|
if (!counter_file)
|
|
goto err_free_put_context;
|
|
|
|
counter->filp = counter_file;
|
|
perf_install_in_context(ctx, counter, cpu);
|
|
|
|
fput_light(counter_file, fput_needed2);
|
|
|
|
out_fput:
|
|
fput_light(group_file, fput_needed);
|
|
|
|
return ret;
|
|
|
|
err_free_put_context:
|
|
kfree(counter);
|
|
|
|
err_put_context:
|
|
put_context(ctx);
|
|
|
|
goto out_fput;
|
|
}
|
|
|
|
/*
|
|
* Initialize the perf_counter context in a task_struct:
|
|
*/
|
|
static void
|
|
__perf_counter_init_context(struct perf_counter_context *ctx,
|
|
struct task_struct *task)
|
|
{
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
spin_lock_init(&ctx->lock);
|
|
INIT_LIST_HEAD(&ctx->counter_list);
|
|
ctx->task = task;
|
|
}
|
|
|
|
/*
|
|
* inherit a counter from parent task to child task:
|
|
*/
|
|
static int
|
|
inherit_counter(struct perf_counter *parent_counter,
|
|
struct task_struct *parent,
|
|
struct perf_counter_context *parent_ctx,
|
|
struct task_struct *child,
|
|
struct perf_counter_context *child_ctx)
|
|
{
|
|
struct perf_counter *child_counter;
|
|
|
|
child_counter = perf_counter_alloc(&parent_counter->hw_event,
|
|
parent_counter->cpu, NULL,
|
|
GFP_ATOMIC);
|
|
if (!child_counter)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Link it up in the child's context:
|
|
*/
|
|
child_counter->ctx = child_ctx;
|
|
child_counter->task = child;
|
|
list_add_counter(child_counter, child_ctx);
|
|
child_ctx->nr_counters++;
|
|
|
|
child_counter->parent = parent_counter;
|
|
/*
|
|
* inherit into child's child as well:
|
|
*/
|
|
child_counter->hw_event.inherit = 1;
|
|
|
|
/*
|
|
* Get a reference to the parent filp - we will fput it
|
|
* when the child counter exits. This is safe to do because
|
|
* we are in the parent and we know that the filp still
|
|
* exists and has a nonzero count:
|
|
*/
|
|
atomic_long_inc(&parent_counter->filp->f_count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
__perf_counter_exit_task(struct task_struct *child,
|
|
struct perf_counter *child_counter,
|
|
struct perf_counter_context *child_ctx)
|
|
{
|
|
struct perf_counter *parent_counter;
|
|
u64 parent_val, child_val;
|
|
|
|
/*
|
|
* If we do not self-reap then we have to wait for the
|
|
* child task to unschedule (it will happen for sure),
|
|
* so that its counter is at its final count. (This
|
|
* condition triggers rarely - child tasks usually get
|
|
* off their CPU before the parent has a chance to
|
|
* get this far into the reaping action)
|
|
*/
|
|
if (child != current) {
|
|
wait_task_inactive(child, 0);
|
|
list_del_init(&child_counter->list_entry);
|
|
} else {
|
|
struct perf_cpu_context *cpuctx;
|
|
unsigned long flags;
|
|
u64 perf_flags;
|
|
|
|
/*
|
|
* Disable and unlink this counter.
|
|
*
|
|
* Be careful about zapping the list - IRQ/NMI context
|
|
* could still be processing it:
|
|
*/
|
|
curr_rq_lock_irq_save(&flags);
|
|
perf_flags = hw_perf_save_disable();
|
|
|
|
cpuctx = &__get_cpu_var(perf_cpu_context);
|
|
|
|
if (child_counter->state == PERF_COUNTER_STATE_ACTIVE) {
|
|
child_counter->state = PERF_COUNTER_STATE_INACTIVE;
|
|
child_counter->hw_ops->disable(child_counter);
|
|
cpuctx->active_oncpu--;
|
|
child_ctx->nr_active--;
|
|
child_counter->oncpu = -1;
|
|
}
|
|
|
|
list_del_init(&child_counter->list_entry);
|
|
|
|
child_ctx->nr_counters--;
|
|
|
|
hw_perf_restore(perf_flags);
|
|
curr_rq_unlock_irq_restore(&flags);
|
|
}
|
|
|
|
parent_counter = child_counter->parent;
|
|
/*
|
|
* It can happen that parent exits first, and has counters
|
|
* that are still around due to the child reference. These
|
|
* counters need to be zapped - but otherwise linger.
|
|
*/
|
|
if (!parent_counter)
|
|
return;
|
|
|
|
parent_val = atomic64_read(&parent_counter->count);
|
|
child_val = atomic64_read(&child_counter->count);
|
|
|
|
/*
|
|
* Add back the child's count to the parent's count:
|
|
*/
|
|
atomic64_add(child_val, &parent_counter->count);
|
|
|
|
fput(parent_counter->filp);
|
|
|
|
kfree(child_counter);
|
|
}
|
|
|
|
/*
|
|
* When a child task exist, feed back counter values to parent counters.
|
|
*
|
|
* Note: we are running in child context, but the PID is not hashed
|
|
* anymore so new counters will not be added.
|
|
*/
|
|
void perf_counter_exit_task(struct task_struct *child)
|
|
{
|
|
struct perf_counter *child_counter, *tmp;
|
|
struct perf_counter_context *child_ctx;
|
|
|
|
child_ctx = &child->perf_counter_ctx;
|
|
|
|
if (likely(!child_ctx->nr_counters))
|
|
return;
|
|
|
|
list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
|
|
list_entry)
|
|
__perf_counter_exit_task(child, child_counter, child_ctx);
|
|
}
|
|
|
|
/*
|
|
* Initialize the perf_counter context in task_struct
|
|
*/
|
|
void perf_counter_init_task(struct task_struct *child)
|
|
{
|
|
struct perf_counter_context *child_ctx, *parent_ctx;
|
|
struct perf_counter *counter, *parent_counter;
|
|
struct task_struct *parent = current;
|
|
unsigned long flags;
|
|
|
|
child_ctx = &child->perf_counter_ctx;
|
|
parent_ctx = &parent->perf_counter_ctx;
|
|
|
|
__perf_counter_init_context(child_ctx, child);
|
|
|
|
/*
|
|
* This is executed from the parent task context, so inherit
|
|
* counters that have been marked for cloning:
|
|
*/
|
|
|
|
if (likely(!parent_ctx->nr_counters))
|
|
return;
|
|
|
|
/*
|
|
* Lock the parent list. No need to lock the child - not PID
|
|
* hashed yet and not running, so nobody can access it.
|
|
*/
|
|
spin_lock_irqsave(&parent_ctx->lock, flags);
|
|
|
|
/*
|
|
* We dont have to disable NMIs - we are only looking at
|
|
* the list, not manipulating it:
|
|
*/
|
|
list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
|
|
if (!counter->hw_event.inherit || counter->group_leader != counter)
|
|
continue;
|
|
|
|
/*
|
|
* Instead of creating recursive hierarchies of counters,
|
|
* we link inheritd counters back to the original parent,
|
|
* which has a filp for sure, which we use as the reference
|
|
* count:
|
|
*/
|
|
parent_counter = counter;
|
|
if (counter->parent)
|
|
parent_counter = counter->parent;
|
|
|
|
if (inherit_counter(parent_counter, parent,
|
|
parent_ctx, child, child_ctx))
|
|
break;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&parent_ctx->lock, flags);
|
|
}
|
|
|
|
static void __cpuinit perf_counter_init_cpu(int cpu)
|
|
{
|
|
struct perf_cpu_context *cpuctx;
|
|
|
|
cpuctx = &per_cpu(perf_cpu_context, cpu);
|
|
__perf_counter_init_context(&cpuctx->ctx, NULL);
|
|
|
|
mutex_lock(&perf_resource_mutex);
|
|
cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
|
|
mutex_unlock(&perf_resource_mutex);
|
|
|
|
hw_perf_counter_setup();
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void __perf_counter_exit_cpu(void *info)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
|
|
struct perf_counter_context *ctx = &cpuctx->ctx;
|
|
struct perf_counter *counter, *tmp;
|
|
|
|
list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
|
|
__perf_counter_remove_from_context(counter);
|
|
|
|
}
|
|
static void perf_counter_exit_cpu(int cpu)
|
|
{
|
|
smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
|
|
}
|
|
#else
|
|
static inline void perf_counter_exit_cpu(int cpu) { }
|
|
#endif
|
|
|
|
static int __cpuinit
|
|
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (long)hcpu;
|
|
|
|
switch (action) {
|
|
|
|
case CPU_UP_PREPARE:
|
|
case CPU_UP_PREPARE_FROZEN:
|
|
perf_counter_init_cpu(cpu);
|
|
break;
|
|
|
|
case CPU_DOWN_PREPARE:
|
|
case CPU_DOWN_PREPARE_FROZEN:
|
|
perf_counter_exit_cpu(cpu);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block __cpuinitdata perf_cpu_nb = {
|
|
.notifier_call = perf_cpu_notify,
|
|
};
|
|
|
|
static int __init perf_counter_init(void)
|
|
{
|
|
perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
|
|
(void *)(long)smp_processor_id());
|
|
register_cpu_notifier(&perf_cpu_nb);
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(perf_counter_init);
|
|
|
|
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", perf_reserved_percpu);
|
|
}
|
|
|
|
static ssize_t
|
|
perf_set_reserve_percpu(struct sysdev_class *class,
|
|
const char *buf,
|
|
size_t count)
|
|
{
|
|
struct perf_cpu_context *cpuctx;
|
|
unsigned long val;
|
|
int err, cpu, mpt;
|
|
|
|
err = strict_strtoul(buf, 10, &val);
|
|
if (err)
|
|
return err;
|
|
if (val > perf_max_counters)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&perf_resource_mutex);
|
|
perf_reserved_percpu = val;
|
|
for_each_online_cpu(cpu) {
|
|
cpuctx = &per_cpu(perf_cpu_context, cpu);
|
|
spin_lock_irq(&cpuctx->ctx.lock);
|
|
mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
|
|
perf_max_counters - perf_reserved_percpu);
|
|
cpuctx->max_pertask = mpt;
|
|
spin_unlock_irq(&cpuctx->ctx.lock);
|
|
}
|
|
mutex_unlock(&perf_resource_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", perf_overcommit);
|
|
}
|
|
|
|
static ssize_t
|
|
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
|
|
{
|
|
unsigned long val;
|
|
int err;
|
|
|
|
err = strict_strtoul(buf, 10, &val);
|
|
if (err)
|
|
return err;
|
|
if (val > 1)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&perf_resource_mutex);
|
|
perf_overcommit = val;
|
|
mutex_unlock(&perf_resource_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static SYSDEV_CLASS_ATTR(
|
|
reserve_percpu,
|
|
0644,
|
|
perf_show_reserve_percpu,
|
|
perf_set_reserve_percpu
|
|
);
|
|
|
|
static SYSDEV_CLASS_ATTR(
|
|
overcommit,
|
|
0644,
|
|
perf_show_overcommit,
|
|
perf_set_overcommit
|
|
);
|
|
|
|
static struct attribute *perfclass_attrs[] = {
|
|
&attr_reserve_percpu.attr,
|
|
&attr_overcommit.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group perfclass_attr_group = {
|
|
.attrs = perfclass_attrs,
|
|
.name = "perf_counters",
|
|
};
|
|
|
|
static int __init perf_counter_sysfs_init(void)
|
|
{
|
|
return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
|
|
&perfclass_attr_group);
|
|
}
|
|
device_initcall(perf_counter_sysfs_init);
|