linux-next/arch/powerpc/kernel/crash_dump.c
Stephen Rothwell 9e4859ef54 [POWERPC] FWNMI is only used on pSeries
This saves 4k on non pSeries builds (except for iSeries where it saves
almost 4k).

Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-09-19 15:25:34 +10:00

119 lines
3.0 KiB
C

/*
* Routines for doing kexec-based kdump.
*
* Copyright (C) 2005, IBM Corp.
*
* Created by: Michael Ellerman
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#undef DEBUG
#include <linux/crash_dump.h>
#include <linux/bootmem.h>
#include <asm/kdump.h>
#include <asm/lmb.h>
#include <asm/firmware.h>
#include <asm/uaccess.h>
#ifdef DEBUG
#include <asm/udbg.h>
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
void __init reserve_kdump_trampoline(void)
{
lmb_reserve(0, KDUMP_RESERVE_LIMIT);
}
static void __init create_trampoline(unsigned long addr)
{
/* The maximum range of a single instruction branch, is the current
* instruction's address + (32 MB - 4) bytes. For the trampoline we
* need to branch to current address + 32 MB. So we insert a nop at
* the trampoline address, then the next instruction (+ 4 bytes)
* does a branch to (32 MB - 4). The net effect is that when we
* branch to "addr" we jump to ("addr" + 32 MB). Although it requires
* two instructions it doesn't require any registers.
*/
create_instruction(addr, 0x60000000); /* nop */
create_branch(addr + 4, addr + PHYSICAL_START, 0);
}
void __init setup_kdump_trampoline(void)
{
unsigned long i;
DBG(" -> setup_kdump_trampoline()\n");
for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
create_trampoline(i);
}
#ifdef CONFIG_PPC_PSERIES
create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
#endif /* CONFIG_PPC_PSERIES */
DBG(" <- setup_kdump_trampoline()\n");
}
#ifdef CONFIG_PROC_VMCORE
static int __init parse_elfcorehdr(char *p)
{
if (p)
elfcorehdr_addr = memparse(p, &p);
return 1;
}
__setup("elfcorehdr=", parse_elfcorehdr);
#endif
static int __init parse_savemaxmem(char *p)
{
if (p)
saved_max_pfn = (memparse(p, &p) >> PAGE_SHIFT) - 1;
return 1;
}
__setup("savemaxmem=", parse_savemaxmem);
/**
* copy_oldmem_page - copy one page from "oldmem"
* @pfn: page frame number to be copied
* @buf: target memory address for the copy; this can be in kernel address
* space or user address space (see @userbuf)
* @csize: number of bytes to copy
* @offset: offset in bytes into the page (based on pfn) to begin the copy
* @userbuf: if set, @buf is in user address space, use copy_to_user(),
* otherwise @buf is in kernel address space, use memcpy().
*
* Copy a page from "oldmem". For this page, there is no pte mapped
* in the current kernel. We stitch up a pte, similar to kmap_atomic.
*/
ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
size_t csize, unsigned long offset, int userbuf)
{
void *vaddr;
if (!csize)
return 0;
vaddr = __ioremap(pfn << PAGE_SHIFT, PAGE_SIZE, 0);
if (userbuf) {
if (copy_to_user((char __user *)buf, (vaddr + offset), csize)) {
iounmap(vaddr);
return -EFAULT;
}
} else
memcpy(buf, (vaddr + offset), csize);
iounmap(vaddr);
return csize;
}