linux-next/sound/oss/cs46xx.c
Al Viro f23f6e08c4 [PATCH] severing poll.h -> mm.h
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2006-12-04 02:00:36 -05:00

5448 lines
157 KiB
C

/*
* Crystal SoundFusion CS46xx driver
*
* Copyright 1998-2001 Cirrus Logic Corporation <pcaudio@crystal.cirrus.com>
* <twoller@crystal.cirrus.com>
* Copyright 1999-2000 Jaroslav Kysela <perex@suse.cz>
* Copyright 2000 Alan Cox <alan@redhat.com>
*
* The core of this code is taken from the ALSA project driver by
* Jaroslav. Please send Jaroslav the credit for the driver and
* report bugs in this port to <alan@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
* Current maintainers:
* Cirrus Logic Corporation, Thomas Woller (tw)
* <twoller@crystal.cirrus.com>
* Nils Faerber (nf)
* <nils@kernelconcepts.de>
* Thanks to David Pollard for testing.
*
* Changes:
* 20000909-nf Changed cs_read, cs_write and drain_dac
* 20001025-tw Separate Playback/Capture structs and buffers.
* Added Scatter/Gather support for Playback.
* Added Capture.
* 20001027-nf Port to kernel 2.4.0-test9, some clean-ups
* Start of powermanagement support (CS46XX_PM).
* 20001128-tw Add module parm for default buffer order.
* added DMA_GFP flag to kmalloc dma buffer allocs.
* backfill silence to eliminate stuttering on
* underruns.
* 20001201-tw add resyncing of swptr on underruns.
* 20001205-tw-nf fixed GETOSPACE ioctl() after open()
* 20010113-tw patch from Hans Grobler general cleanup.
* 20010117-tw 2.4.0 pci cleanup, wrapper code for 2.2.16-2.4.0
* 20010118-tw basic PM support for 2.2.16+ and 2.4.0/2.4.2.
* 20010228-dh patch from David Huggins - cs_update_ptr recursion.
* 20010409-tw add hercules game theatre XP amp code.
* 20010420-tw cleanup powerdown/up code.
* 20010521-tw eliminate pops, and fixes for powerdown.
* 20010525-tw added fixes for thinkpads with powerdown logic.
* 20010723-sh patch from Horms (Simon Horman) -
* SOUND_PCM_READ_BITS returns bits as set in driver
* rather than a logical or of the possible values.
* Various ioctls handle the case where the device
* is open for reading or writing but not both better.
*
* Status:
* Playback/Capture supported from 8k-48k.
* 16Bit Signed LE & 8Bit Unsigned, with Mono or Stereo supported.
*
* APM/PM - 2.2.x APM is enabled and functioning fine. APM can also
* be enabled for 2.4.x by modifying the CS46XX_ACPI_SUPPORT macro
* definition.
*
* Hercules Game Theatre XP - the EGPIO2 pin controls the external Amp,
* so, use the drain/polarity to enable.
* hercules_egpio_disable set to 1, will force a 0 to EGPIODR.
*
* VTB Santa Cruz - the GPIO7/GPIO8 on the Secondary Codec control
* the external amplifier for the "back" speakers, since we do not
* support the secondary codec then this external amp is also not
* turned on.
*/
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/pci.h>
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/ac97_codec.h>
#include <linux/mutex.h>
#include <linux/mm.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/uaccess.h>
#include "cs46xxpm.h"
#include "cs46xx_wrapper-24.h"
#include "cs461x.h"
/* MIDI buffer sizes */
#define CS_MIDIINBUF 500
#define CS_MIDIOUTBUF 500
#define ADC_RUNNING 1
#define DAC_RUNNING 2
#define CS_FMT_16BIT 1 /* These are fixed in fact */
#define CS_FMT_STEREO 2
#define CS_FMT_MASK 3
#define CS_TYPE_ADC 1
#define CS_TYPE_DAC 2
#define CS_TRUE 1
#define CS_FALSE 0
#define CS_INC_USE_COUNT(m) (atomic_inc(m))
#define CS_DEC_USE_COUNT(m) (atomic_dec(m))
#define CS_DEC_AND_TEST(m) (atomic_dec_and_test(m))
#define CS_IN_USE(m) (atomic_read(m) != 0)
#define CS_DBGBREAKPOINT {__asm__("INT $3");}
/*
* CS461x definitions
*/
#define CS461X_BA0_SIZE 0x2000
#define CS461X_BA1_DATA0_SIZE 0x3000
#define CS461X_BA1_DATA1_SIZE 0x3800
#define CS461X_BA1_PRG_SIZE 0x7000
#define CS461X_BA1_REG_SIZE 0x0100
#define GOF_PER_SEC 200
#define CSDEBUG_INTERFACE 1
#define CSDEBUG 1
/*
* Turn on/off debugging compilation by using 1/0 respectively for CSDEBUG
*
*
* CSDEBUG is usual mode is set to 1, then use the
* cs_debuglevel and cs_debugmask to turn on or off debugging.
* Debug level of 1 has been defined to be kernel errors and info
* that should be printed on any released driver.
*/
#if CSDEBUG
#define CS_DBGOUT(mask,level,x) if ((cs_debuglevel >= (level)) && ((mask) & cs_debugmask)) {x;}
#else
#define CS_DBGOUT(mask,level,x)
#endif
/*
* cs_debugmask areas
*/
#define CS_INIT 0x00000001 /* initialization and probe functions */
#define CS_ERROR 0x00000002 /* tmp debugging bit placeholder */
#define CS_INTERRUPT 0x00000004 /* interrupt handler (separate from all other) */
#define CS_FUNCTION 0x00000008 /* enter/leave functions */
#define CS_WAVE_WRITE 0x00000010 /* write information for wave */
#define CS_WAVE_READ 0x00000020 /* read information for wave */
#define CS_MIDI_WRITE 0x00000040 /* write information for midi */
#define CS_MIDI_READ 0x00000080 /* read information for midi */
#define CS_MPU401_WRITE 0x00000100 /* write information for mpu401 */
#define CS_MPU401_READ 0x00000200 /* read information for mpu401 */
#define CS_OPEN 0x00000400 /* all open functions in the driver */
#define CS_RELEASE 0x00000800 /* all release functions in the driver */
#define CS_PARMS 0x00001000 /* functional and operational parameters */
#define CS_IOCTL 0x00002000 /* ioctl (non-mixer) */
#define CS_PM 0x00004000 /* PM */
#define CS_TMP 0x10000000 /* tmp debug mask bit */
#define CS_IOCTL_CMD_SUSPEND 0x1 // suspend
#define CS_IOCTL_CMD_RESUME 0x2 // resume
#if CSDEBUG
static unsigned long cs_debuglevel = 1; /* levels range from 1-9 */
module_param(cs_debuglevel, ulong, 0644);
static unsigned long cs_debugmask = CS_INIT | CS_ERROR; /* use CS_DBGOUT with various mask values */
module_param(cs_debugmask, ulong, 0644);
#endif
static unsigned long hercules_egpio_disable; /* if non-zero set all EGPIO to 0 */
module_param(hercules_egpio_disable, ulong, 0);
static unsigned long initdelay = 700; /* PM delay in millisecs */
module_param(initdelay, ulong, 0);
static unsigned long powerdown = -1; /* turn on/off powerdown processing in driver */
module_param(powerdown, ulong, 0);
#define DMABUF_DEFAULTORDER 3
static unsigned long defaultorder = DMABUF_DEFAULTORDER;
module_param(defaultorder, ulong, 0);
static int external_amp;
module_param(external_amp, bool, 0);
static int thinkpad;
module_param(thinkpad, bool, 0);
/*
* set the powerdown module parm to 0 to disable all
* powerdown. also set thinkpad to 1 to disable powerdown,
* but also to enable the clkrun functionality.
*/
static unsigned cs_powerdown = 1;
static unsigned cs_laptop_wait = 1;
/* An instance of the 4610 channel */
struct cs_channel
{
int used;
int num;
void *state;
};
#define CS46XX_MAJOR_VERSION "1"
#define CS46XX_MINOR_VERSION "28"
#ifdef __ia64__
#define CS46XX_ARCH "64" //architecture key
#else
#define CS46XX_ARCH "32" //architecture key
#endif
static struct list_head cs46xx_devs = { &cs46xx_devs, &cs46xx_devs };
/* magic numbers to protect our data structures */
#define CS_CARD_MAGIC 0x43525553 /* "CRUS" */
#define CS_STATE_MAGIC 0x4c4f4749 /* "LOGI" */
#define NR_HW_CH 3
/* maxinum number of AC97 codecs connected, AC97 2.0 defined 4 */
#define NR_AC97 2
static const unsigned sample_size[] = { 1, 2, 2, 4 };
static const unsigned sample_shift[] = { 0, 1, 1, 2 };
/* "software" or virtual channel, an instance of opened /dev/dsp */
struct cs_state {
unsigned int magic;
struct cs_card *card; /* Card info */
/* single open lock mechanism, only used for recording */
struct mutex open_mutex;
wait_queue_head_t open_wait;
/* file mode */
mode_t open_mode;
/* virtual channel number */
int virt;
struct dmabuf {
/* wave sample stuff */
unsigned int rate;
unsigned char fmt, enable;
/* hardware channel */
struct cs_channel *channel;
int pringbuf; /* Software ring slot */
void *pbuf; /* 4K hardware DMA buffer */
/* OSS buffer management stuff */
void *rawbuf;
dma_addr_t dma_handle;
unsigned buforder;
unsigned numfrag;
unsigned fragshift;
unsigned divisor;
unsigned type;
void *tmpbuff; /* tmp buffer for sample conversions */
dma_addr_t dmaaddr;
dma_addr_t dmaaddr_tmpbuff;
unsigned buforder_tmpbuff; /* Log base 2 of size in bytes.. */
/* our buffer acts like a circular ring */
unsigned hwptr; /* where dma last started, updated by update_ptr */
unsigned swptr; /* where driver last clear/filled, updated by read/write */
int count; /* bytes to be comsumed or been generated by dma machine */
unsigned total_bytes; /* total bytes dmaed by hardware */
unsigned blocks; /* total blocks */
unsigned error; /* number of over/underruns */
unsigned underrun; /* underrun pending before next write has occurred */
wait_queue_head_t wait; /* put process on wait queue when no more space in buffer */
/* redundant, but makes calculations easier */
unsigned fragsize;
unsigned dmasize;
unsigned fragsamples;
/* OSS stuff */
unsigned mapped:1;
unsigned ready:1;
unsigned endcleared:1;
unsigned SGok:1;
unsigned update_flag;
unsigned ossfragshift;
int ossmaxfrags;
unsigned subdivision;
} dmabuf;
/* Guard against mmap/write/read races */
struct mutex sem;
};
struct cs_card {
struct cs_channel channel[2];
unsigned int magic;
/* We keep cs461x cards in a linked list */
struct cs_card *next;
/* The cs461x has a certain amount of cross channel interaction
so we use a single per card lock */
spinlock_t lock;
/* Keep AC97 sane */
spinlock_t ac97_lock;
/* mixer use count */
atomic_t mixer_use_cnt;
/* PCI device stuff */
struct pci_dev *pci_dev;
struct list_head list;
unsigned int pctl, cctl; /* Hardware DMA flag sets */
/* soundcore stuff */
int dev_audio;
int dev_midi;
/* structures for abstraction of hardware facilities, codecs, banks and channels*/
struct ac97_codec *ac97_codec[NR_AC97];
struct cs_state *states[2];
u16 ac97_features;
int amplifier; /* Amplifier control */
void (*amplifier_ctrl)(struct cs_card *, int);
void (*amp_init)(struct cs_card *);
int active; /* Active clocking */
void (*active_ctrl)(struct cs_card *, int);
/* hardware resources */
unsigned long ba0_addr;
unsigned long ba1_addr;
u32 irq;
/* mappings */
void __iomem *ba0;
union
{
struct
{
u8 __iomem *data0;
u8 __iomem *data1;
u8 __iomem *pmem;
u8 __iomem *reg;
} name;
u8 __iomem *idx[4];
} ba1;
/* Function support */
struct cs_channel *(*alloc_pcm_channel)(struct cs_card *);
struct cs_channel *(*alloc_rec_pcm_channel)(struct cs_card *);
void (*free_pcm_channel)(struct cs_card *, int chan);
/* /dev/midi stuff */
struct {
unsigned ird, iwr, icnt;
unsigned ord, owr, ocnt;
wait_queue_head_t open_wait;
wait_queue_head_t iwait;
wait_queue_head_t owait;
spinlock_t lock;
unsigned char ibuf[CS_MIDIINBUF];
unsigned char obuf[CS_MIDIOUTBUF];
mode_t open_mode;
struct mutex open_mutex;
} midi;
struct cs46xx_pm pm;
};
static int cs_open_mixdev(struct inode *inode, struct file *file);
static int cs_release_mixdev(struct inode *inode, struct file *file);
static int cs_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg);
static int cs_hardware_init(struct cs_card *card);
static int cs46xx_powerup(struct cs_card *card, unsigned int type);
static int cs461x_powerdown(struct cs_card *card, unsigned int type, int suspendflag);
static void cs461x_clear_serial_FIFOs(struct cs_card *card, int type);
#ifdef CONFIG_PM
static int cs46xx_suspend_tbl(struct pci_dev *pcidev, pm_message_t state);
static int cs46xx_resume_tbl(struct pci_dev *pcidev);
#endif
#if CSDEBUG
/* DEBUG ROUTINES */
#define SOUND_MIXER_CS_GETDBGLEVEL _SIOWR('M',120, int)
#define SOUND_MIXER_CS_SETDBGLEVEL _SIOWR('M',121, int)
#define SOUND_MIXER_CS_GETDBGMASK _SIOWR('M',122, int)
#define SOUND_MIXER_CS_SETDBGMASK _SIOWR('M',123, int)
#define SOUND_MIXER_CS_APM _SIOWR('M',124, int)
static void printioctl(unsigned int x)
{
unsigned int i;
unsigned char vidx;
/* these values are incorrect for the ac97 driver, fix.
* Index of mixtable1[] member is Device ID
* and must be <= SOUND_MIXER_NRDEVICES.
* Value of array member is index into s->mix.vol[]
*/
static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_PCM] = 1, /* voice */
[SOUND_MIXER_LINE1] = 2, /* AUX */
[SOUND_MIXER_CD] = 3, /* CD */
[SOUND_MIXER_LINE] = 4, /* Line */
[SOUND_MIXER_SYNTH] = 5, /* FM */
[SOUND_MIXER_MIC] = 6, /* Mic */
[SOUND_MIXER_SPEAKER] = 7, /* Speaker */
[SOUND_MIXER_RECLEV] = 8, /* Recording level */
[SOUND_MIXER_VOLUME] = 9 /* Master Volume */
};
switch (x) {
case SOUND_MIXER_CS_GETDBGMASK:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_GETDBGMASK: ") );
break;
case SOUND_MIXER_CS_GETDBGLEVEL:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_GETDBGLEVEL: ") );
break;
case SOUND_MIXER_CS_SETDBGMASK:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_SETDBGMASK: ") );
break;
case SOUND_MIXER_CS_SETDBGLEVEL:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_SETDBGLEVEL: ") );
break;
case OSS_GETVERSION:
CS_DBGOUT(CS_IOCTL, 4, printk("OSS_GETVERSION: ") );
break;
case SNDCTL_DSP_SYNC:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SYNC: ") );
break;
case SNDCTL_DSP_SETDUPLEX:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETDUPLEX: ") );
break;
case SNDCTL_DSP_GETCAPS:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETCAPS: ") );
break;
case SNDCTL_DSP_RESET:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_RESET: ") );
break;
case SNDCTL_DSP_SPEED:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SPEED: ") );
break;
case SNDCTL_DSP_STEREO:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_STEREO: ") );
break;
case SNDCTL_DSP_CHANNELS:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_CHANNELS: ") );
break;
case SNDCTL_DSP_GETFMTS:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETFMTS: ") );
break;
case SNDCTL_DSP_SETFMT:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETFMT: ") );
break;
case SNDCTL_DSP_POST:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_POST: ") );
break;
case SNDCTL_DSP_GETTRIGGER:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETTRIGGER: ") );
break;
case SNDCTL_DSP_SETTRIGGER:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETTRIGGER: ") );
break;
case SNDCTL_DSP_GETOSPACE:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOSPACE: ") );
break;
case SNDCTL_DSP_GETISPACE:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETISPACE: ") );
break;
case SNDCTL_DSP_NONBLOCK:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_NONBLOCK: ") );
break;
case SNDCTL_DSP_GETODELAY:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETODELAY: ") );
break;
case SNDCTL_DSP_GETIPTR:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETIPTR: ") );
break;
case SNDCTL_DSP_GETOPTR:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOPTR: ") );
break;
case SNDCTL_DSP_GETBLKSIZE:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETBLKSIZE: ") );
break;
case SNDCTL_DSP_SETFRAGMENT:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETFRAGMENT: ") );
break;
case SNDCTL_DSP_SUBDIVIDE:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SUBDIVIDE: ") );
break;
case SOUND_PCM_READ_RATE:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_RATE: ") );
break;
case SOUND_PCM_READ_CHANNELS:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_CHANNELS: ") );
break;
case SOUND_PCM_READ_BITS:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_BITS: ") );
break;
case SOUND_PCM_WRITE_FILTER:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_WRITE_FILTER: ") );
break;
case SNDCTL_DSP_SETSYNCRO:
CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETSYNCRO: ") );
break;
case SOUND_PCM_READ_FILTER:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_FILTER: ") );
break;
case SOUND_MIXER_PRIVATE1:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE1: ") );
break;
case SOUND_MIXER_PRIVATE2:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE2: ") );
break;
case SOUND_MIXER_PRIVATE3:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE3: ") );
break;
case SOUND_MIXER_PRIVATE4:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE4: ") );
break;
case SOUND_MIXER_PRIVATE5:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE5: ") );
break;
case SOUND_MIXER_INFO:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_INFO: ") );
break;
case SOUND_OLD_MIXER_INFO:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_OLD_MIXER_INFO: ") );
break;
default:
switch (_IOC_NR(x)) {
case SOUND_MIXER_VOLUME:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_VOLUME: ") );
break;
case SOUND_MIXER_SPEAKER:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_SPEAKER: ") );
break;
case SOUND_MIXER_RECLEV:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_RECLEV: ") );
break;
case SOUND_MIXER_MIC:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_MIC: ") );
break;
case SOUND_MIXER_SYNTH:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_SYNTH: ") );
break;
case SOUND_MIXER_RECSRC:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_RECSRC: ") );
break;
case SOUND_MIXER_DEVMASK:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_DEVMASK: ") );
break;
case SOUND_MIXER_RECMASK:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_RECMASK: ") );
break;
case SOUND_MIXER_STEREODEVS:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_STEREODEVS: ") );
break;
case SOUND_MIXER_CAPS:
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CAPS:") );
break;
default:
i = _IOC_NR(x);
if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i])) {
CS_DBGOUT(CS_IOCTL, 4, printk("UNKNOWN IOCTL: 0x%.8x NR=%d ",x,i) );
} else {
CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_IOCTL AC9x: 0x%.8x NR=%d ",
x,i));
}
break;
}
}
CS_DBGOUT(CS_IOCTL, 4, printk("command = 0x%x IOC_NR=%d\n",x, _IOC_NR(x)) );
}
#endif
/*
* common I/O routines
*/
static void cs461x_poke(struct cs_card *codec, unsigned long reg, unsigned int val)
{
writel(val, codec->ba1.idx[(reg >> 16) & 3] + (reg & 0xffff));
}
static unsigned int cs461x_peek(struct cs_card *codec, unsigned long reg)
{
return readl(codec->ba1.idx[(reg >> 16) & 3] + (reg & 0xffff));
}
static void cs461x_pokeBA0(struct cs_card *codec, unsigned long reg, unsigned int val)
{
writel(val, codec->ba0 + reg);
}
static unsigned int cs461x_peekBA0(struct cs_card *codec, unsigned long reg)
{
return readl(codec->ba0 + reg);
}
static u16 cs_ac97_get(struct ac97_codec *dev, u8 reg);
static void cs_ac97_set(struct ac97_codec *dev, u8 reg, u16 data);
static struct cs_channel *cs_alloc_pcm_channel(struct cs_card *card)
{
if (card->channel[1].used == 1)
return NULL;
card->channel[1].used = 1;
card->channel[1].num = 1;
return &card->channel[1];
}
static struct cs_channel *cs_alloc_rec_pcm_channel(struct cs_card *card)
{
if (card->channel[0].used == 1)
return NULL;
card->channel[0].used = 1;
card->channel[0].num = 0;
return &card->channel[0];
}
static void cs_free_pcm_channel(struct cs_card *card, int channel)
{
card->channel[channel].state = NULL;
card->channel[channel].used = 0;
}
/*
* setup a divisor value to help with conversion from
* 16bit Stereo, down to 8bit stereo/mono or 16bit mono.
* assign a divisor of 1 if using 16bit Stereo as that is
* the only format that the static image will capture.
*/
static void cs_set_divisor(struct dmabuf *dmabuf)
{
if (dmabuf->type == CS_TYPE_DAC)
dmabuf->divisor = 1;
else if (!(dmabuf->fmt & CS_FMT_STEREO) &&
(dmabuf->fmt & CS_FMT_16BIT))
dmabuf->divisor = 2;
else if ((dmabuf->fmt & CS_FMT_STEREO) &&
!(dmabuf->fmt & CS_FMT_16BIT))
dmabuf->divisor = 2;
else if (!(dmabuf->fmt & CS_FMT_STEREO) &&
!(dmabuf->fmt & CS_FMT_16BIT))
dmabuf->divisor = 4;
else
dmabuf->divisor = 1;
CS_DBGOUT(CS_PARMS | CS_FUNCTION, 8, printk(
"cs46xx: cs_set_divisor()- %s %d\n",
(dmabuf->type == CS_TYPE_ADC) ? "ADC" : "DAC",
dmabuf->divisor) );
}
/*
* mute some of the more prevalent registers to avoid popping.
*/
static void cs_mute(struct cs_card *card, int state)
{
struct ac97_codec *dev = card->ac97_codec[0];
CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs46xx: cs_mute()+ %s\n",
(state == CS_TRUE) ? "Muting" : "UnMuting"));
if (state == CS_TRUE) {
/*
* fix pops when powering up on thinkpads
*/
card->pm.u32AC97_master_volume = (u32)cs_ac97_get( dev,
(u8)BA0_AC97_MASTER_VOLUME);
card->pm.u32AC97_headphone_volume = (u32)cs_ac97_get(dev,
(u8)BA0_AC97_HEADPHONE_VOLUME);
card->pm.u32AC97_master_volume_mono = (u32)cs_ac97_get(dev,
(u8)BA0_AC97_MASTER_VOLUME_MONO);
card->pm.u32AC97_pcm_out_volume = (u32)cs_ac97_get(dev,
(u8)BA0_AC97_PCM_OUT_VOLUME);
cs_ac97_set(dev, (u8)BA0_AC97_MASTER_VOLUME, 0x8000);
cs_ac97_set(dev, (u8)BA0_AC97_HEADPHONE_VOLUME, 0x8000);
cs_ac97_set(dev, (u8)BA0_AC97_MASTER_VOLUME_MONO, 0x8000);
cs_ac97_set(dev, (u8)BA0_AC97_PCM_OUT_VOLUME, 0x8000);
} else {
cs_ac97_set(dev, (u8)BA0_AC97_MASTER_VOLUME, card->pm.u32AC97_master_volume);
cs_ac97_set(dev, (u8)BA0_AC97_HEADPHONE_VOLUME, card->pm.u32AC97_headphone_volume);
cs_ac97_set(dev, (u8)BA0_AC97_MASTER_VOLUME_MONO, card->pm.u32AC97_master_volume_mono);
cs_ac97_set(dev, (u8)BA0_AC97_PCM_OUT_VOLUME, card->pm.u32AC97_pcm_out_volume);
}
CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs46xx: cs_mute()-\n"));
}
/* set playback sample rate */
static unsigned int cs_set_dac_rate(struct cs_state * state, unsigned int rate)
{
struct dmabuf *dmabuf = &state->dmabuf;
unsigned int tmp1, tmp2;
unsigned int phiIncr;
unsigned int correctionPerGOF, correctionPerSec;
unsigned long flags;
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_set_dac_rate()+ %d\n",rate) );
/*
* Compute the values used to drive the actual sample rate conversion.
* The following formulas are being computed, using inline assembly
* since we need to use 64 bit arithmetic to compute the values:
*
* phiIncr = floor((Fs,in * 2^26) / Fs,out)
* correctionPerGOF = floor((Fs,in * 2^26 - Fs,out * phiIncr) /
* GOF_PER_SEC)
* ulCorrectionPerSec = Fs,in * 2^26 - Fs,out * phiIncr -M
* GOF_PER_SEC * correctionPerGOF
*
* i.e.
*
* phiIncr:other = dividend:remainder((Fs,in * 2^26) / Fs,out)
* correctionPerGOF:correctionPerSec =
* dividend:remainder(ulOther / GOF_PER_SEC)
*/
tmp1 = rate << 16;
phiIncr = tmp1 / 48000;
tmp1 -= phiIncr * 48000;
tmp1 <<= 10;
phiIncr <<= 10;
tmp2 = tmp1 / 48000;
phiIncr += tmp2;
tmp1 -= tmp2 * 48000;
correctionPerGOF = tmp1 / GOF_PER_SEC;
tmp1 -= correctionPerGOF * GOF_PER_SEC;
correctionPerSec = tmp1;
/*
* Fill in the SampleRateConverter control block.
*/
spin_lock_irqsave(&state->card->lock, flags);
cs461x_poke(state->card, BA1_PSRC,
((correctionPerSec << 16) & 0xFFFF0000) | (correctionPerGOF & 0xFFFF));
cs461x_poke(state->card, BA1_PPI, phiIncr);
spin_unlock_irqrestore(&state->card->lock, flags);
dmabuf->rate = rate;
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_set_dac_rate()- %d\n",rate) );
return rate;
}
/* set recording sample rate */
static unsigned int cs_set_adc_rate(struct cs_state *state, unsigned int rate)
{
struct dmabuf *dmabuf = &state->dmabuf;
struct cs_card *card = state->card;
unsigned int phiIncr, coeffIncr, tmp1, tmp2;
unsigned int correctionPerGOF, correctionPerSec, initialDelay;
unsigned int frameGroupLength, cnt;
unsigned long flags;
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_set_adc_rate()+ %d\n",rate) );
/*
* We can only decimate by up to a factor of 1/9th the hardware rate.
* Correct the value if an attempt is made to stray outside that limit.
*/
if ((rate * 9) < 48000)
rate = 48000 / 9;
/*
* We cannot capture at at rate greater than the Input Rate (48000).
* Return an error if an attempt is made to stray outside that limit.
*/
if (rate > 48000)
rate = 48000;
/*
* Compute the values used to drive the actual sample rate conversion.
* The following formulas are being computed, using inline assembly
* since we need to use 64 bit arithmetic to compute the values:
*
* coeffIncr = -floor((Fs,out * 2^23) / Fs,in)
* phiIncr = floor((Fs,in * 2^26) / Fs,out)
* correctionPerGOF = floor((Fs,in * 2^26 - Fs,out * phiIncr) /
* GOF_PER_SEC)
* correctionPerSec = Fs,in * 2^26 - Fs,out * phiIncr -
* GOF_PER_SEC * correctionPerGOF
* initialDelay = ceil((24 * Fs,in) / Fs,out)
*
* i.e.
*
* coeffIncr = neg(dividend((Fs,out * 2^23) / Fs,in))
* phiIncr:ulOther = dividend:remainder((Fs,in * 2^26) / Fs,out)
* correctionPerGOF:correctionPerSec =
* dividend:remainder(ulOther / GOF_PER_SEC)
* initialDelay = dividend(((24 * Fs,in) + Fs,out - 1) / Fs,out)
*/
tmp1 = rate << 16;
coeffIncr = tmp1 / 48000;
tmp1 -= coeffIncr * 48000;
tmp1 <<= 7;
coeffIncr <<= 7;
coeffIncr += tmp1 / 48000;
coeffIncr ^= 0xFFFFFFFF;
coeffIncr++;
tmp1 = 48000 << 16;
phiIncr = tmp1 / rate;
tmp1 -= phiIncr * rate;
tmp1 <<= 10;
phiIncr <<= 10;
tmp2 = tmp1 / rate;
phiIncr += tmp2;
tmp1 -= tmp2 * rate;
correctionPerGOF = tmp1 / GOF_PER_SEC;
tmp1 -= correctionPerGOF * GOF_PER_SEC;
correctionPerSec = tmp1;
initialDelay = ((48000 * 24) + rate - 1) / rate;
/*
* Fill in the VariDecimate control block.
*/
spin_lock_irqsave(&card->lock, flags);
cs461x_poke(card, BA1_CSRC,
((correctionPerSec << 16) & 0xFFFF0000) | (correctionPerGOF & 0xFFFF));
cs461x_poke(card, BA1_CCI, coeffIncr);
cs461x_poke(card, BA1_CD,
(((BA1_VARIDEC_BUF_1 + (initialDelay << 2)) << 16) & 0xFFFF0000) | 0x80);
cs461x_poke(card, BA1_CPI, phiIncr);
spin_unlock_irqrestore(&card->lock, flags);
/*
* Figure out the frame group length for the write back task. Basically,
* this is just the factors of 24000 (2^6*3*5^3) that are not present in
* the output sample rate.
*/
frameGroupLength = 1;
for (cnt = 2; cnt <= 64; cnt *= 2) {
if (((rate / cnt) * cnt) != rate)
frameGroupLength *= 2;
}
if (((rate / 3) * 3) != rate) {
frameGroupLength *= 3;
}
for (cnt = 5; cnt <= 125; cnt *= 5) {
if (((rate / cnt) * cnt) != rate)
frameGroupLength *= 5;
}
/*
* Fill in the WriteBack control block.
*/
spin_lock_irqsave(&card->lock, flags);
cs461x_poke(card, BA1_CFG1, frameGroupLength);
cs461x_poke(card, BA1_CFG2, (0x00800000 | frameGroupLength));
cs461x_poke(card, BA1_CCST, 0x0000FFFF);
cs461x_poke(card, BA1_CSPB, ((65536 * rate) / 24000));
cs461x_poke(card, (BA1_CSPB + 4), 0x0000FFFF);
spin_unlock_irqrestore(&card->lock, flags);
dmabuf->rate = rate;
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_set_adc_rate()- %d\n",rate) );
return rate;
}
/* prepare channel attributes for playback */
static void cs_play_setup(struct cs_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
struct cs_card *card = state->card;
unsigned int tmp, Count, playFormat;
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_play_setup()+\n") );
cs461x_poke(card, BA1_PVOL, 0x80008000);
if (!dmabuf->SGok)
cs461x_poke(card, BA1_PBA, virt_to_bus(dmabuf->pbuf));
Count = 4;
playFormat=cs461x_peek(card, BA1_PFIE);
if ((dmabuf->fmt & CS_FMT_STEREO)) {
playFormat &= ~DMA_RQ_C2_AC_MONO_TO_STEREO;
Count *= 2;
} else
playFormat |= DMA_RQ_C2_AC_MONO_TO_STEREO;
if ((dmabuf->fmt & CS_FMT_16BIT)) {
playFormat &= ~(DMA_RQ_C2_AC_8_TO_16_BIT
| DMA_RQ_C2_AC_SIGNED_CONVERT);
Count *= 2;
} else
playFormat |= (DMA_RQ_C2_AC_8_TO_16_BIT
| DMA_RQ_C2_AC_SIGNED_CONVERT);
cs461x_poke(card, BA1_PFIE, playFormat);
tmp = cs461x_peek(card, BA1_PDTC);
tmp &= 0xfffffe00;
cs461x_poke(card, BA1_PDTC, tmp | --Count);
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_play_setup()-\n") );
}
static struct InitStruct
{
u32 off;
u32 val;
} InitArray[] = { {0x00000040, 0x3fc0000f},
{0x0000004c, 0x04800000},
{0x000000b3, 0x00000780},
{0x000000b7, 0x00000000},
{0x000000bc, 0x07800000},
{0x000000cd, 0x00800000},
};
/*
* "SetCaptureSPValues()" -- Initialize record task values before each
* capture startup.
*/
static void SetCaptureSPValues(struct cs_card *card)
{
unsigned i, offset;
CS_DBGOUT(CS_FUNCTION, 8, printk("cs46xx: SetCaptureSPValues()+\n") );
for (i = 0; i < sizeof(InitArray) / sizeof(struct InitStruct); i++) {
offset = InitArray[i].off*4; /* 8bit to 32bit offset value */
cs461x_poke(card, offset, InitArray[i].val );
}
CS_DBGOUT(CS_FUNCTION, 8, printk("cs46xx: SetCaptureSPValues()-\n") );
}
/* prepare channel attributes for recording */
static void cs_rec_setup(struct cs_state *state)
{
struct cs_card *card = state->card;
struct dmabuf *dmabuf = &state->dmabuf;
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_rec_setup()+\n"));
SetCaptureSPValues(card);
/*
* set the attenuation to 0dB
*/
cs461x_poke(card, BA1_CVOL, 0x80008000);
/*
* set the physical address of the capture buffer into the SP
*/
cs461x_poke(card, BA1_CBA, virt_to_bus(dmabuf->rawbuf));
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_rec_setup()-\n") );
}
/* get current playback/recording dma buffer pointer (byte offset from LBA),
called with spinlock held! */
static inline unsigned cs_get_dma_addr(struct cs_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
u32 offset;
if ( (!(dmabuf->enable & DAC_RUNNING)) &&
(!(dmabuf->enable & ADC_RUNNING) ) )
{
CS_DBGOUT(CS_ERROR, 2, printk(
"cs46xx: ERROR cs_get_dma_addr(): not enabled \n") );
return 0;
}
/*
* granularity is byte boundary, good part.
*/
if (dmabuf->enable & DAC_RUNNING)
offset = cs461x_peek(state->card, BA1_PBA);
else /* ADC_RUNNING must be set */
offset = cs461x_peek(state->card, BA1_CBA);
CS_DBGOUT(CS_PARMS | CS_FUNCTION, 9,
printk("cs46xx: cs_get_dma_addr() %d\n",offset) );
offset = (u32)bus_to_virt((unsigned long)offset) - (u32)dmabuf->rawbuf;
CS_DBGOUT(CS_PARMS | CS_FUNCTION, 8,
printk("cs46xx: cs_get_dma_addr()- %d\n",offset) );
return offset;
}
static void resync_dma_ptrs(struct cs_state *state)
{
struct dmabuf *dmabuf;
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: resync_dma_ptrs()+ \n") );
if (state) {
dmabuf = &state->dmabuf;
dmabuf->hwptr=dmabuf->swptr = 0;
dmabuf->pringbuf = 0;
}
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: resync_dma_ptrs()- \n") );
}
/* Stop recording (lock held) */
static inline void __stop_adc(struct cs_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
struct cs_card *card = state->card;
unsigned int tmp;
dmabuf->enable &= ~ADC_RUNNING;
tmp = cs461x_peek(card, BA1_CCTL);
tmp &= 0xFFFF0000;
cs461x_poke(card, BA1_CCTL, tmp );
}
static void stop_adc(struct cs_state *state)
{
unsigned long flags;
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: stop_adc()+ \n") );
spin_lock_irqsave(&state->card->lock, flags);
__stop_adc(state);
spin_unlock_irqrestore(&state->card->lock, flags);
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: stop_adc()- \n") );
}
static void start_adc(struct cs_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
struct cs_card *card = state->card;
unsigned long flags;
unsigned int tmp;
spin_lock_irqsave(&card->lock, flags);
if (!(dmabuf->enable & ADC_RUNNING) &&
((dmabuf->mapped || dmabuf->count < (signed)dmabuf->dmasize)
&& dmabuf->ready) &&
((card->pm.flags & CS46XX_PM_IDLE) ||
(card->pm.flags & CS46XX_PM_RESUMED)) )
{
dmabuf->enable |= ADC_RUNNING;
cs_set_divisor(dmabuf);
tmp = cs461x_peek(card, BA1_CCTL);
tmp &= 0xFFFF0000;
tmp |= card->cctl;
CS_DBGOUT(CS_FUNCTION, 2, printk(
"cs46xx: start_adc() poke 0x%x \n",tmp) );
cs461x_poke(card, BA1_CCTL, tmp);
}
spin_unlock_irqrestore(&card->lock, flags);
}
/* stop playback (lock held) */
static inline void __stop_dac(struct cs_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
struct cs_card *card = state->card;
unsigned int tmp;
dmabuf->enable &= ~DAC_RUNNING;
tmp=cs461x_peek(card, BA1_PCTL);
tmp&=0xFFFF;
cs461x_poke(card, BA1_PCTL, tmp);
}
static void stop_dac(struct cs_state *state)
{
unsigned long flags;
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: stop_dac()+ \n") );
spin_lock_irqsave(&state->card->lock, flags);
__stop_dac(state);
spin_unlock_irqrestore(&state->card->lock, flags);
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: stop_dac()- \n") );
}
static void start_dac(struct cs_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
struct cs_card *card = state->card;
unsigned long flags;
int tmp;
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: start_dac()+ \n") );
spin_lock_irqsave(&card->lock, flags);
if (!(dmabuf->enable & DAC_RUNNING) &&
((dmabuf->mapped || dmabuf->count > 0) && dmabuf->ready) &&
((card->pm.flags & CS46XX_PM_IDLE) ||
(card->pm.flags & CS46XX_PM_RESUMED)) )
{
dmabuf->enable |= DAC_RUNNING;
tmp = cs461x_peek(card, BA1_PCTL);
tmp &= 0xFFFF;
tmp |= card->pctl;
CS_DBGOUT(CS_PARMS, 6, printk(
"cs46xx: start_dac() poke card=%p tmp=0x%.08x addr=%p \n",
card, (unsigned)tmp,
card->ba1.idx[(BA1_PCTL >> 16) & 3]+(BA1_PCTL&0xffff) ) );
cs461x_poke(card, BA1_PCTL, tmp);
}
spin_unlock_irqrestore(&card->lock, flags);
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: start_dac()- \n") );
}
#define DMABUF_MINORDER 1
/*
* allocate DMA buffer, playback and recording buffers are separate.
*/
static int alloc_dmabuf(struct cs_state *state)
{
struct cs_card *card=state->card;
struct dmabuf *dmabuf = &state->dmabuf;
void *rawbuf = NULL;
void *tmpbuff = NULL;
int order;
struct page *map, *mapend;
unsigned long df;
dmabuf->ready = dmabuf->mapped = 0;
dmabuf->SGok = 0;
/*
* check for order within limits, but do not overwrite value.
*/
if ((defaultorder > 1) && (defaultorder < 12))
df = defaultorder;
else
df = 2;
for (order = df; order >= DMABUF_MINORDER; order--)
if ((rawbuf = (void *)pci_alloc_consistent(
card->pci_dev, PAGE_SIZE << order, &dmabuf->dmaaddr)))
break;
if (!rawbuf) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
"cs46xx: alloc_dmabuf(): unable to allocate rawbuf\n"));
return -ENOMEM;
}
dmabuf->buforder = order;
dmabuf->rawbuf = rawbuf;
// Now mark the pages as reserved; otherwise the
// remap_pfn_range() in cs46xx_mmap doesn't work.
// 1. get index to last page in mem_map array for rawbuf.
mapend = virt_to_page(dmabuf->rawbuf +
(PAGE_SIZE << dmabuf->buforder) - 1);
// 2. mark each physical page in range as 'reserved'.
for (map = virt_to_page(dmabuf->rawbuf); map <= mapend; map++)
cs4x_mem_map_reserve(map);
CS_DBGOUT(CS_PARMS, 9, printk("cs46xx: alloc_dmabuf(): allocated %ld (order = %d) bytes at %p\n",
PAGE_SIZE << order, order, rawbuf) );
/*
* only allocate the conversion buffer for the ADC
*/
if (dmabuf->type == CS_TYPE_DAC) {
dmabuf->tmpbuff = NULL;
dmabuf->buforder_tmpbuff = 0;
return 0;
}
/*
* now the temp buffer for 16/8 conversions
*/
tmpbuff = (void *) pci_alloc_consistent(
card->pci_dev, PAGE_SIZE << order, &dmabuf->dmaaddr_tmpbuff);
if (!tmpbuff)
return -ENOMEM;
CS_DBGOUT(CS_PARMS, 9, printk("cs46xx: allocated %ld (order = %d) bytes at %p\n",
PAGE_SIZE << order, order, tmpbuff) );
dmabuf->tmpbuff = tmpbuff;
dmabuf->buforder_tmpbuff = order;
// Now mark the pages as reserved; otherwise the
// remap_pfn_range() in cs46xx_mmap doesn't work.
// 1. get index to last page in mem_map array for rawbuf.
mapend = virt_to_page(dmabuf->tmpbuff +
(PAGE_SIZE << dmabuf->buforder_tmpbuff) - 1);
// 2. mark each physical page in range as 'reserved'.
for (map = virt_to_page(dmabuf->tmpbuff); map <= mapend; map++)
cs4x_mem_map_reserve(map);
return 0;
}
/* free DMA buffer */
static void dealloc_dmabuf(struct cs_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
struct page *map, *mapend;
if (dmabuf->rawbuf) {
// Undo prog_dmabuf()'s marking the pages as reserved
mapend = virt_to_page(dmabuf->rawbuf +
(PAGE_SIZE << dmabuf->buforder) - 1);
for (map = virt_to_page(dmabuf->rawbuf); map <= mapend; map++)
cs4x_mem_map_unreserve(map);
free_dmabuf(state->card, dmabuf);
}
if (dmabuf->tmpbuff) {
// Undo prog_dmabuf()'s marking the pages as reserved
mapend = virt_to_page(dmabuf->tmpbuff +
(PAGE_SIZE << dmabuf->buforder_tmpbuff) - 1);
for (map = virt_to_page(dmabuf->tmpbuff); map <= mapend; map++)
cs4x_mem_map_unreserve(map);
free_dmabuf2(state->card, dmabuf);
}
dmabuf->rawbuf = NULL;
dmabuf->tmpbuff = NULL;
dmabuf->mapped = dmabuf->ready = 0;
dmabuf->SGok = 0;
}
static int __prog_dmabuf(struct cs_state *state)
{
struct dmabuf *dmabuf = &state->dmabuf;
unsigned long flags;
unsigned long allocated_pages, allocated_bytes;
unsigned long tmp1, tmp2, fmt=0;
unsigned long *ptmp = (unsigned long *) dmabuf->pbuf;
unsigned long SGarray[9], nSGpages=0;
int ret;
CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: prog_dmabuf()+ \n"));
/*
* check for CAPTURE and use only non-sg for initial release
*/
if (dmabuf->type == CS_TYPE_ADC) {
CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: prog_dmabuf() ADC\n"));
/*
* add in non-sg support for capture.
*/
spin_lock_irqsave(&state->card->lock, flags);
/* add code to reset the rawbuf memory. TRW */
resync_dma_ptrs(state);
dmabuf->total_bytes = dmabuf->blocks = 0;
dmabuf->count = dmabuf->error = dmabuf->underrun = 0;
dmabuf->SGok = 0;
spin_unlock_irqrestore(&state->card->lock, flags);
/* allocate DMA buffer if not allocated yet */
if (!dmabuf->rawbuf || !dmabuf->tmpbuff)
if ((ret = alloc_dmabuf(state)))
return ret;
/*
* static image only supports 16Bit signed, stereo - hard code fmt
*/
fmt = CS_FMT_16BIT | CS_FMT_STEREO;
dmabuf->numfrag = 2;
dmabuf->fragsize = 2048;
dmabuf->fragsamples = 2048 >> sample_shift[fmt];
dmabuf->dmasize = 4096;
dmabuf->fragshift = 11;
memset(dmabuf->rawbuf, (fmt & CS_FMT_16BIT) ? 0 : 0x80,
dmabuf->dmasize);
memset(dmabuf->tmpbuff, (fmt & CS_FMT_16BIT) ? 0 : 0x80,
PAGE_SIZE<<dmabuf->buforder_tmpbuff);
/*
* Now set up the ring
*/
spin_lock_irqsave(&state->card->lock, flags);
cs_rec_setup(state);
spin_unlock_irqrestore(&state->card->lock, flags);
/* set the ready flag for the dma buffer */
dmabuf->ready = 1;
CS_DBGOUT(CS_PARMS, 4, printk(
"cs46xx: prog_dmabuf(): CAPTURE rate=%d fmt=0x%x numfrag=%d "
"fragsize=%d dmasize=%d\n",
dmabuf->rate, dmabuf->fmt, dmabuf->numfrag,
dmabuf->fragsize, dmabuf->dmasize) );
CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: prog_dmabuf()- 0 \n"));
return 0;
} else if (dmabuf->type == CS_TYPE_DAC) {
/*
* Must be DAC
*/
CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: prog_dmabuf() DAC\n"));
spin_lock_irqsave(&state->card->lock, flags);
resync_dma_ptrs(state);
dmabuf->total_bytes = dmabuf->blocks = 0;
dmabuf->count = dmabuf->error = dmabuf->underrun = 0;
dmabuf->SGok = 0;
spin_unlock_irqrestore(&state->card->lock, flags);
/* allocate DMA buffer if not allocated yet */
if (!dmabuf->rawbuf)
if ((ret = alloc_dmabuf(state)))
return ret;
allocated_pages = 1 << dmabuf->buforder;
allocated_bytes = allocated_pages*PAGE_SIZE;
if (allocated_pages < 2) {
CS_DBGOUT(CS_FUNCTION, 4, printk(
"cs46xx: prog_dmabuf() Error: allocated_pages too small (%d)\n",
(unsigned)allocated_pages));
return -ENOMEM;
}
/* Use all the pages allocated, fragsize 4k. */
/* Use 'pbuf' for S/G page map table. */
dmabuf->SGok = 1; /* Use S/G. */
nSGpages = allocated_bytes/4096; /* S/G pages always 4k. */
/* Set up S/G variables. */
*ptmp = virt_to_bus(dmabuf->rawbuf);
*(ptmp + 1) = 0x00000008;
for (tmp1 = 1; tmp1 < nSGpages; tmp1++) {
*(ptmp + 2 * tmp1) = virt_to_bus((dmabuf->rawbuf) + 4096 * tmp1);
if (tmp1 == nSGpages - 1)
tmp2 = 0xbfff0000;
else
tmp2 = 0x80000000 + 8 * (tmp1 + 1);
*(ptmp + 2 * tmp1 + 1) = tmp2;
}
SGarray[0] = 0x82c0200d;
SGarray[1] = 0xffff0000;
SGarray[2] = *ptmp;
SGarray[3] = 0x00010600;
SGarray[4] = *(ptmp+2);
SGarray[5] = 0x80000010;
SGarray[6] = *ptmp;
SGarray[7] = *(ptmp+2);
SGarray[8] = (virt_to_bus(dmabuf->pbuf) & 0xffff000) | 0x10;
if (dmabuf->SGok) {
dmabuf->numfrag = nSGpages;
dmabuf->fragsize = 4096;
dmabuf->fragsamples = 4096 >> sample_shift[dmabuf->fmt];
dmabuf->fragshift = 12;
dmabuf->dmasize = dmabuf->numfrag * 4096;
} else {
SGarray[0] = 0xf2c0000f;
SGarray[1] = 0x00000200;
SGarray[2] = 0;
SGarray[3] = 0x00010600;
SGarray[4]=SGarray[5]=SGarray[6]=SGarray[7]=SGarray[8] = 0;
dmabuf->numfrag = 2;
dmabuf->fragsize = 2048;
dmabuf->fragsamples = 2048 >> sample_shift[dmabuf->fmt];
dmabuf->dmasize = 4096;
dmabuf->fragshift = 11;
}
for (tmp1 = 0; tmp1 < sizeof(SGarray) / 4; tmp1++)
cs461x_poke(state->card, BA1_PDTC+tmp1 * 4, SGarray[tmp1]);
memset(dmabuf->rawbuf, (dmabuf->fmt & CS_FMT_16BIT) ? 0 : 0x80,
dmabuf->dmasize);
/*
* Now set up the ring
*/
spin_lock_irqsave(&state->card->lock, flags);
cs_play_setup(state);
spin_unlock_irqrestore(&state->card->lock, flags);
/* set the ready flag for the dma buffer */
dmabuf->ready = 1;
CS_DBGOUT(CS_PARMS, 4, printk(
"cs46xx: prog_dmabuf(): PLAYBACK rate=%d fmt=0x%x numfrag=%d "
"fragsize=%d dmasize=%d\n",
dmabuf->rate, dmabuf->fmt, dmabuf->numfrag,
dmabuf->fragsize, dmabuf->dmasize) );
CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: prog_dmabuf()- \n"));
return 0;
} else {
CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: prog_dmabuf()- Invalid Type %d\n",
dmabuf->type));
}
return 1;
}
static int prog_dmabuf(struct cs_state *state)
{
int ret;
mutex_lock(&state->sem);
ret = __prog_dmabuf(state);
mutex_unlock(&state->sem);
return ret;
}
static void cs_clear_tail(struct cs_state *state)
{
}
static int drain_dac(struct cs_state *state, int nonblock)
{
DECLARE_WAITQUEUE(wait, current);
struct dmabuf *dmabuf = &state->dmabuf;
struct cs_card *card=state->card;
unsigned long flags;
unsigned long tmo;
int count;
CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: drain_dac()+ \n"));
if (dmabuf->mapped || !dmabuf->ready)
{
CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: drain_dac()- 0, not ready\n"));
return 0;
}
add_wait_queue(&dmabuf->wait, &wait);
for (;;) {
/* It seems that we have to set the current state to TASK_INTERRUPTIBLE
every time to make the process really go to sleep */
current->state = TASK_INTERRUPTIBLE;
spin_lock_irqsave(&state->card->lock, flags);
count = dmabuf->count;
spin_unlock_irqrestore(&state->card->lock, flags);
if (count <= 0)
break;
if (signal_pending(current))
break;
if (nonblock) {
remove_wait_queue(&dmabuf->wait, &wait);
current->state = TASK_RUNNING;
return -EBUSY;
}
tmo = (dmabuf->dmasize * HZ) / dmabuf->rate;
tmo >>= sample_shift[dmabuf->fmt];
tmo += (2048*HZ)/dmabuf->rate;
if (!schedule_timeout(tmo ? tmo : 1) && tmo){
printk(KERN_ERR "cs46xx: drain_dac, dma timeout? %d\n", count);
break;
}
}
remove_wait_queue(&dmabuf->wait, &wait);
current->state = TASK_RUNNING;
if (signal_pending(current)) {
CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: drain_dac()- -ERESTARTSYS\n"));
/*
* set to silence and let that clear the fifos.
*/
cs461x_clear_serial_FIFOs(card, CS_TYPE_DAC);
return -ERESTARTSYS;
}
CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: drain_dac()- 0\n"));
return 0;
}
/* update buffer manangement pointers, especially, dmabuf->count and dmabuf->hwptr */
static void cs_update_ptr(struct cs_card *card, int wake)
{
struct cs_state *state;
struct dmabuf *dmabuf;
unsigned hwptr;
int diff;
/* error handling and process wake up for ADC */
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
if (dmabuf->enable & ADC_RUNNING) {
/* update hardware pointer */
hwptr = cs_get_dma_addr(state);
diff = (dmabuf->dmasize + hwptr - dmabuf->hwptr) % dmabuf->dmasize;
CS_DBGOUT(CS_PARMS, 9, printk(
"cs46xx: cs_update_ptr()+ ADC hwptr=%d diff=%d\n",
hwptr,diff) );
dmabuf->hwptr = hwptr;
dmabuf->total_bytes += diff;
dmabuf->count += diff;
if (dmabuf->count > dmabuf->dmasize)
dmabuf->count = dmabuf->dmasize;
if (dmabuf->mapped) {
if (wake && dmabuf->count >= (signed)dmabuf->fragsize)
wake_up(&dmabuf->wait);
} else {
if (wake && dmabuf->count > 0)
wake_up(&dmabuf->wait);
}
}
}
/*
* Now the DAC
*/
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
/* error handling and process wake up for DAC */
if (dmabuf->enable & DAC_RUNNING) {
/* update hardware pointer */
hwptr = cs_get_dma_addr(state);
diff = (dmabuf->dmasize + hwptr - dmabuf->hwptr) % dmabuf->dmasize;
CS_DBGOUT(CS_PARMS, 9, printk(
"cs46xx: cs_update_ptr()+ DAC hwptr=%d diff=%d\n",
hwptr,diff) );
dmabuf->hwptr = hwptr;
dmabuf->total_bytes += diff;
if (dmabuf->mapped) {
dmabuf->count += diff;
if (wake && dmabuf->count >= (signed)dmabuf->fragsize)
wake_up(&dmabuf->wait);
/*
* other drivers use fragsize, but don't see any sense
* in that, since dmasize is the buffer asked for
* via mmap.
*/
if (dmabuf->count > dmabuf->dmasize)
dmabuf->count &= dmabuf->dmasize-1;
} else {
dmabuf->count -= diff;
/*
* backfill with silence and clear out the last
* "diff" number of bytes.
*/
if (hwptr >= diff) {
memset(dmabuf->rawbuf + hwptr - diff,
(dmabuf->fmt & CS_FMT_16BIT) ? 0 : 0x80, diff);
} else {
memset(dmabuf->rawbuf,
(dmabuf->fmt & CS_FMT_16BIT) ? 0 : 0x80,
(unsigned)hwptr);
memset((char *)dmabuf->rawbuf +
dmabuf->dmasize + hwptr - diff,
(dmabuf->fmt & CS_FMT_16BIT) ? 0 : 0x80,
diff - hwptr);
}
if (dmabuf->count < 0 || dmabuf->count > dmabuf->dmasize) {
CS_DBGOUT(CS_ERROR, 2, printk(KERN_INFO
"cs46xx: ERROR DAC count<0 or count > dmasize (%d)\n",
dmabuf->count));
/*
* buffer underrun or buffer overrun, reset the
* count of bytes written back to 0.
*/
if (dmabuf->count < 0)
dmabuf->underrun = 1;
dmabuf->count = 0;
dmabuf->error++;
}
if (wake && dmabuf->count < (signed)dmabuf->dmasize / 2)
wake_up(&dmabuf->wait);
}
}
}
}
/* hold spinlock for the following! */
static void cs_handle_midi(struct cs_card *card)
{
unsigned char ch;
int wake;
unsigned temp1;
wake = 0;
while (!(cs461x_peekBA0(card, BA0_MIDSR) & MIDSR_RBE)) {
ch = cs461x_peekBA0(card, BA0_MIDRP);
if (card->midi.icnt < CS_MIDIINBUF) {
card->midi.ibuf[card->midi.iwr] = ch;
card->midi.iwr = (card->midi.iwr + 1) % CS_MIDIINBUF;
card->midi.icnt++;
}
wake = 1;
}
if (wake)
wake_up(&card->midi.iwait);
wake = 0;
while (!(cs461x_peekBA0(card, BA0_MIDSR) & MIDSR_TBF) && card->midi.ocnt > 0) {
temp1 = ( card->midi.obuf[card->midi.ord] ) & 0x000000ff;
cs461x_pokeBA0(card, BA0_MIDWP,temp1);
card->midi.ord = (card->midi.ord + 1) % CS_MIDIOUTBUF;
card->midi.ocnt--;
if (card->midi.ocnt < CS_MIDIOUTBUF-16)
wake = 1;
}
if (wake)
wake_up(&card->midi.owait);
}
static irqreturn_t cs_interrupt(int irq, void *dev_id)
{
struct cs_card *card = (struct cs_card *)dev_id;
/* Single channel card */
struct cs_state *recstate = card->channel[0].state;
struct cs_state *playstate = card->channel[1].state;
u32 status;
CS_DBGOUT(CS_INTERRUPT, 9, printk("cs46xx: cs_interrupt()+ \n"));
spin_lock(&card->lock);
status = cs461x_peekBA0(card, BA0_HISR);
if ((status & 0x7fffffff) == 0) {
cs461x_pokeBA0(card, BA0_HICR, HICR_CHGM|HICR_IEV);
spin_unlock(&card->lock);
return IRQ_HANDLED; /* Might be IRQ_NONE.. */
}
/*
* check for playback or capture interrupt only
*/
if (((status & HISR_VC0) && playstate && playstate->dmabuf.ready) ||
(((status & HISR_VC1) && recstate && recstate->dmabuf.ready))) {
CS_DBGOUT(CS_INTERRUPT, 8, printk(
"cs46xx: cs_interrupt() interrupt bit(s) set (0x%x)\n",status));
cs_update_ptr(card, CS_TRUE);
}
if (status & HISR_MIDI)
cs_handle_midi(card);
/* clear 'em */
cs461x_pokeBA0(card, BA0_HICR, HICR_CHGM|HICR_IEV);
spin_unlock(&card->lock);
CS_DBGOUT(CS_INTERRUPT, 9, printk("cs46xx: cs_interrupt()- \n"));
return IRQ_HANDLED;
}
/**********************************************************************/
static ssize_t cs_midi_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct cs_card *card = file->private_data;
ssize_t ret;
unsigned long flags;
unsigned ptr;
int cnt;
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
ret = 0;
while (count > 0) {
spin_lock_irqsave(&card->lock, flags);
ptr = card->midi.ird;
cnt = CS_MIDIINBUF - ptr;
if (card->midi.icnt < cnt)
cnt = card->midi.icnt;
spin_unlock_irqrestore(&card->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (file->f_flags & O_NONBLOCK)
return ret ? ret : -EAGAIN;
interruptible_sleep_on(&card->midi.iwait);
if (signal_pending(current))
return ret ? ret : -ERESTARTSYS;
continue;
}
if (copy_to_user(buffer, card->midi.ibuf + ptr, cnt))
return ret ? ret : -EFAULT;
ptr = (ptr + cnt) % CS_MIDIINBUF;
spin_lock_irqsave(&card->lock, flags);
card->midi.ird = ptr;
card->midi.icnt -= cnt;
spin_unlock_irqrestore(&card->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
}
return ret;
}
static ssize_t cs_midi_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct cs_card *card = file->private_data;
ssize_t ret;
unsigned long flags;
unsigned ptr;
int cnt;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
ret = 0;
while (count > 0) {
spin_lock_irqsave(&card->lock, flags);
ptr = card->midi.owr;
cnt = CS_MIDIOUTBUF - ptr;
if (card->midi.ocnt + cnt > CS_MIDIOUTBUF)
cnt = CS_MIDIOUTBUF - card->midi.ocnt;
if (cnt <= 0)
cs_handle_midi(card);
spin_unlock_irqrestore(&card->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (file->f_flags & O_NONBLOCK)
return ret ? ret : -EAGAIN;
interruptible_sleep_on(&card->midi.owait);
if (signal_pending(current))
return ret ? ret : -ERESTARTSYS;
continue;
}
if (copy_from_user(card->midi.obuf + ptr, buffer, cnt))
return ret ? ret : -EFAULT;
ptr = (ptr + cnt) % CS_MIDIOUTBUF;
spin_lock_irqsave(&card->lock, flags);
card->midi.owr = ptr;
card->midi.ocnt += cnt;
spin_unlock_irqrestore(&card->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
spin_lock_irqsave(&card->lock, flags);
cs_handle_midi(card);
spin_unlock_irqrestore(&card->lock, flags);
}
return ret;
}
static unsigned int cs_midi_poll(struct file *file, struct poll_table_struct *wait)
{
struct cs_card *card = file->private_data;
unsigned long flags;
unsigned int mask = 0;
if (file->f_flags & FMODE_WRITE)
poll_wait(file, &card->midi.owait, wait);
if (file->f_flags & FMODE_READ)
poll_wait(file, &card->midi.iwait, wait);
spin_lock_irqsave(&card->lock, flags);
if (file->f_flags & FMODE_READ) {
if (card->midi.icnt > 0)
mask |= POLLIN | POLLRDNORM;
}
if (file->f_flags & FMODE_WRITE) {
if (card->midi.ocnt < CS_MIDIOUTBUF)
mask |= POLLOUT | POLLWRNORM;
}
spin_unlock_irqrestore(&card->lock, flags);
return mask;
}
static int cs_midi_open(struct inode *inode, struct file *file)
{
unsigned int minor = iminor(inode);
struct cs_card *card = NULL;
unsigned long flags;
struct list_head *entry;
list_for_each(entry, &cs46xx_devs) {
card = list_entry(entry, struct cs_card, list);
if (card->dev_midi == minor)
break;
}
if (entry == &cs46xx_devs)
return -ENODEV;
if (!card) {
CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
"cs46xx: cs46xx_midi_open(): Error - unable to find card struct\n"));
return -ENODEV;
}
file->private_data = card;
/* wait for device to become free */
mutex_lock(&card->midi.open_mutex);
while (card->midi.open_mode & file->f_mode) {
if (file->f_flags & O_NONBLOCK) {
mutex_unlock(&card->midi.open_mutex);
return -EBUSY;
}
mutex_unlock(&card->midi.open_mutex);
interruptible_sleep_on(&card->midi.open_wait);
if (signal_pending(current))
return -ERESTARTSYS;
mutex_lock(&card->midi.open_mutex);
}
spin_lock_irqsave(&card->midi.lock, flags);
if (!(card->midi.open_mode & (FMODE_READ | FMODE_WRITE))) {
card->midi.ird = card->midi.iwr = card->midi.icnt = 0;
card->midi.ord = card->midi.owr = card->midi.ocnt = 0;
card->midi.ird = card->midi.iwr = card->midi.icnt = 0;
cs461x_pokeBA0(card, BA0_MIDCR, 0x0000000f); /* Enable xmit, rcv. */
cs461x_pokeBA0(card, BA0_HICR, HICR_IEV | HICR_CHGM); /* Enable interrupts */
}
if (file->f_mode & FMODE_READ)
card->midi.ird = card->midi.iwr = card->midi.icnt = 0;
if (file->f_mode & FMODE_WRITE)
card->midi.ord = card->midi.owr = card->midi.ocnt = 0;
spin_unlock_irqrestore(&card->midi.lock, flags);
card->midi.open_mode |= (file->f_mode & (FMODE_READ | FMODE_WRITE));
mutex_unlock(&card->midi.open_mutex);
return 0;
}
static int cs_midi_release(struct inode *inode, struct file *file)
{
struct cs_card *card = file->private_data;
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
unsigned count, tmo;
if (file->f_mode & FMODE_WRITE) {
current->state = TASK_INTERRUPTIBLE;
add_wait_queue(&card->midi.owait, &wait);
for (;;) {
spin_lock_irqsave(&card->midi.lock, flags);
count = card->midi.ocnt;
spin_unlock_irqrestore(&card->midi.lock, flags);
if (count <= 0)
break;
if (signal_pending(current))
break;
if (file->f_flags & O_NONBLOCK)
break;
tmo = (count * HZ) / 3100;
if (!schedule_timeout(tmo ? : 1) && tmo)
printk(KERN_DEBUG "cs46xx: midi timed out??\n");
}
remove_wait_queue(&card->midi.owait, &wait);
current->state = TASK_RUNNING;
}
mutex_lock(&card->midi.open_mutex);
card->midi.open_mode &= (~(file->f_mode & (FMODE_READ | FMODE_WRITE)));
mutex_unlock(&card->midi.open_mutex);
wake_up(&card->midi.open_wait);
return 0;
}
/*
* Midi file operations struct.
*/
static /*const*/ struct file_operations cs_midi_fops = {
CS_OWNER CS_THIS_MODULE
.llseek = no_llseek,
.read = cs_midi_read,
.write = cs_midi_write,
.poll = cs_midi_poll,
.open = cs_midi_open,
.release = cs_midi_release,
};
/*
*
* CopySamples copies 16-bit stereo signed samples from the source to the
* destination, possibly converting down to unsigned 8-bit and/or mono.
* count specifies the number of output bytes to write.
*
* Arguments:
*
* dst - Pointer to a destination buffer.
* src - Pointer to a source buffer
* count - The number of bytes to copy into the destination buffer.
* fmt - CS_FMT_16BIT and/or CS_FMT_STEREO bits
* dmabuf - pointer to the dma buffer structure
*
* NOTES: only call this routine if the output desired is not 16 Signed Stereo
*
*
*/
static void CopySamples(char *dst, char *src, int count, unsigned fmt,
struct dmabuf *dmabuf)
{
s32 s32AudioSample;
s16 *psSrc = (s16 *)src;
s16 *psDst = (s16 *)dst;
u8 *pucDst = (u8 *)dst;
CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs46xx: CopySamples()+ ") );
CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
" dst=%p src=%p count=%d fmt=0x%x\n",
dst,src,count,fmt) );
/*
* See if the data should be output as 8-bit unsigned stereo.
*/
if ((fmt & CS_FMT_STEREO) && !(fmt & CS_FMT_16BIT)) {
/*
* Convert each 16-bit signed stereo sample to 8-bit unsigned
* stereo using rounding.
*/
psSrc = (s16 *)src;
count = count / 2;
while (count--)
*(pucDst++) = (u8)(((s16)(*psSrc++) + (s16)0x8000) >> 8);
}
/*
* See if the data should be output at 8-bit unsigned mono.
*/
else if (!(fmt & CS_FMT_STEREO) && !(fmt & CS_FMT_16BIT)) {
/*
* Convert each 16-bit signed stereo sample to 8-bit unsigned
* mono using averaging and rounding.
*/
psSrc = (s16 *)src;
count = count / 2;
while (count--) {
s32AudioSample = ((*psSrc) + (*(psSrc + 1))) / 2 + (s32)0x80;
if (s32AudioSample > 0x7fff)
s32AudioSample = 0x7fff;
*(pucDst++) = (u8)(((s16)s32AudioSample + (s16)0x8000) >> 8);
psSrc += 2;
}
}
/*
* See if the data should be output at 16-bit signed mono.
*/
else if (!(fmt & CS_FMT_STEREO) && (fmt & CS_FMT_16BIT)) {
/*
* Convert each 16-bit signed stereo sample to 16-bit signed
* mono using averaging.
*/
psSrc = (s16 *)src;
count = count / 2;
while (count--) {
*(psDst++) = (s16)((*psSrc) + (*(psSrc + 1))) / 2;
psSrc += 2;
}
}
}
/*
* cs_copy_to_user()
* replacement for the standard copy_to_user, to allow for a conversion from
* 16 bit to 8 bit and from stereo to mono, if the record conversion is active.
* The current CS46xx/CS4280 static image only records in 16bit unsigned Stereo,
* so we convert from any of the other format combinations.
*/
static unsigned cs_copy_to_user(
struct cs_state *s,
void __user *dest,
void *hwsrc,
unsigned cnt,
unsigned *copied)
{
struct dmabuf *dmabuf = &s->dmabuf;
void *src = hwsrc; /* default to the standard destination buffer addr */
CS_DBGOUT(CS_FUNCTION, 6, printk(KERN_INFO
"cs_copy_to_user()+ fmt=0x%x cnt=%d dest=%p\n",
dmabuf->fmt,(unsigned)cnt,dest) );
if (cnt > dmabuf->dmasize)
cnt = dmabuf->dmasize;
if (!cnt) {
*copied = 0;
return 0;
}
if (dmabuf->divisor != 1) {
if (!dmabuf->tmpbuff) {
*copied = cnt / dmabuf->divisor;
return 0;
}
CopySamples((char *)dmabuf->tmpbuff, (char *)hwsrc, cnt,
dmabuf->fmt, dmabuf);
src = dmabuf->tmpbuff;
cnt = cnt/dmabuf->divisor;
}
if (copy_to_user(dest, src, cnt)) {
CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_ERR
"cs46xx: cs_copy_to_user()- fault dest=%p src=%p cnt=%d\n",
dest,src,cnt));
*copied = 0;
return -EFAULT;
}
*copied = cnt;
CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO
"cs46xx: cs_copy_to_user()- copied bytes is %d \n",cnt));
return 0;
}
/* in this loop, dmabuf.count signifies the amount of data that is waiting to be copied to
the user's buffer. it is filled by the dma machine and drained by this loop. */
static ssize_t cs_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct cs_card *card = file->private_data;
struct cs_state *state;
DECLARE_WAITQUEUE(wait, current);
struct dmabuf *dmabuf;
ssize_t ret = 0;
unsigned long flags;
unsigned swptr;
int cnt;
unsigned copied = 0;
CS_DBGOUT(CS_WAVE_READ | CS_FUNCTION, 4,
printk("cs46xx: cs_read()+ %zd\n",count) );
state = card->states[0];
if (!state)
return -ENODEV;
dmabuf = &state->dmabuf;
if (dmabuf->mapped)
return -ENXIO;
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
mutex_lock(&state->sem);
if (!dmabuf->ready && (ret = __prog_dmabuf(state)))
goto out2;
add_wait_queue(&state->dmabuf.wait, &wait);
while (count > 0) {
while (!(card->pm.flags & CS46XX_PM_IDLE)) {
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
goto out;
}
}
spin_lock_irqsave(&state->card->lock, flags);
swptr = dmabuf->swptr;
cnt = dmabuf->dmasize - swptr;
if (dmabuf->count < cnt)
cnt = dmabuf->count;
if (cnt <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&state->card->lock, flags);
if (cnt > (count * dmabuf->divisor))
cnt = count * dmabuf->divisor;
if (cnt <= 0) {
/* buffer is empty, start the dma machine and wait for data to be
recorded */
start_adc(state);
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
goto out;
}
mutex_unlock(&state->sem);
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
goto out;
}
mutex_lock(&state->sem);
if (dmabuf->mapped) {
if (!ret)
ret = -ENXIO;
goto out;
}
continue;
}
CS_DBGOUT(CS_WAVE_READ, 2, printk(KERN_INFO
"_read() copy_to cnt=%d count=%zd ", cnt,count) );
CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
" .dmasize=%d .count=%d buffer=%p ret=%zd\n",
dmabuf->dmasize,dmabuf->count,buffer,ret));
if (cs_copy_to_user(state, buffer,
(char *)dmabuf->rawbuf + swptr, cnt, &copied)) {
if (!ret)
ret = -EFAULT;
goto out;
}
swptr = (swptr + cnt) % dmabuf->dmasize;
spin_lock_irqsave(&card->lock, flags);
dmabuf->swptr = swptr;
dmabuf->count -= cnt;
spin_unlock_irqrestore(&card->lock, flags);
count -= copied;
buffer += copied;
ret += copied;
start_adc(state);
}
out:
remove_wait_queue(&state->dmabuf.wait, &wait);
out2:
mutex_unlock(&state->sem);
set_current_state(TASK_RUNNING);
CS_DBGOUT(CS_WAVE_READ | CS_FUNCTION, 4,
printk("cs46xx: cs_read()- %zd\n",ret) );
return ret;
}
/* in this loop, dmabuf.count signifies the amount of data that is waiting to be dma to
the soundcard. it is drained by the dma machine and filled by this loop. */
static ssize_t cs_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct cs_card *card = file->private_data;
struct cs_state *state;
DECLARE_WAITQUEUE(wait, current);
struct dmabuf *dmabuf;
ssize_t ret;
unsigned long flags;
unsigned swptr;
int cnt;
CS_DBGOUT(CS_WAVE_WRITE | CS_FUNCTION, 4,
printk("cs46xx: cs_write called, count = %zd\n", count) );
state = card->states[1];
if (!state)
return -ENODEV;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
dmabuf = &state->dmabuf;
mutex_lock(&state->sem);
if (dmabuf->mapped) {
ret = -ENXIO;
goto out;
}
if (!dmabuf->ready && (ret = __prog_dmabuf(state)))
goto out;
add_wait_queue(&state->dmabuf.wait, &wait);
ret = 0;
/*
* Start the loop to read from the user's buffer and write to the dma buffer.
* check for PM events and underrun/overrun in the loop.
*/
while (count > 0) {
while (!(card->pm.flags & CS46XX_PM_IDLE)) {
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
goto out;
}
}
spin_lock_irqsave(&state->card->lock, flags);
if (dmabuf->count < 0) {
/* buffer underrun, we are recovering from sleep_on_timeout,
resync hwptr and swptr */
dmabuf->count = 0;
dmabuf->swptr = dmabuf->hwptr;
}
if (dmabuf->underrun) {
dmabuf->underrun = 0;
dmabuf->hwptr = cs_get_dma_addr(state);
dmabuf->swptr = dmabuf->hwptr;
}
swptr = dmabuf->swptr;
cnt = dmabuf->dmasize - swptr;
if (dmabuf->count + cnt > dmabuf->dmasize)
cnt = dmabuf->dmasize - dmabuf->count;
if (cnt <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&state->card->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
/* buffer is full, start the dma machine and wait for data to be
played */
start_dac(state);
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
goto out;
}
mutex_unlock(&state->sem);
schedule();
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
goto out;
}
mutex_lock(&state->sem);
if (dmabuf->mapped) {
if (!ret)
ret = -ENXIO;
goto out;
}
continue;
}
if (copy_from_user(dmabuf->rawbuf + swptr, buffer, cnt)) {
if (!ret)
ret = -EFAULT;
goto out;
}
spin_lock_irqsave(&state->card->lock, flags);
swptr = (swptr + cnt) % dmabuf->dmasize;
dmabuf->swptr = swptr;
dmabuf->count += cnt;
if (dmabuf->count > dmabuf->dmasize) {
CS_DBGOUT(CS_WAVE_WRITE | CS_ERROR, 2, printk(
"cs46xx: cs_write() d->count > dmasize - resetting\n"));
dmabuf->count = dmabuf->dmasize;
}
dmabuf->endcleared = 0;
spin_unlock_irqrestore(&state->card->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
start_dac(state);
}
out:
mutex_unlock(&state->sem);
remove_wait_queue(&state->dmabuf.wait, &wait);
set_current_state(TASK_RUNNING);
CS_DBGOUT(CS_WAVE_WRITE | CS_FUNCTION, 2,
printk("cs46xx: cs_write()- ret=%zd\n", ret));
return ret;
}
static unsigned int cs_poll(struct file *file, struct poll_table_struct *wait)
{
struct cs_card *card = file->private_data;
struct dmabuf *dmabuf;
struct cs_state *state;
unsigned long flags;
unsigned int mask = 0;
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_poll()+ \n"));
if (!(file->f_mode & (FMODE_WRITE | FMODE_READ))) {
return -EINVAL;
}
if (file->f_mode & FMODE_WRITE) {
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
poll_wait(file, &dmabuf->wait, wait);
}
}
if (file->f_mode & FMODE_READ) {
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
poll_wait(file, &dmabuf->wait, wait);
}
}
spin_lock_irqsave(&card->lock, flags);
cs_update_ptr(card, CS_FALSE);
if (file->f_mode & FMODE_READ) {
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
if (dmabuf->count >= (signed)dmabuf->fragsize)
mask |= POLLIN | POLLRDNORM;
}
}
if (file->f_mode & FMODE_WRITE) {
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
if (dmabuf->mapped) {
if (dmabuf->count >= (signed)dmabuf->fragsize)
mask |= POLLOUT | POLLWRNORM;
} else {
if ((signed)dmabuf->dmasize >= dmabuf->count
+ (signed)dmabuf->fragsize)
mask |= POLLOUT | POLLWRNORM;
}
}
}
spin_unlock_irqrestore(&card->lock, flags);
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_poll()- (0x%x) \n",
mask));
return mask;
}
/*
* We let users mmap the ring buffer. Its not the real DMA buffer but
* that side of the code is hidden in the IRQ handling. We do a software
* emulation of DMA from a 64K or so buffer into a 2K FIFO.
* (the hardware probably deserves a moan here but Crystal send me nice
* toys ;)).
*/
static int cs_mmap(struct file *file, struct vm_area_struct *vma)
{
struct cs_card *card = file->private_data;
struct cs_state *state;
struct dmabuf *dmabuf;
int ret = 0;
unsigned long size;
CS_DBGOUT(CS_FUNCTION | CS_PARMS, 2, printk("cs46xx: cs_mmap()+ file=%p %s %s\n",
file, vma->vm_flags & VM_WRITE ? "VM_WRITE" : "",
vma->vm_flags & VM_READ ? "VM_READ" : "") );
if (vma->vm_flags & VM_WRITE) {
state = card->states[1];
if (state) {
CS_DBGOUT(CS_OPEN, 2, printk(
"cs46xx: cs_mmap() VM_WRITE - state TRUE prog_dmabuf DAC\n") );
if ((ret = prog_dmabuf(state)) != 0)
return ret;
}
} else if (vma->vm_flags & VM_READ) {
state = card->states[0];
if (state) {
CS_DBGOUT(CS_OPEN, 2, printk(
"cs46xx: cs_mmap() VM_READ - state TRUE prog_dmabuf ADC\n") );
if ((ret = prog_dmabuf(state)) != 0)
return ret;
}
} else {
CS_DBGOUT(CS_ERROR, 2, printk(
"cs46xx: cs_mmap() return -EINVAL\n") );
return -EINVAL;
}
/*
* For now ONLY support playback, but seems like the only way to use
* mmap() is to open an FD with RDWR, just read or just write access
* does not function, get an error back from the kernel.
* Also, QuakeIII opens with RDWR! So, there must be something
* to needing read/write access mapping. So, allow read/write but
* use the DAC only.
*/
state = card->states[1];
if (!state) {
ret = -EINVAL;
goto out;
}
mutex_lock(&state->sem);
dmabuf = &state->dmabuf;
if (cs4x_pgoff(vma) != 0) {
ret = -EINVAL;
goto out;
}
size = vma->vm_end - vma->vm_start;
CS_DBGOUT(CS_PARMS, 2, printk("cs46xx: cs_mmap(): size=%d\n",(unsigned)size) );
if (size > (PAGE_SIZE << dmabuf->buforder)) {
ret = -EINVAL;
goto out;
}
if (remap_pfn_range(vma, vma->vm_start,
virt_to_phys(dmabuf->rawbuf) >> PAGE_SHIFT,
size, vma->vm_page_prot)) {
ret = -EAGAIN;
goto out;
}
dmabuf->mapped = 1;
CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_mmap()-\n") );
out:
mutex_unlock(&state->sem);
return ret;
}
static int cs_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
struct cs_card *card = file->private_data;
struct cs_state *state;
struct dmabuf *dmabuf = NULL;
unsigned long flags;
audio_buf_info abinfo;
count_info cinfo;
int val, valsave, ret;
int mapped = 0;
void __user *argp = (void __user *)arg;
int __user *p = argp;
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
mapped = (file->f_mode & FMODE_READ) && dmabuf->mapped;
}
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
mapped |= (file->f_mode & FMODE_WRITE) && dmabuf->mapped;
}
#if CSDEBUG
printioctl(cmd);
#endif
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, p);
case SNDCTL_DSP_RESET:
/* FIXME: spin_lock ? */
if (file->f_mode & FMODE_WRITE) {
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
stop_dac(state);
synchronize_irq(card->irq);
dmabuf->ready = 0;
resync_dma_ptrs(state);
dmabuf->swptr = dmabuf->hwptr = 0;
dmabuf->count = dmabuf->total_bytes = 0;
dmabuf->blocks = 0;
dmabuf->SGok = 0;
}
}
if (file->f_mode & FMODE_READ) {
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
stop_adc(state);
synchronize_irq(card->irq);
resync_dma_ptrs(state);
dmabuf->ready = 0;
dmabuf->swptr = dmabuf->hwptr = 0;
dmabuf->count = dmabuf->total_bytes = 0;
dmabuf->blocks = 0;
dmabuf->SGok = 0;
}
}
CS_DBGOUT(CS_IOCTL, 2, printk("cs46xx: DSP_RESET()-\n") );
return 0;
case SNDCTL_DSP_SYNC:
if (file->f_mode & FMODE_WRITE)
return drain_dac(state, file->f_flags & O_NONBLOCK);
return 0;
case SNDCTL_DSP_SPEED: /* set sample rate */
if (get_user(val, p))
return -EFAULT;
if (val >= 0) {
if (file->f_mode & FMODE_READ) {
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
stop_adc(state);
dmabuf->ready = 0;
dmabuf->SGok = 0;
cs_set_adc_rate(state, val);
cs_set_divisor(dmabuf);
}
}
if (file->f_mode & FMODE_WRITE) {
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
stop_dac(state);
dmabuf->ready = 0;
dmabuf->SGok = 0;
cs_set_dac_rate(state, val);
cs_set_divisor(dmabuf);
}
}
CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(
"cs46xx: cs_ioctl() DSP_SPEED %s %s %d\n",
file->f_mode & FMODE_WRITE ? "DAC" : "",
file->f_mode & FMODE_READ ? "ADC" : "",
dmabuf->rate ) );
return put_user(dmabuf->rate, p);
}
return put_user(0, p);
case SNDCTL_DSP_STEREO: /* set stereo or mono channel */
if (get_user(val, p))
return -EFAULT;
if (file->f_mode & FMODE_WRITE) {
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
stop_dac(state);
dmabuf->ready = 0;
dmabuf->SGok = 0;
if (val)
dmabuf->fmt |= CS_FMT_STEREO;
else
dmabuf->fmt &= ~CS_FMT_STEREO;
cs_set_divisor(dmabuf);
CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(
"cs46xx: DSP_STEREO() DAC %s\n",
(dmabuf->fmt & CS_FMT_STEREO) ?
"STEREO":"MONO") );
}
}
if (file->f_mode & FMODE_READ) {
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
stop_adc(state);
dmabuf->ready = 0;
dmabuf->SGok = 0;
if (val)
dmabuf->fmt |= CS_FMT_STEREO;
else
dmabuf->fmt &= ~CS_FMT_STEREO;
cs_set_divisor(dmabuf);
CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(
"cs46xx: DSP_STEREO() ADC %s\n",
(dmabuf->fmt & CS_FMT_STEREO) ?
"STEREO":"MONO") );
}
}
return 0;
case SNDCTL_DSP_GETBLKSIZE:
if (file->f_mode & FMODE_WRITE) {
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
if ((val = prog_dmabuf(state)))
return val;
return put_user(dmabuf->fragsize, p);
}
}
if (file->f_mode & FMODE_READ) {
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
if ((val = prog_dmabuf(state)))
return val;
return put_user(dmabuf->fragsize/dmabuf->divisor,
p);
}
}
return put_user(0, p);
case SNDCTL_DSP_GETFMTS: /* Returns a mask of supported sample format*/
return put_user(AFMT_S16_LE | AFMT_U8, p);
case SNDCTL_DSP_SETFMT: /* Select sample format */
if (get_user(val, p))
return -EFAULT;
CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(
"cs46xx: cs_ioctl() DSP_SETFMT %s %s %s %s\n",
file->f_mode & FMODE_WRITE ? "DAC" : "",
file->f_mode & FMODE_READ ? "ADC" : "",
val == AFMT_S16_LE ? "16Bit Signed" : "",
val == AFMT_U8 ? "8Bit Unsigned" : "") );
valsave = val;
if (val != AFMT_QUERY) {
if (val==AFMT_S16_LE || val==AFMT_U8) {
if (file->f_mode & FMODE_WRITE) {
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
stop_dac(state);
dmabuf->ready = 0;
dmabuf->SGok = 0;
if (val == AFMT_S16_LE)
dmabuf->fmt |= CS_FMT_16BIT;
else
dmabuf->fmt &= ~CS_FMT_16BIT;
cs_set_divisor(dmabuf);
if ((ret = prog_dmabuf(state)))
return ret;
}
}
if (file->f_mode & FMODE_READ) {
val = valsave;
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
stop_adc(state);
dmabuf->ready = 0;
dmabuf->SGok = 0;
if (val == AFMT_S16_LE)
dmabuf->fmt |= CS_FMT_16BIT;
else
dmabuf->fmt &= ~CS_FMT_16BIT;
cs_set_divisor(dmabuf);
if ((ret = prog_dmabuf(state)))
return ret;
}
}
} else {
CS_DBGOUT(CS_IOCTL | CS_ERROR, 2, printk(
"cs46xx: DSP_SETFMT() Unsupported format (0x%x)\n",
valsave) );
}
} else {
if (file->f_mode & FMODE_WRITE) {
state = card->states[1];
if (state)
dmabuf = &state->dmabuf;
} else if (file->f_mode & FMODE_READ) {
state = card->states[0];
if (state)
dmabuf = &state->dmabuf;
}
}
if (dmabuf) {
if (dmabuf->fmt & CS_FMT_16BIT)
return put_user(AFMT_S16_LE, p);
else
return put_user(AFMT_U8, p);
}
return put_user(0, p);
case SNDCTL_DSP_CHANNELS:
if (get_user(val, p))
return -EFAULT;
if (val != 0) {
if (file->f_mode & FMODE_WRITE) {
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
stop_dac(state);
dmabuf->ready = 0;
dmabuf->SGok = 0;
if (val > 1)
dmabuf->fmt |= CS_FMT_STEREO;
else
dmabuf->fmt &= ~CS_FMT_STEREO;
cs_set_divisor(dmabuf);
if (prog_dmabuf(state))
return 0;
}
}
if (file->f_mode & FMODE_READ) {
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
stop_adc(state);
dmabuf->ready = 0;
dmabuf->SGok = 0;
if (val > 1)
dmabuf->fmt |= CS_FMT_STEREO;
else
dmabuf->fmt &= ~CS_FMT_STEREO;
cs_set_divisor(dmabuf);
if (prog_dmabuf(state))
return 0;
}
}
}
return put_user((dmabuf->fmt & CS_FMT_STEREO) ? 2 : 1,
p);
case SNDCTL_DSP_POST:
/*
* There will be a longer than normal pause in the data.
* so... do nothing, because there is nothing that we can do.
*/
return 0;
case SNDCTL_DSP_SUBDIVIDE:
if (file->f_mode & FMODE_WRITE) {
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
if (dmabuf->subdivision)
return -EINVAL;
if (get_user(val, p))
return -EFAULT;
if (val != 1 && val != 2)
return -EINVAL;
dmabuf->subdivision = val;
}
}
if (file->f_mode & FMODE_READ) {
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
if (dmabuf->subdivision)
return -EINVAL;
if (get_user(val, p))
return -EFAULT;
if (val != 1 && val != 2)
return -EINVAL;
dmabuf->subdivision = val;
}
}
return 0;
case SNDCTL_DSP_SETFRAGMENT:
if (get_user(val, p))
return -EFAULT;
if (file->f_mode & FMODE_WRITE) {
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
dmabuf->ossfragshift = val & 0xffff;
dmabuf->ossmaxfrags = (val >> 16) & 0xffff;
}
}
if (file->f_mode & FMODE_READ) {
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
dmabuf->ossfragshift = val & 0xffff;
dmabuf->ossmaxfrags = (val >> 16) & 0xffff;
}
}
return 0;
case SNDCTL_DSP_GETOSPACE:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
spin_lock_irqsave(&state->card->lock, flags);
cs_update_ptr(card, CS_TRUE);
abinfo.fragsize = dmabuf->fragsize;
abinfo.fragstotal = dmabuf->numfrag;
/*
* for mmap we always have total space available
*/
if (dmabuf->mapped)
abinfo.bytes = dmabuf->dmasize;
else
abinfo.bytes = dmabuf->dmasize - dmabuf->count;
abinfo.fragments = abinfo.bytes >> dmabuf->fragshift;
spin_unlock_irqrestore(&state->card->lock, flags);
return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
}
return -ENODEV;
case SNDCTL_DSP_GETISPACE:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
spin_lock_irqsave(&state->card->lock, flags);
cs_update_ptr(card, CS_TRUE);
abinfo.fragsize = dmabuf->fragsize/dmabuf->divisor;
abinfo.bytes = dmabuf->count/dmabuf->divisor;
abinfo.fragstotal = dmabuf->numfrag;
abinfo.fragments = abinfo.bytes >> dmabuf->fragshift;
spin_unlock_irqrestore(&state->card->lock, flags);
return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
}
return -ENODEV;
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_REALTIME|DSP_CAP_TRIGGER|DSP_CAP_MMAP,
p);
case SNDCTL_DSP_GETTRIGGER:
val = 0;
CS_DBGOUT(CS_IOCTL, 2, printk("cs46xx: DSP_GETTRIGGER()+\n") );
if (file->f_mode & FMODE_WRITE) {
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
if (dmabuf->enable & DAC_RUNNING)
val |= PCM_ENABLE_INPUT;
}
}
if (file->f_mode & FMODE_READ) {
if (state) {
state = card->states[0];
dmabuf = &state->dmabuf;
if (dmabuf->enable & ADC_RUNNING)
val |= PCM_ENABLE_OUTPUT;
}
}
CS_DBGOUT(CS_IOCTL, 2, printk("cs46xx: DSP_GETTRIGGER()- val=0x%x\n",val) );
return put_user(val, p);
case SNDCTL_DSP_SETTRIGGER:
if (get_user(val, p))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
if (val & PCM_ENABLE_INPUT) {
if (!dmabuf->ready && (ret = prog_dmabuf(state)))
return ret;
start_adc(state);
} else
stop_adc(state);
}
}
if (file->f_mode & FMODE_WRITE) {
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
if (val & PCM_ENABLE_OUTPUT) {
if (!dmabuf->ready && (ret = prog_dmabuf(state)))
return ret;
start_dac(state);
} else
stop_dac(state);
}
}
return 0;
case SNDCTL_DSP_GETIPTR:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
state = card->states[0];
if (state) {
dmabuf = &state->dmabuf;
spin_lock_irqsave(&state->card->lock, flags);
cs_update_ptr(card, CS_TRUE);
cinfo.bytes = dmabuf->total_bytes/dmabuf->divisor;
cinfo.blocks = dmabuf->count/dmabuf->divisor >> dmabuf->fragshift;
cinfo.ptr = dmabuf->hwptr/dmabuf->divisor;
spin_unlock_irqrestore(&state->card->lock, flags);
if (copy_to_user(argp, &cinfo, sizeof(cinfo)))
return -EFAULT;
return 0;
}
return -ENODEV;
case SNDCTL_DSP_GETOPTR:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
spin_lock_irqsave(&state->card->lock, flags);
cs_update_ptr(card, CS_TRUE);
cinfo.bytes = dmabuf->total_bytes;
if (dmabuf->mapped) {
cinfo.blocks = (cinfo.bytes >> dmabuf->fragshift)
- dmabuf->blocks;
CS_DBGOUT(CS_PARMS, 8,
printk("total_bytes=%d blocks=%d dmabuf->blocks=%d\n",
cinfo.bytes,cinfo.blocks,dmabuf->blocks) );
dmabuf->blocks = cinfo.bytes >> dmabuf->fragshift;
} else {
cinfo.blocks = dmabuf->count >> dmabuf->fragshift;
}
cinfo.ptr = dmabuf->hwptr;
CS_DBGOUT(CS_PARMS, 4, printk(
"cs46xx: GETOPTR bytes=%d blocks=%d ptr=%d\n",
cinfo.bytes,cinfo.blocks,cinfo.ptr) );
spin_unlock_irqrestore(&state->card->lock, flags);
if (copy_to_user(argp, &cinfo, sizeof(cinfo)))
return -EFAULT;
return 0;
}
return -ENODEV;
case SNDCTL_DSP_SETDUPLEX:
return 0;
case SNDCTL_DSP_GETODELAY:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
spin_lock_irqsave(&state->card->lock, flags);
cs_update_ptr(card, CS_TRUE);
val = dmabuf->count;
spin_unlock_irqrestore(&state->card->lock, flags);
} else
val = 0;
return put_user(val, p);
case SOUND_PCM_READ_RATE:
if (file->f_mode & FMODE_READ)
state = card->states[0];
else
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
return put_user(dmabuf->rate, p);
}
return put_user(0, p);
case SOUND_PCM_READ_CHANNELS:
if (file->f_mode & FMODE_READ)
state = card->states[0];
else
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
return put_user((dmabuf->fmt & CS_FMT_STEREO) ? 2 : 1,
p);
}
return put_user(0, p);
case SOUND_PCM_READ_BITS:
if (file->f_mode & FMODE_READ)
state = card->states[0];
else
state = card->states[1];
if (state) {
dmabuf = &state->dmabuf;
return put_user((dmabuf->fmt & CS_FMT_16BIT) ?
AFMT_S16_LE : AFMT_U8, p);
}
return put_user(0, p);
case SNDCTL_DSP_MAPINBUF:
case SNDCTL_DSP_MAPOUTBUF:
case SNDCTL_DSP_SETSYNCRO:
case SOUND_PCM_WRITE_FILTER:
case SOUND_PCM_READ_FILTER:
return -EINVAL;
}
return -EINVAL;
}
/*
* AMP control - null AMP
*/
static void amp_none(struct cs_card *card, int change)
{
}
/*
* Crystal EAPD mode
*/
static void amp_voyetra(struct cs_card *card, int change)
{
/* Manage the EAPD bit on the Crystal 4297
and the Analog AD1885 */
int old = card->amplifier;
card->amplifier+=change;
if (card->amplifier && !old) {
/* Turn the EAPD amp on */
cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL,
cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) |
0x8000);
} else if(old && !card->amplifier) {
/* Turn the EAPD amp off */
cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL,
cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
~0x8000);
}
}
/*
* Game Theatre XP card - EGPIO[2] is used to enable the external amp.
*/
static void amp_hercules(struct cs_card *card, int change)
{
int old = card->amplifier;
if (!card) {
CS_DBGOUT(CS_ERROR, 2, printk(KERN_INFO
"cs46xx: amp_hercules() called before initialized.\n"));
return;
}
card->amplifier+=change;
if ((card->amplifier && !old) && !(hercules_egpio_disable)) {
CS_DBGOUT(CS_PARMS, 4, printk(KERN_INFO
"cs46xx: amp_hercules() external amp enabled\n"));
cs461x_pokeBA0(card, BA0_EGPIODR,
EGPIODR_GPOE2); /* enable EGPIO2 output */
cs461x_pokeBA0(card, BA0_EGPIOPTR,
EGPIOPTR_GPPT2); /* open-drain on output */
} else if (old && !card->amplifier) {
CS_DBGOUT(CS_PARMS, 4, printk(KERN_INFO
"cs46xx: amp_hercules() external amp disabled\n"));
cs461x_pokeBA0(card, BA0_EGPIODR, 0); /* disable */
cs461x_pokeBA0(card, BA0_EGPIOPTR, 0); /* disable */
}
}
/*
* Handle the CLKRUN on a thinkpad. We must disable CLKRUN support
* whenever we need to beat on the chip.
*
* The original idea and code for this hack comes from David Kaiser at
* Linuxcare. Perhaps one day Crystal will document their chips well
* enough to make them useful.
*/
static void clkrun_hack(struct cs_card *card, int change)
{
struct pci_dev *acpi_dev;
u16 control;
u8 pp;
unsigned long port;
int old = card->active;
card->active+=change;
acpi_dev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_3, NULL);
if (acpi_dev == NULL)
return; /* Not a thinkpad thats for sure */
/* Find the control port */
pci_read_config_byte(acpi_dev, 0x41, &pp);
port = pp << 8;
/* Read ACPI port */
control = inw(port + 0x10);
/* Flip CLKRUN off while running */
if (!card->active && old) {
CS_DBGOUT(CS_PARMS , 9, printk( KERN_INFO
"cs46xx: clkrun() enable clkrun - change=%d active=%d\n",
change,card->active));
outw(control|0x2000, port+0x10);
} else {
/*
* sometimes on a resume the bit is set, so always reset the bit.
*/
CS_DBGOUT(CS_PARMS , 9, printk( KERN_INFO
"cs46xx: clkrun() disable clkrun - change=%d active=%d\n",
change,card->active));
outw(control&~0x2000, port+0x10);
}
pci_dev_put(acpi_dev);
}
static int cs_open(struct inode *inode, struct file *file)
{
struct cs_card *card = file->private_data;
struct cs_state *state = NULL;
struct dmabuf *dmabuf = NULL;
struct list_head *entry;
unsigned int minor = iminor(inode);
int ret = 0;
unsigned int tmp;
CS_DBGOUT(CS_OPEN | CS_FUNCTION, 2, printk("cs46xx: cs_open()+ file=%p %s %s\n",
file, file->f_mode & FMODE_WRITE ? "FMODE_WRITE" : "",
file->f_mode & FMODE_READ ? "FMODE_READ" : "") );
list_for_each(entry, &cs46xx_devs) {
card = list_entry(entry, struct cs_card, list);
if (!((card->dev_audio ^ minor) & ~0xf))
break;
}
if (entry == &cs46xx_devs)
return -ENODEV;
if (!card) {
CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
"cs46xx: cs_open(): Error - unable to find audio card struct\n"));
return -ENODEV;
}
/*
* hardcode state[0] for capture, [1] for playback
*/
if (file->f_mode & FMODE_READ) {
CS_DBGOUT(CS_WAVE_READ, 2, printk("cs46xx: cs_open() FMODE_READ\n") );
if (card->states[0] == NULL) {
state = card->states[0] =
kmalloc(sizeof(struct cs_state), GFP_KERNEL);
if (state == NULL)
return -ENOMEM;
memset(state, 0, sizeof(struct cs_state));
mutex_init(&state->sem);
dmabuf = &state->dmabuf;
dmabuf->pbuf = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
if (dmabuf->pbuf == NULL) {
kfree(state);
card->states[0] = NULL;
return -ENOMEM;
}
} else {
state = card->states[0];
if (state->open_mode & FMODE_READ)
return -EBUSY;
}
dmabuf->channel = card->alloc_rec_pcm_channel(card);
if (dmabuf->channel == NULL) {
kfree(card->states[0]);
card->states[0] = NULL;
return -ENODEV;
}
/* Now turn on external AMP if needed */
state->card = card;
state->card->active_ctrl(state->card, 1);
state->card->amplifier_ctrl(state->card, 1);
if ((tmp = cs46xx_powerup(card, CS_POWER_ADC))) {
CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO
"cs46xx: cs46xx_powerup of ADC failed (0x%x)\n", tmp));
return -EIO;
}
dmabuf->channel->state = state;
/* initialize the virtual channel */
state->virt = 0;
state->magic = CS_STATE_MAGIC;
init_waitqueue_head(&dmabuf->wait);
mutex_init(&state->open_mutex);
file->private_data = card;
mutex_lock(&state->open_mutex);
/* set default sample format. According to OSS Programmer's Guide /dev/dsp
should be default to unsigned 8-bits, mono, with sample rate 8kHz and
/dev/dspW will accept 16-bits sample */
/* Default input is 8bit mono */
dmabuf->fmt &= ~CS_FMT_MASK;
dmabuf->type = CS_TYPE_ADC;
dmabuf->ossfragshift = 0;
dmabuf->ossmaxfrags = 0;
dmabuf->subdivision = 0;
cs_set_adc_rate(state, 8000);
cs_set_divisor(dmabuf);
state->open_mode |= FMODE_READ;
mutex_unlock(&state->open_mutex);
}
if (file->f_mode & FMODE_WRITE) {
CS_DBGOUT(CS_OPEN, 2, printk("cs46xx: cs_open() FMODE_WRITE\n") );
if (card->states[1] == NULL) {
state = card->states[1] =
kmalloc(sizeof(struct cs_state), GFP_KERNEL);
if (state == NULL)
return -ENOMEM;
memset(state, 0, sizeof(struct cs_state));
mutex_init(&state->sem);
dmabuf = &state->dmabuf;
dmabuf->pbuf = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
if (dmabuf->pbuf == NULL) {
kfree(state);
card->states[1] = NULL;
return -ENOMEM;
}
} else {
state = card->states[1];
if (state->open_mode & FMODE_WRITE)
return -EBUSY;
}
dmabuf->channel = card->alloc_pcm_channel(card);
if (dmabuf->channel == NULL) {
kfree(card->states[1]);
card->states[1] = NULL;
return -ENODEV;
}
/* Now turn on external AMP if needed */
state->card = card;
state->card->active_ctrl(state->card, 1);
state->card->amplifier_ctrl(state->card, 1);
if ((tmp = cs46xx_powerup(card, CS_POWER_DAC))) {
CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO
"cs46xx: cs46xx_powerup of DAC failed (0x%x)\n", tmp));
return -EIO;
}
dmabuf->channel->state = state;
/* initialize the virtual channel */
state->virt = 1;
state->magic = CS_STATE_MAGIC;
init_waitqueue_head(&dmabuf->wait);
mutex_init(&state->open_mutex);
file->private_data = card;
mutex_lock(&state->open_mutex);
/* set default sample format. According to OSS Programmer's Guide /dev/dsp
should be default to unsigned 8-bits, mono, with sample rate 8kHz and
/dev/dspW will accept 16-bits sample */
/* Default output is 8bit mono. */
dmabuf->fmt &= ~CS_FMT_MASK;
dmabuf->type = CS_TYPE_DAC;
dmabuf->ossfragshift = 0;
dmabuf->ossmaxfrags = 0;
dmabuf->subdivision = 0;
cs_set_dac_rate(state, 8000);
cs_set_divisor(dmabuf);
state->open_mode |= FMODE_WRITE;
mutex_unlock(&state->open_mutex);
if ((ret = prog_dmabuf(state)))
return ret;
}
CS_DBGOUT(CS_OPEN | CS_FUNCTION, 2, printk("cs46xx: cs_open()- 0\n"));
return nonseekable_open(inode, file);
}
static int cs_release(struct inode *inode, struct file *file)
{
struct cs_card *card = file->private_data;
struct dmabuf *dmabuf;
struct cs_state *state;
unsigned int tmp;
CS_DBGOUT(CS_RELEASE | CS_FUNCTION, 2, printk("cs46xx: cs_release()+ file=%p %s %s\n",
file, file->f_mode & FMODE_WRITE ? "FMODE_WRITE" : "",
file->f_mode & FMODE_READ ? "FMODE_READ" : ""));
if (!(file->f_mode & (FMODE_WRITE | FMODE_READ)))
return -EINVAL;
state = card->states[1];
if (state) {
if ((state->open_mode & FMODE_WRITE) & (file->f_mode & FMODE_WRITE)) {
CS_DBGOUT(CS_RELEASE, 2, printk("cs46xx: cs_release() FMODE_WRITE\n"));
dmabuf = &state->dmabuf;
cs_clear_tail(state);
drain_dac(state, file->f_flags & O_NONBLOCK);
/* stop DMA state machine and free DMA buffers/channels */
mutex_lock(&state->open_mutex);
stop_dac(state);
dealloc_dmabuf(state);
state->card->free_pcm_channel(state->card, dmabuf->channel->num);
free_page((unsigned long)state->dmabuf.pbuf);
/* we're covered by the open_mutex */
mutex_unlock(&state->open_mutex);
state->card->states[state->virt] = NULL;
state->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE);
if ((tmp = cs461x_powerdown(card, CS_POWER_DAC, CS_FALSE))) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
"cs46xx: cs_release_mixdev() powerdown DAC failure (0x%x)\n",tmp) );
}
/* Now turn off external AMP if needed */
state->card->amplifier_ctrl(state->card, -1);
state->card->active_ctrl(state->card, -1);
kfree(state);
}
}
state = card->states[0];
if (state) {
if ((state->open_mode & FMODE_READ) & (file->f_mode & FMODE_READ)) {
CS_DBGOUT(CS_RELEASE, 2, printk("cs46xx: cs_release() FMODE_READ\n"));
dmabuf = &state->dmabuf;
mutex_lock(&state->open_mutex);
stop_adc(state);
dealloc_dmabuf(state);
state->card->free_pcm_channel(state->card, dmabuf->channel->num);
free_page((unsigned long)state->dmabuf.pbuf);
/* we're covered by the open_mutex */
mutex_unlock(&state->open_mutex);
state->card->states[state->virt] = NULL;
state->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE);
if ((tmp = cs461x_powerdown(card, CS_POWER_ADC, CS_FALSE))) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
"cs46xx: cs_release_mixdev() powerdown ADC failure (0x%x)\n",tmp) );
}
/* Now turn off external AMP if needed */
state->card->amplifier_ctrl(state->card, -1);
state->card->active_ctrl(state->card, -1);
kfree(state);
}
}
CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 2, printk("cs46xx: cs_release()- 0\n"));
return 0;
}
static void printpm(struct cs_card *s)
{
CS_DBGOUT(CS_PM, 9, printk("pm struct:\n"));
CS_DBGOUT(CS_PM, 9, printk("flags:0x%x u32CLKCR1_SAVE: 0%x u32SSPMValue: 0x%x\n",
(unsigned)s->pm.flags,s->pm.u32CLKCR1_SAVE,s->pm.u32SSPMValue));
CS_DBGOUT(CS_PM, 9, printk("u32PPLVCvalue: 0x%x u32PPRVCvalue: 0x%x\n",
s->pm.u32PPLVCvalue,s->pm.u32PPRVCvalue));
CS_DBGOUT(CS_PM, 9, printk("u32FMLVCvalue: 0x%x u32FMRVCvalue: 0x%x\n",
s->pm.u32FMLVCvalue,s->pm.u32FMRVCvalue));
CS_DBGOUT(CS_PM, 9, printk("u32GPIORvalue: 0x%x u32JSCTLvalue: 0x%x\n",
s->pm.u32GPIORvalue,s->pm.u32JSCTLvalue));
CS_DBGOUT(CS_PM, 9, printk("u32SSCR: 0x%x u32SRCSA: 0x%x\n",
s->pm.u32SSCR,s->pm.u32SRCSA));
CS_DBGOUT(CS_PM, 9, printk("u32DacASR: 0x%x u32AdcASR: 0x%x\n",
s->pm.u32DacASR,s->pm.u32AdcASR));
CS_DBGOUT(CS_PM, 9, printk("u32DacSR: 0x%x u32AdcSR: 0x%x\n",
s->pm.u32DacSR,s->pm.u32AdcSR));
CS_DBGOUT(CS_PM, 9, printk("u32MIDCR_Save: 0x%x\n",
s->pm.u32MIDCR_Save));
CS_DBGOUT(CS_PM, 9, printk("u32AC97_powerdown: 0x%x _general_purpose 0x%x\n",
s->pm.u32AC97_powerdown,s->pm.u32AC97_general_purpose));
CS_DBGOUT(CS_PM, 9, printk("u32AC97_master_volume: 0x%x\n",
s->pm.u32AC97_master_volume));
CS_DBGOUT(CS_PM, 9, printk("u32AC97_headphone_volume: 0x%x\n",
s->pm.u32AC97_headphone_volume));
CS_DBGOUT(CS_PM, 9, printk("u32AC97_master_volume_mono: 0x%x\n",
s->pm.u32AC97_master_volume_mono));
CS_DBGOUT(CS_PM, 9, printk("u32AC97_pcm_out_volume: 0x%x\n",
s->pm.u32AC97_pcm_out_volume));
CS_DBGOUT(CS_PM, 9, printk("dmabuf_swptr_play: 0x%x dmabuf_count_play: %d\n",
s->pm.dmabuf_swptr_play,s->pm.dmabuf_count_play));
CS_DBGOUT(CS_PM, 9, printk("dmabuf_swptr_capture: 0x%x dmabuf_count_capture: %d\n",
s->pm.dmabuf_swptr_capture,s->pm.dmabuf_count_capture));
}
/****************************************************************************
*
* Suspend - save the ac97 regs, mute the outputs and power down the part.
*
****************************************************************************/
static void cs46xx_ac97_suspend(struct cs_card *card)
{
int Count,i;
struct ac97_codec *dev=card->ac97_codec[0];
unsigned int tmp;
CS_DBGOUT(CS_PM, 9, printk("cs46xx: cs46xx_ac97_suspend()+\n"));
if (card->states[1]) {
stop_dac(card->states[1]);
resync_dma_ptrs(card->states[1]);
}
if (card->states[0]) {
stop_adc(card->states[0]);
resync_dma_ptrs(card->states[0]);
}
for (Count = 0x2, i = 0; (Count <= CS46XX_AC97_HIGHESTREGTORESTORE)
&& (i < CS46XX_AC97_NUMBER_RESTORE_REGS);
Count += 2, i++) {
card->pm.ac97[i] = cs_ac97_get(dev, BA0_AC97_RESET + Count);
}
/*
* Save the ac97 volume registers as well as the current powerdown state.
* Now, mute the all the outputs (master, headphone, and mono), as well
* as the PCM volume, in preparation for powering down the entire part.
card->pm.u32AC97_master_volume = (u32)cs_ac97_get( dev,
(u8)BA0_AC97_MASTER_VOLUME);
card->pm.u32AC97_headphone_volume = (u32)cs_ac97_get(dev,
(u8)BA0_AC97_HEADPHONE_VOLUME);
card->pm.u32AC97_master_volume_mono = (u32)cs_ac97_get(dev,
(u8)BA0_AC97_MASTER_VOLUME_MONO);
card->pm.u32AC97_pcm_out_volume = (u32)cs_ac97_get(dev,
(u8)BA0_AC97_PCM_OUT_VOLUME);
*/
/*
* mute the outputs
*/
cs_ac97_set(dev, (u8)BA0_AC97_MASTER_VOLUME, 0x8000);
cs_ac97_set(dev, (u8)BA0_AC97_HEADPHONE_VOLUME, 0x8000);
cs_ac97_set(dev, (u8)BA0_AC97_MASTER_VOLUME_MONO, 0x8000);
cs_ac97_set(dev, (u8)BA0_AC97_PCM_OUT_VOLUME, 0x8000);
/*
* save the registers that cause pops
*/
card->pm.u32AC97_powerdown = (u32)cs_ac97_get(dev, (u8)AC97_POWER_CONTROL);
card->pm.u32AC97_general_purpose = (u32)cs_ac97_get(dev, (u8)BA0_AC97_GENERAL_PURPOSE);
/*
* And power down everything on the AC97 codec.
* well, for now, only power down the DAC/ADC and MIXER VREFON components.
* trouble with removing VREF.
*/
if ((tmp = cs461x_powerdown(card, CS_POWER_DAC | CS_POWER_ADC |
CS_POWER_MIXVON, CS_TRUE))) {
CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO
"cs46xx: cs46xx_ac97_suspend() failure (0x%x)\n",tmp));
}
CS_DBGOUT(CS_PM, 9, printk("cs46xx: cs46xx_ac97_suspend()-\n"));
}
/****************************************************************************
*
* Resume - power up the part and restore its registers..
*
****************************************************************************/
static void cs46xx_ac97_resume(struct cs_card *card)
{
int Count,i;
struct ac97_codec *dev=card->ac97_codec[0];
CS_DBGOUT(CS_PM, 9, printk("cs46xx: cs46xx_ac97_resume()+\n"));
/*
* First, we restore the state of the general purpose register. This
* contains the mic select (mic1 or mic2) and if we restore this after
* we restore the mic volume/boost state and mic2 was selected at
* suspend time, we will end up with a brief period of time where mic1
* is selected with the volume/boost settings for mic2, causing
* acoustic feedback. So we restore the general purpose register
* first, thereby getting the correct mic selected before we restore
* the mic volume/boost.
*/
cs_ac97_set(dev, (u8)BA0_AC97_GENERAL_PURPOSE,
(u16)card->pm.u32AC97_general_purpose);
/*
* Now, while the outputs are still muted, restore the state of power
* on the AC97 part.
*/
cs_ac97_set(dev, (u8)BA0_AC97_POWERDOWN, (u16)card->pm.u32AC97_powerdown);
mdelay(5 * cs_laptop_wait);
/*
* Restore just the first set of registers, from register number
* 0x02 to the register number that ulHighestRegToRestore specifies.
*/
for (Count = 0x2, i=0; (Count <= CS46XX_AC97_HIGHESTREGTORESTORE) &&
(i < CS46XX_AC97_NUMBER_RESTORE_REGS); Count += 2, i++) {
cs_ac97_set(dev, (u8)(BA0_AC97_RESET + Count), (u16)card->pm.ac97[i]);
}
/* Check if we have to init the amplifier */
if (card->amp_init)
card->amp_init(card);
CS_DBGOUT(CS_PM, 9, printk("cs46xx: cs46xx_ac97_resume()-\n"));
}
static int cs46xx_restart_part(struct cs_card *card)
{
struct dmabuf *dmabuf;
CS_DBGOUT(CS_PM | CS_FUNCTION, 4,
printk( "cs46xx: cs46xx_restart_part()+\n"));
if (card->states[1]) {
dmabuf = &card->states[1]->dmabuf;
dmabuf->ready = 0;
resync_dma_ptrs(card->states[1]);
cs_set_divisor(dmabuf);
if (__prog_dmabuf(card->states[1])) {
CS_DBGOUT(CS_PM | CS_ERROR, 1,
printk("cs46xx: cs46xx_restart_part()- (-1) prog_dmabuf() dac error\n"));
return -1;
}
cs_set_dac_rate(card->states[1], dmabuf->rate);
}
if (card->states[0]) {
dmabuf = &card->states[0]->dmabuf;
dmabuf->ready = 0;
resync_dma_ptrs(card->states[0]);
cs_set_divisor(dmabuf);
if (__prog_dmabuf(card->states[0])) {
CS_DBGOUT(CS_PM | CS_ERROR, 1,
printk("cs46xx: cs46xx_restart_part()- (-1) prog_dmabuf() adc error\n"));
return -1;
}
cs_set_adc_rate(card->states[0], dmabuf->rate);
}
card->pm.flags |= CS46XX_PM_RESUMED;
if (card->states[0])
start_adc(card->states[0]);
if (card->states[1])
start_dac(card->states[1]);
card->pm.flags |= CS46XX_PM_IDLE;
card->pm.flags &= ~(CS46XX_PM_SUSPENDING | CS46XX_PM_SUSPENDED
| CS46XX_PM_RESUMING | CS46XX_PM_RESUMED);
if (card->states[0])
wake_up(&card->states[0]->dmabuf.wait);
if (card->states[1])
wake_up(&card->states[1]->dmabuf.wait);
CS_DBGOUT(CS_PM | CS_FUNCTION, 4,
printk( "cs46xx: cs46xx_restart_part()-\n"));
return 0;
}
static void cs461x_reset(struct cs_card *card);
static void cs461x_proc_stop(struct cs_card *card);
static int cs46xx_suspend(struct cs_card *card, pm_message_t state)
{
unsigned int tmp;
CS_DBGOUT(CS_PM | CS_FUNCTION, 4,
printk("cs46xx: cs46xx_suspend()+ flags=0x%x s=%p\n",
(unsigned)card->pm.flags,card));
/*
* check the current state, only suspend if IDLE
*/
if (!(card->pm.flags & CS46XX_PM_IDLE)) {
CS_DBGOUT(CS_PM | CS_ERROR, 2,
printk("cs46xx: cs46xx_suspend() unable to suspend, not IDLE\n"));
return 1;
}
card->pm.flags &= ~CS46XX_PM_IDLE;
card->pm.flags |= CS46XX_PM_SUSPENDING;
card->active_ctrl(card,1);
tmp = cs461x_peek(card, BA1_PFIE);
tmp &= ~0x0000f03f;
tmp |= 0x00000010;
cs461x_poke(card, BA1_PFIE, tmp); /* playback interrupt disable */
tmp = cs461x_peek(card, BA1_CIE);
tmp &= ~0x0000003f;
tmp |= 0x00000011;
cs461x_poke(card, BA1_CIE, tmp); /* capture interrupt disable */
/*
* Stop playback DMA.
*/
tmp = cs461x_peek(card, BA1_PCTL);
cs461x_poke(card, BA1_PCTL, tmp & 0x0000ffff);
/*
* Stop capture DMA.
*/
tmp = cs461x_peek(card, BA1_CCTL);
cs461x_poke(card, BA1_CCTL, tmp & 0xffff0000);
if (card->states[1]) {
card->pm.dmabuf_swptr_play = card->states[1]->dmabuf.swptr;
card->pm.dmabuf_count_play = card->states[1]->dmabuf.count;
}
if (card->states[0]) {
card->pm.dmabuf_swptr_capture = card->states[0]->dmabuf.swptr;
card->pm.dmabuf_count_capture = card->states[0]->dmabuf.count;
}
cs46xx_ac97_suspend(card);
/*
* Reset the processor.
*/
cs461x_reset(card);
cs461x_proc_stop(card);
/*
* Power down the DAC and ADC. For now leave the other areas on.
*/
cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, 0x0300);
/*
* Power down the PLL.
*/
cs461x_pokeBA0(card, BA0_CLKCR1, 0);
/*
* Turn off the Processor by turning off the software clock enable flag in
* the clock control register.
*/
tmp = cs461x_peekBA0(card, BA0_CLKCR1) & ~CLKCR1_SWCE;
cs461x_pokeBA0(card, BA0_CLKCR1, tmp);
card->active_ctrl(card,-1);
card->pm.flags &= ~CS46XX_PM_SUSPENDING;
card->pm.flags |= CS46XX_PM_SUSPENDED;
printpm(card);
CS_DBGOUT(CS_PM | CS_FUNCTION, 4,
printk("cs46xx: cs46xx_suspend()- flags=0x%x\n",
(unsigned)card->pm.flags));
return 0;
}
static int cs46xx_resume(struct cs_card *card)
{
int i;
CS_DBGOUT(CS_PM | CS_FUNCTION, 4,
printk( "cs46xx: cs46xx_resume()+ flags=0x%x\n",
(unsigned)card->pm.flags));
if (!(card->pm.flags & CS46XX_PM_SUSPENDED)) {
CS_DBGOUT(CS_PM | CS_ERROR, 2,
printk("cs46xx: cs46xx_resume() unable to resume, not SUSPENDED\n"));
return 1;
}
card->pm.flags |= CS46XX_PM_RESUMING;
card->pm.flags &= ~CS46XX_PM_SUSPENDED;
printpm(card);
card->active_ctrl(card, 1);
for (i = 0; i < 5; i++) {
if (cs_hardware_init(card) != 0) {
CS_DBGOUT(CS_PM | CS_ERROR, 4, printk(
"cs46xx: cs46xx_resume()- ERROR in cs_hardware_init()\n"));
mdelay(10 * cs_laptop_wait);
cs461x_reset(card);
continue;
}
break;
}
if (i >= 4) {
CS_DBGOUT(CS_PM | CS_ERROR, 1, printk(
"cs46xx: cs46xx_resume()- cs_hardware_init() failed, retried %d times.\n",i));
return 0;
}
if (cs46xx_restart_part(card)) {
CS_DBGOUT(CS_PM | CS_ERROR, 4, printk(
"cs46xx: cs46xx_resume(): cs46xx_restart_part() returned error\n"));
}
card->active_ctrl(card, -1);
CS_DBGOUT(CS_PM | CS_FUNCTION, 4, printk("cs46xx: cs46xx_resume()- flags=0x%x\n",
(unsigned)card->pm.flags));
return 0;
}
static /*const*/ struct file_operations cs461x_fops = {
CS_OWNER CS_THIS_MODULE
.llseek = no_llseek,
.read = cs_read,
.write = cs_write,
.poll = cs_poll,
.ioctl = cs_ioctl,
.mmap = cs_mmap,
.open = cs_open,
.release = cs_release,
};
/* Write AC97 codec registers */
static u16 _cs_ac97_get(struct ac97_codec *dev, u8 reg)
{
struct cs_card *card = dev->private_data;
int count,loopcnt;
unsigned int tmp;
u16 ret;
/*
* 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
* 2. Write ACCDA = Command Data Register = 470h for data to write to AC97
* 3. Write ACCTL = Control Register = 460h for initiating the write
* 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 17h
* 5. if DCV not cleared, break and return error
* 6. Read ACSTS = Status Register = 464h, check VSTS bit
*/
cs461x_peekBA0(card, BA0_ACSDA);
/*
* Setup the AC97 control registers on the CS461x to send the
* appropriate command to the AC97 to perform the read.
* ACCAD = Command Address Register = 46Ch
* ACCDA = Command Data Register = 470h
* ACCTL = Control Register = 460h
* set DCV - will clear when process completed
* set CRW - Read command
* set VFRM - valid frame enabled
* set ESYN - ASYNC generation enabled
* set RSTN - ARST# inactive, AC97 codec not reset
*/
cs461x_pokeBA0(card, BA0_ACCAD, reg);
cs461x_pokeBA0(card, BA0_ACCDA, 0);
cs461x_pokeBA0(card, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW |
ACCTL_VFRM | ACCTL_ESYN |
ACCTL_RSTN);
/*
* Wait for the read to occur.
*/
if (!(card->pm.flags & CS46XX_PM_IDLE))
loopcnt = 2000;
else
loopcnt = 500 * cs_laptop_wait;
loopcnt *= cs_laptop_wait;
for (count = 0; count < loopcnt; count++) {
/*
* First, we want to wait for a short time.
*/
udelay(10 * cs_laptop_wait);
/*
* Now, check to see if the read has completed.
* ACCTL = 460h, DCV should be reset by now and 460h = 17h
*/
if (!(cs461x_peekBA0(card, BA0_ACCTL) & ACCTL_DCV))
break;
}
/*
* Make sure the read completed.
*/
if (cs461x_peekBA0(card, BA0_ACCTL) & ACCTL_DCV) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING
"cs46xx: AC'97 read problem (ACCTL_DCV), reg = 0x%x returning 0xffff\n", reg));
return 0xffff;
}
/*
* Wait for the valid status bit to go active.
*/
if (!(card->pm.flags & CS46XX_PM_IDLE))
loopcnt = 2000;
else
loopcnt = 1000;
loopcnt *= cs_laptop_wait;
for (count = 0; count < loopcnt; count++) {
/*
* Read the AC97 status register.
* ACSTS = Status Register = 464h
* VSTS - Valid Status
*/
if (cs461x_peekBA0(card, BA0_ACSTS) & ACSTS_VSTS)
break;
udelay(10 * cs_laptop_wait);
}
/*
* Make sure we got valid status.
*/
if (!((tmp = cs461x_peekBA0(card, BA0_ACSTS)) & ACSTS_VSTS)) {
CS_DBGOUT(CS_ERROR, 2, printk(KERN_WARNING
"cs46xx: AC'97 read problem (ACSTS_VSTS), reg = 0x%x val=0x%x 0xffff \n",
reg, tmp));
return 0xffff;
}
/*
* Read the data returned from the AC97 register.
* ACSDA = Status Data Register = 474h
*/
CS_DBGOUT(CS_FUNCTION, 9, printk(KERN_INFO
"cs46xx: cs_ac97_get() reg = 0x%x, val = 0x%x, BA0_ACCAD = 0x%x\n",
reg, cs461x_peekBA0(card, BA0_ACSDA),
cs461x_peekBA0(card, BA0_ACCAD)));
ret = cs461x_peekBA0(card, BA0_ACSDA);
return ret;
}
static u16 cs_ac97_get(struct ac97_codec *dev, u8 reg)
{
u16 ret;
struct cs_card *card = dev->private_data;
spin_lock(&card->ac97_lock);
ret = _cs_ac97_get(dev, reg);
spin_unlock(&card->ac97_lock);
return ret;
}
static void cs_ac97_set(struct ac97_codec *dev, u8 reg, u16 val)
{
struct cs_card *card = dev->private_data;
int count;
int val2 = 0;
spin_lock(&card->ac97_lock);
if (reg == AC97_CD_VOL)
val2 = _cs_ac97_get(dev, AC97_CD_VOL);
/*
* 1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
* 2. Write ACCDA = Command Data Register = 470h for data to write to AC97
* 3. Write ACCTL = Control Register = 460h for initiating the write
* 4. Read ACCTL = 460h, DCV should be reset by now and 460h = 07h
* 5. if DCV not cleared, break and return error
*/
/*
* Setup the AC97 control registers on the CS461x to send the
* appropriate command to the AC97 to perform the read.
* ACCAD = Command Address Register = 46Ch
* ACCDA = Command Data Register = 470h
* ACCTL = Control Register = 460h
* set DCV - will clear when process completed
* reset CRW - Write command
* set VFRM - valid frame enabled
* set ESYN - ASYNC generation enabled
* set RSTN - ARST# inactive, AC97 codec not reset
*/
cs461x_pokeBA0(card, BA0_ACCAD, reg);
cs461x_pokeBA0(card, BA0_ACCDA, val);
cs461x_peekBA0(card, BA0_ACCTL);
cs461x_pokeBA0(card, BA0_ACCTL, 0 | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
cs461x_pokeBA0(card, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM |
ACCTL_ESYN | ACCTL_RSTN);
for (count = 0; count < 1000; count++) {
/*
* First, we want to wait for a short time.
*/
udelay(10 * cs_laptop_wait);
/*
* Now, check to see if the write has completed.
* ACCTL = 460h, DCV should be reset by now and 460h = 07h
*/
if (!(cs461x_peekBA0(card, BA0_ACCTL) & ACCTL_DCV))
break;
}
/*
* Make sure the write completed.
*/
if (cs461x_peekBA0(card, BA0_ACCTL) & ACCTL_DCV) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING
"cs46xx: AC'97 write problem, reg = 0x%x, val = 0x%x\n", reg, val));
}
spin_unlock(&card->ac97_lock);
/*
* Adjust power if the mixer is selected/deselected according
* to the CD.
*
* IF the CD is a valid input source (mixer or direct) AND
* the CD is not muted THEN power is needed
*
* We do two things. When record select changes the input to
* add/remove the CD we adjust the power count if the CD is
* unmuted.
*
* When the CD mute changes we adjust the power level if the
* CD was a valid input.
*
* We also check for CD volume != 0, as the CD mute isn't
* normally tweaked from userspace.
*/
/* CD mute change ? */
if (reg == AC97_CD_VOL) {
/* Mute bit change ? */
if ((val2^val) & 0x8000 ||
((val2 == 0x1f1f || val == 0x1f1f) && val2 != val)) {
/* This is a hack but its cleaner than the alternatives.
Right now card->ac97_codec[0] might be NULL as we are
still doing codec setup. This does an early assignment
to avoid the problem if it occurs */
if (card->ac97_codec[0] == NULL)
card->ac97_codec[0] = dev;
/* Mute on */
if (val & 0x8000 || val == 0x1f1f)
card->amplifier_ctrl(card, -1);
else { /* Mute off power on */
if (card->amp_init)
card->amp_init(card);
card->amplifier_ctrl(card, 1);
}
}
}
}
/* OSS /dev/mixer file operation methods */
static int cs_open_mixdev(struct inode *inode, struct file *file)
{
int i = 0;
unsigned int minor = iminor(inode);
struct cs_card *card = NULL;
struct list_head *entry;
unsigned int tmp;
CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
printk(KERN_INFO "cs46xx: cs_open_mixdev()+\n"));
list_for_each(entry, &cs46xx_devs) {
card = list_entry(entry, struct cs_card, list);
for (i = 0; i < NR_AC97; i++)
if (card->ac97_codec[i] != NULL &&
card->ac97_codec[i]->dev_mixer == minor)
goto match;
}
if (!card) {
CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2,
printk(KERN_INFO "cs46xx: cs46xx_open_mixdev()- -ENODEV\n"));
return -ENODEV;
}
match:
if (!card->ac97_codec[i])
return -ENODEV;
file->private_data = card->ac97_codec[i];
card->active_ctrl(card,1);
if (!CS_IN_USE(&card->mixer_use_cnt)) {
if ((tmp = cs46xx_powerup(card, CS_POWER_MIXVON))) {
CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO
"cs46xx: cs_open_mixdev() powerup failure (0x%x)\n", tmp));
return -EIO;
}
}
card->amplifier_ctrl(card, 1);
CS_INC_USE_COUNT(&card->mixer_use_cnt);
CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
printk(KERN_INFO "cs46xx: cs_open_mixdev()- 0\n"));
return nonseekable_open(inode, file);
}
static int cs_release_mixdev(struct inode *inode, struct file *file)
{
unsigned int minor = iminor(inode);
struct cs_card *card = NULL;
struct list_head *entry;
int i;
unsigned int tmp;
CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 4,
printk(KERN_INFO "cs46xx: cs_release_mixdev()+\n"));
list_for_each(entry, &cs46xx_devs)
{
card = list_entry(entry, struct cs_card, list);
for (i = 0; i < NR_AC97; i++)
if (card->ac97_codec[i] != NULL &&
card->ac97_codec[i]->dev_mixer == minor)
goto match;
}
if (!card) {
CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2,
printk(KERN_INFO "cs46xx: cs46xx_open_mixdev()- -ENODEV\n"));
return -ENODEV;
}
match:
if (!CS_DEC_AND_TEST(&card->mixer_use_cnt)) {
CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 4,
printk(KERN_INFO "cs46xx: cs_release_mixdev()- no powerdown, usecnt>0\n"));
card->active_ctrl(card, -1);
card->amplifier_ctrl(card, -1);
return 0;
}
/*
* ok, no outstanding mixer opens, so powerdown.
*/
if ((tmp = cs461x_powerdown(card, CS_POWER_MIXVON, CS_FALSE))) {
CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO
"cs46xx: cs_release_mixdev() powerdown MIXVON failure (0x%x)\n", tmp));
card->active_ctrl(card, -1);
card->amplifier_ctrl(card, -1);
return -EIO;
}
card->active_ctrl(card, -1);
card->amplifier_ctrl(card, -1);
CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 4,
printk(KERN_INFO "cs46xx: cs_release_mixdev()- 0\n"));
return 0;
}
static int cs_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
struct ac97_codec *codec = file->private_data;
struct cs_card *card = NULL;
struct list_head *entry;
unsigned long __user *p = (long __user *)arg;
#if CSDEBUG_INTERFACE
int val;
if ( (cmd == SOUND_MIXER_CS_GETDBGMASK) ||
(cmd == SOUND_MIXER_CS_SETDBGMASK) ||
(cmd == SOUND_MIXER_CS_GETDBGLEVEL) ||
(cmd == SOUND_MIXER_CS_SETDBGLEVEL) ||
(cmd == SOUND_MIXER_CS_APM)) {
switch (cmd) {
case SOUND_MIXER_CS_GETDBGMASK:
return put_user(cs_debugmask, p);
case SOUND_MIXER_CS_GETDBGLEVEL:
return put_user(cs_debuglevel, p);
case SOUND_MIXER_CS_SETDBGMASK:
if (get_user(val, p))
return -EFAULT;
cs_debugmask = val;
return 0;
case SOUND_MIXER_CS_SETDBGLEVEL:
if (get_user(val, p))
return -EFAULT;
cs_debuglevel = val;
return 0;
case SOUND_MIXER_CS_APM:
if (get_user(val, p))
return -EFAULT;
if (val == CS_IOCTL_CMD_SUSPEND) {
list_for_each(entry, &cs46xx_devs) {
card = list_entry(entry, struct cs_card, list);
cs46xx_suspend(card, PMSG_ON);
}
} else if (val == CS_IOCTL_CMD_RESUME) {
list_for_each(entry, &cs46xx_devs) {
card = list_entry(entry, struct cs_card, list);
cs46xx_resume(card);
}
} else {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
"cs46xx: mixer_ioctl(): invalid APM cmd (%d)\n",
val));
}
return 0;
default:
CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
"cs46xx: mixer_ioctl(): ERROR unknown debug cmd\n"));
return 0;
}
}
#endif
return codec->mixer_ioctl(codec, cmd, arg);
}
static /*const*/ struct file_operations cs_mixer_fops = {
CS_OWNER CS_THIS_MODULE
.llseek = no_llseek,
.ioctl = cs_ioctl_mixdev,
.open = cs_open_mixdev,
.release = cs_release_mixdev,
};
/* AC97 codec initialisation. */
static int __init cs_ac97_init(struct cs_card *card)
{
int num_ac97 = 0;
int ready_2nd = 0;
struct ac97_codec *codec;
u16 eid;
CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO
"cs46xx: cs_ac97_init()+\n") );
for (num_ac97 = 0; num_ac97 < NR_AC97; num_ac97++) {
if ((codec = ac97_alloc_codec()) == NULL)
return -ENOMEM;
/* initialize some basic codec information, other fields will be filled
in ac97_probe_codec */
codec->private_data = card;
codec->id = num_ac97;
codec->codec_read = cs_ac97_get;
codec->codec_write = cs_ac97_set;
if (ac97_probe_codec(codec) == 0) {
CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO
"cs46xx: cs_ac97_init()- codec number %d not found\n",
num_ac97) );
card->ac97_codec[num_ac97] = NULL;
break;
}
CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO
"cs46xx: cs_ac97_init() found codec %d\n",num_ac97));
eid = cs_ac97_get(codec, AC97_EXTENDED_ID);
if (eid == 0xFFFF) {
printk(KERN_WARNING "cs46xx: codec %d not present\n",num_ac97);
ac97_release_codec(codec);
break;
}
card->ac97_features = eid;
if ((codec->dev_mixer = register_sound_mixer(&cs_mixer_fops, -1)) < 0) {
printk(KERN_ERR "cs46xx: couldn't register mixer!\n");
ac97_release_codec(codec);
break;
}
card->ac97_codec[num_ac97] = codec;
CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO
"cs46xx: cs_ac97_init() ac97_codec[%d] set to %p\n",
(unsigned int)num_ac97,
codec));
/* if there is no secondary codec at all, don't probe any more */
if (!ready_2nd)
{
num_ac97 += 1;
break;
}
}
CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO
"cs46xx: cs_ac97_init()- %d\n", (unsigned int)num_ac97));
return num_ac97;
}
/*
* load the static image into the DSP
*/
#include "cs461x_image.h"
static void cs461x_download_image(struct cs_card *card)
{
unsigned i, j, temp1, temp2, offset, count;
unsigned char __iomem *pBA1 = ioremap(card->ba1_addr, 0x40000);
for (i = 0; i < CLEAR__COUNT; i++) {
offset = ClrStat[i].BA1__DestByteOffset;
count = ClrStat[i].BA1__SourceSize;
for (temp1 = offset; temp1 < (offset + count); temp1 += 4)
writel(0, pBA1+temp1);
}
for (i = 0; i < FILL__COUNT; i++) {
temp2 = FillStat[i].Offset;
for (j = 0; j < (FillStat[i].Size) / 4; j++) {
temp1 = (FillStat[i]).pFill[j];
writel(temp1, pBA1+temp2 + j * 4);
}
}
iounmap(pBA1);
}
/*
* Chip reset
*/
static void cs461x_reset(struct cs_card *card)
{
int idx;
/*
* Write the reset bit of the SP control register.
*/
cs461x_poke(card, BA1_SPCR, SPCR_RSTSP);
/*
* Write the control register.
*/
cs461x_poke(card, BA1_SPCR, SPCR_DRQEN);
/*
* Clear the trap registers.
*/
for (idx = 0; idx < 8; idx++) {
cs461x_poke(card, BA1_DREG, DREG_REGID_TRAP_SELECT + idx);
cs461x_poke(card, BA1_TWPR, 0xFFFF);
}
cs461x_poke(card, BA1_DREG, 0);
/*
* Set the frame timer to reflect the number of cycles per frame.
*/
cs461x_poke(card, BA1_FRMT, 0xadf);
}
static void cs461x_clear_serial_FIFOs(struct cs_card *card, int type)
{
int idx, loop, startfifo=0, endfifo=0, powerdown1 = 0;
unsigned int tmp;
/*
* See if the devices are powered down. If so, we must power them up first
* or they will not respond.
*/
if (!((tmp = cs461x_peekBA0(card, BA0_CLKCR1)) & CLKCR1_SWCE)) {
cs461x_pokeBA0(card, BA0_CLKCR1, tmp | CLKCR1_SWCE);
powerdown1 = 1;
}
/*
* We want to clear out the serial port FIFOs so we don't end up playing
* whatever random garbage happens to be in them. We fill the sample FIFOS
* with zero (silence).
*/
cs461x_pokeBA0(card, BA0_SERBWP, 0);
/*
* Check for which FIFO locations to clear, if we are currently
* playing or capturing then we don't want to put in 128 bytes of
* "noise".
*/
if (type & CS_TYPE_DAC) {
startfifo = 128;
endfifo = 256;
}
if (type & CS_TYPE_ADC) {
startfifo = 0;
if (!endfifo)
endfifo = 128;
}
/*
* Fill sample FIFO locations (256 locations total).
*/
for (idx = startfifo; idx < endfifo; idx++) {
/*
* Make sure the previous FIFO write operation has completed.
*/
for (loop = 0; loop < 5; loop++) {
udelay(50);
if (!(cs461x_peekBA0(card, BA0_SERBST) & SERBST_WBSY))
break;
}
if (cs461x_peekBA0(card, BA0_SERBST) & SERBST_WBSY) {
if (powerdown1)
cs461x_pokeBA0(card, BA0_CLKCR1, tmp);
}
/*
* Write the serial port FIFO index.
*/
cs461x_pokeBA0(card, BA0_SERBAD, idx);
/*
* Tell the serial port to load the new value into the FIFO location.
*/
cs461x_pokeBA0(card, BA0_SERBCM, SERBCM_WRC);
}
/*
* Now, if we powered up the devices, then power them back down again.
* This is kinda ugly, but should never happen.
*/
if (powerdown1)
cs461x_pokeBA0(card, BA0_CLKCR1, tmp);
}
static int cs461x_powerdown(struct cs_card *card, unsigned int type, int suspendflag)
{
int count;
unsigned int tmp=0,muted=0;
CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO
"cs46xx: cs461x_powerdown()+ type=0x%x\n",type));
if (!cs_powerdown && !suspendflag) {
CS_DBGOUT(CS_FUNCTION, 8, printk(KERN_INFO
"cs46xx: cs461x_powerdown() DISABLED exiting\n"));
return 0;
}
tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
CS_DBGOUT(CS_FUNCTION, 8, printk(KERN_INFO
"cs46xx: cs461x_powerdown() powerdown reg=0x%x\n",tmp));
/*
* if powering down only the VREF, and not powering down the DAC/ADC,
* then do not power down the VREF, UNLESS both the DAC and ADC are not
* currently powered down. If powering down DAC and ADC, then
* it is possible to power down the VREF (ON).
*/
if (((type & CS_POWER_MIXVON) &&
(!(type & CS_POWER_ADC) || (!(type & CS_POWER_DAC))))
&&
((tmp & CS_AC97_POWER_CONTROL_ADC_ON) ||
(tmp & CS_AC97_POWER_CONTROL_DAC_ON))) {
CS_DBGOUT(CS_FUNCTION, 8, printk(KERN_INFO
"cs46xx: cs461x_powerdown()- 0 unable to powerdown. tmp=0x%x\n",tmp));
return 0;
}
/*
* for now, always keep power to the mixer block.
* not sure why it's a problem but it seems to be if we power off.
*/
type &= ~CS_POWER_MIXVON;
type &= ~CS_POWER_MIXVOFF;
/*
* Power down indicated areas.
*/
if (type & CS_POWER_MIXVOFF) {
CS_DBGOUT(CS_FUNCTION, 4,
printk(KERN_INFO "cs46xx: cs461x_powerdown()+ MIXVOFF\n"));
/*
* Power down the MIXER (VREF ON) on the AC97 card.
*/
tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
if (tmp & CS_AC97_POWER_CONTROL_MIXVOFF_ON) {
if (!muted) {
cs_mute(card, CS_TRUE);
muted = 1;
}
tmp |= CS_AC97_POWER_CONTROL_MIXVOFF;
cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp );
/*
* Now, we wait until we sample a ready state.
*/
for (count = 0; count < 32; count++) {
/*
* First, lets wait a short while to let things settle out a
* bit, and to prevent retrying the read too quickly.
*/
udelay(500);
/*
* Read the current state of the power control register.
*/
if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_MIXVOFF_ON))
break;
}
/*
* Check the status..
*/
if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_MIXVOFF_ON) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING
"cs46xx: powerdown MIXVOFF failed\n"));
return 1;
}
}
}
if (type & CS_POWER_MIXVON) {
CS_DBGOUT(CS_FUNCTION, 4,
printk(KERN_INFO "cs46xx: cs461x_powerdown()+ MIXVON\n"));
/*
* Power down the MIXER (VREF ON) on the AC97 card.
*/
tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
if (tmp & CS_AC97_POWER_CONTROL_MIXVON_ON) {
if (!muted) {
cs_mute(card, CS_TRUE);
muted = 1;
}
tmp |= CS_AC97_POWER_CONTROL_MIXVON;
cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp);
/*
* Now, we wait until we sample a ready state.
*/
for (count = 0; count < 32; count++) {
/*
* First, lets wait a short while to let things settle out a
* bit, and to prevent retrying the read too quickly.
*/
udelay(500);
/*
* Read the current state of the power control register.
*/
if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_MIXVON_ON))
break;
}
/*
* Check the status..
*/
if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_MIXVON_ON) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING
"cs46xx: powerdown MIXVON failed\n"));
return 1;
}
}
}
if (type & CS_POWER_ADC) {
/*
* Power down the ADC on the AC97 card.
*/
CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO "cs46xx: cs461x_powerdown()+ ADC\n"));
tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
if (tmp & CS_AC97_POWER_CONTROL_ADC_ON) {
if (!muted) {
cs_mute(card, CS_TRUE);
muted = 1;
}
tmp |= CS_AC97_POWER_CONTROL_ADC;
cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp);
/*
* Now, we wait until we sample a ready state.
*/
for (count = 0; count < 32; count++) {
/*
* First, lets wait a short while to let things settle out a
* bit, and to prevent retrying the read too quickly.
*/
udelay(500);
/*
* Read the current state of the power control register.
*/
if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_ADC_ON))
break;
}
/*
* Check the status..
*/
if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_ADC_ON) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING
"cs46xx: powerdown ADC failed\n"));
return 1;
}
}
}
if (type & CS_POWER_DAC) {
/*
* Power down the DAC on the AC97 card.
*/
CS_DBGOUT(CS_FUNCTION, 4,
printk(KERN_INFO "cs46xx: cs461x_powerdown()+ DAC\n"));
tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
if (tmp & CS_AC97_POWER_CONTROL_DAC_ON) {
if (!muted) {
cs_mute(card, CS_TRUE);
muted = 1;
}
tmp |= CS_AC97_POWER_CONTROL_DAC;
cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp);
/*
* Now, we wait until we sample a ready state.
*/
for (count = 0; count < 32; count++) {
/*
* First, lets wait a short while to let things settle out a
* bit, and to prevent retrying the read too quickly.
*/
udelay(500);
/*
* Read the current state of the power control register.
*/
if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_DAC_ON))
break;
}
/*
* Check the status..
*/
if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_DAC_ON) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING
"cs46xx: powerdown DAC failed\n"));
return 1;
}
}
}
tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
if (muted)
cs_mute(card, CS_FALSE);
CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO
"cs46xx: cs461x_powerdown()- 0 tmp=0x%x\n",tmp));
return 0;
}
static int cs46xx_powerup(struct cs_card *card, unsigned int type)
{
int count;
unsigned int tmp = 0, muted = 0;
CS_DBGOUT(CS_FUNCTION, 8, printk(KERN_INFO
"cs46xx: cs46xx_powerup()+ type=0x%x\n",type));
/*
* check for VREF and powerup if need to.
*/
if (type & CS_POWER_MIXVON)
type |= CS_POWER_MIXVOFF;
if (type & (CS_POWER_DAC | CS_POWER_ADC))
type |= CS_POWER_MIXVON | CS_POWER_MIXVOFF;
/*
* Power up indicated areas.
*/
if (type & CS_POWER_MIXVOFF) {
CS_DBGOUT(CS_FUNCTION, 4,
printk(KERN_INFO "cs46xx: cs46xx_powerup()+ MIXVOFF\n"));
/*
* Power up the MIXER (VREF ON) on the AC97 card.
*/
tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
if (!(tmp & CS_AC97_POWER_CONTROL_MIXVOFF_ON)) {
if (!muted) {
cs_mute(card, CS_TRUE);
muted = 1;
}
tmp &= ~CS_AC97_POWER_CONTROL_MIXVOFF;
cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp );
/*
* Now, we wait until we sample a ready state.
*/
for (count = 0; count < 32; count++) {
/*
* First, lets wait a short while to let things settle out a
* bit, and to prevent retrying the read too quickly.
*/
udelay(500);
/*
* Read the current state of the power control register.
*/
if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_MIXVOFF_ON)
break;
}
/*
* Check the status..
*/
if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_MIXVOFF_ON)) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING
"cs46xx: powerup MIXVOFF failed\n"));
return 1;
}
}
}
if(type & CS_POWER_MIXVON) {
CS_DBGOUT(CS_FUNCTION, 4,
printk(KERN_INFO "cs46xx: cs46xx_powerup()+ MIXVON\n"));
/*
* Power up the MIXER (VREF ON) on the AC97 card.
*/
tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
if (!(tmp & CS_AC97_POWER_CONTROL_MIXVON_ON)) {
if (!muted) {
cs_mute(card, CS_TRUE);
muted = 1;
}
tmp &= ~CS_AC97_POWER_CONTROL_MIXVON;
cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp );
/*
* Now, we wait until we sample a ready state.
*/
for (count = 0; count < 32; count++) {
/*
* First, lets wait a short while to let things settle out a
* bit, and to prevent retrying the read too quickly.
*/
udelay(500);
/*
* Read the current state of the power control register.
*/
if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_MIXVON_ON)
break;
}
/*
* Check the status..
*/
if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_MIXVON_ON)) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING
"cs46xx: powerup MIXVON failed\n"));
return 1;
}
}
}
if (type & CS_POWER_ADC) {
/*
* Power up the ADC on the AC97 card.
*/
CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO "cs46xx: cs46xx_powerup()+ ADC\n"));
tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
if (!(tmp & CS_AC97_POWER_CONTROL_ADC_ON)) {
if (!muted) {
cs_mute(card, CS_TRUE);
muted = 1;
}
tmp &= ~CS_AC97_POWER_CONTROL_ADC;
cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp );
/*
* Now, we wait until we sample a ready state.
*/
for (count = 0; count < 32; count++) {
/*
* First, lets wait a short while to let things settle out a
* bit, and to prevent retrying the read too quickly.
*/
udelay(500);
/*
* Read the current state of the power control register.
*/
if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_ADC_ON)
break;
}
/*
* Check the status..
*/
if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_ADC_ON)) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING
"cs46xx: powerup ADC failed\n"));
return 1;
}
}
}
if (type & CS_POWER_DAC) {
/*
* Power up the DAC on the AC97 card.
*/
CS_DBGOUT(CS_FUNCTION, 4,
printk(KERN_INFO "cs46xx: cs46xx_powerup()+ DAC\n"));
tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
if (!(tmp & CS_AC97_POWER_CONTROL_DAC_ON)) {
if (!muted) {
cs_mute(card, CS_TRUE);
muted = 1;
}
tmp &= ~CS_AC97_POWER_CONTROL_DAC;
cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp );
/*
* Now, we wait until we sample a ready state.
*/
for (count = 0; count < 32; count++) {
/*
* First, lets wait a short while to let things settle out a
* bit, and to prevent retrying the read too quickly.
*/
udelay(500);
/*
* Read the current state of the power control register.
*/
if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_DAC_ON)
break;
}
/*
* Check the status..
*/
if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
CS_AC97_POWER_CONTROL_DAC_ON)) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING
"cs46xx: powerup DAC failed\n"));
return 1;
}
}
}
tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
if (muted)
cs_mute(card, CS_FALSE);
CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO
"cs46xx: cs46xx_powerup()- 0 tmp=0x%x\n",tmp));
return 0;
}
static void cs461x_proc_start(struct cs_card *card)
{
int cnt;
/*
* Set the frame timer to reflect the number of cycles per frame.
*/
cs461x_poke(card, BA1_FRMT, 0xadf);
/*
* Turn on the run, run at frame, and DMA enable bits in the local copy of
* the SP control register.
*/
cs461x_poke(card, BA1_SPCR, SPCR_RUN | SPCR_RUNFR | SPCR_DRQEN);
/*
* Wait until the run at frame bit resets itself in the SP control
* register.
*/
for (cnt = 0; cnt < 25; cnt++) {
udelay(50);
if (!(cs461x_peek(card, BA1_SPCR) & SPCR_RUNFR))
break;
}
if (cs461x_peek(card, BA1_SPCR) & SPCR_RUNFR)
printk(KERN_WARNING "cs46xx: SPCR_RUNFR never reset\n");
}
static void cs461x_proc_stop(struct cs_card *card)
{
/*
* Turn off the run, run at frame, and DMA enable bits in the local copy of
* the SP control register.
*/
cs461x_poke(card, BA1_SPCR, 0);
}
static int cs_hardware_init(struct cs_card *card)
{
unsigned long end_time;
unsigned int tmp,count;
CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO
"cs46xx: cs_hardware_init()+\n") );
/*
* First, blast the clock control register to zero so that the PLL starts
* out in a known state, and blast the master serial port control register
* to zero so that the serial ports also start out in a known state.
*/
cs461x_pokeBA0(card, BA0_CLKCR1, 0);
cs461x_pokeBA0(card, BA0_SERMC1, 0);
/*
* If we are in AC97 mode, then we must set the part to a host controlled
* AC-link. Otherwise, we won't be able to bring up the link.
*/
cs461x_pokeBA0(card, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 card */
/* cs461x_pokeBA0(card, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); */ /* 2.00 card */
/*
* Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
* spec) and then drive it high. This is done for non AC97 modes since
* there might be logic external to the CS461x that uses the ARST# line
* for a reset.
*/
cs461x_pokeBA0(card, BA0_ACCTL, 1);
udelay(50);
cs461x_pokeBA0(card, BA0_ACCTL, 0);
udelay(50);
cs461x_pokeBA0(card, BA0_ACCTL, ACCTL_RSTN);
/*
* The first thing we do here is to enable sync generation. As soon
* as we start receiving bit clock, we'll start producing the SYNC
* signal.
*/
cs461x_pokeBA0(card, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
/*
* Now wait for a short while to allow the AC97 part to start
* generating bit clock (so we don't try to start the PLL without an
* input clock).
*/
mdelay(5 * cs_laptop_wait); /* 1 should be enough ?? (and pigs might fly) */
/*
* Set the serial port timing configuration, so that
* the clock control circuit gets its clock from the correct place.
*/
cs461x_pokeBA0(card, BA0_SERMC1, SERMC1_PTC_AC97);
/*
* The part seems to not be ready for a while after a resume.
* so, if we are resuming, then wait for 700 mils. Note that 600 mils
* is not enough for some platforms! tested on an IBM Thinkpads and
* reference cards.
*/
if (!(card->pm.flags & CS46XX_PM_IDLE))
mdelay(initdelay);
/*
* Write the selected clock control setup to the hardware. Do not turn on
* SWCE yet (if requested), so that the devices clocked by the output of
* PLL are not clocked until the PLL is stable.
*/
cs461x_pokeBA0(card, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
cs461x_pokeBA0(card, BA0_PLLM, 0x3a);
cs461x_pokeBA0(card, BA0_CLKCR2, CLKCR2_PDIVS_8);
/*
* Power up the PLL.
*/
cs461x_pokeBA0(card, BA0_CLKCR1, CLKCR1_PLLP);
/*
* Wait until the PLL has stabilized.
*/
mdelay(5 * cs_laptop_wait); /* Again 1 should be enough ?? */
/*
* Turn on clocking of the core so that we can setup the serial ports.
*/
tmp = cs461x_peekBA0(card, BA0_CLKCR1) | CLKCR1_SWCE;
cs461x_pokeBA0(card, BA0_CLKCR1, tmp);
/*
* Fill the serial port FIFOs with silence.
*/
cs461x_clear_serial_FIFOs(card,CS_TYPE_DAC | CS_TYPE_ADC);
/*
* Set the serial port FIFO pointer to the first sample in the FIFO.
*/
/* cs461x_pokeBA0(card, BA0_SERBSP, 0); */
/*
* Write the serial port configuration to the part. The master
* enable bit is not set until all other values have been written.
*/
cs461x_pokeBA0(card, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
cs461x_pokeBA0(card, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
cs461x_pokeBA0(card, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
mdelay(5 * cs_laptop_wait); /* Shouldnt be needed ?? */
/*
* If we are resuming under 2.2.x then we cannot schedule a timeout,
* so just spin the CPU.
*/
if (card->pm.flags & CS46XX_PM_IDLE) {
/*
* Wait for the card ready signal from the AC97 card.
*/
end_time = jiffies + 3 * (HZ >> 2);
do {
/*
* Read the AC97 status register to see if we've seen a CODEC READY
* signal from the AC97 card.
*/
if (cs461x_peekBA0(card, BA0_ACSTS) & ACSTS_CRDY)
break;
current->state = TASK_UNINTERRUPTIBLE;
schedule_timeout(1);
} while (time_before(jiffies, end_time));
} else {
for (count = 0; count < 100; count++) {
// First, we want to wait for a short time.
udelay(25 * cs_laptop_wait);
if (cs461x_peekBA0(card, BA0_ACSTS) & ACSTS_CRDY)
break;
}
}
/*
* Make sure CODEC is READY.
*/
if (!(cs461x_peekBA0(card, BA0_ACSTS) & ACSTS_CRDY)) {
CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_WARNING
"cs46xx: create - never read card ready from AC'97\n"));
CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_WARNING
"cs46xx: probably not a bug, try using the CS4232 driver,\n"));
CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_WARNING
"cs46xx: or turn off any automatic Power Management support in the BIOS.\n"));
return -EIO;
}
/*
* Assert the vaid frame signal so that we can start sending commands
* to the AC97 card.
*/
cs461x_pokeBA0(card, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
if (card->pm.flags & CS46XX_PM_IDLE) {
/*
* Wait until we've sampled input slots 3 and 4 as valid, meaning that
* the card is pumping ADC data across the AC-link.
*/
end_time = jiffies + 3 * (HZ >> 2);
do {
/*
* Read the input slot valid register and see if input slots 3 and
* 4 are valid yet.
*/
if ((cs461x_peekBA0(card, BA0_ACISV) & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
break;
current->state = TASK_UNINTERRUPTIBLE;
schedule_timeout(1);
} while (time_before(jiffies, end_time));
} else {
for (count = 0; count < 100; count++) {
// First, we want to wait for a short time.
udelay(25 * cs_laptop_wait);
if ((cs461x_peekBA0(card, BA0_ACISV) & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
break;
}
}
/*
* Make sure input slots 3 and 4 are valid. If not, then return
* an error.
*/
if ((cs461x_peekBA0(card, BA0_ACISV) & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4)) {
printk(KERN_WARNING "cs46xx: create - never read ISV3 & ISV4 from AC'97\n");
return -EIO;
}
/*
* Now, assert valid frame and the slot 3 and 4 valid bits. This will
* commense the transfer of digital audio data to the AC97 card.
*/
cs461x_pokeBA0(card, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
/*
* Turn off the Processor by turning off the software clock enable flag in
* the clock control register.
*/
/* tmp = cs461x_peekBA0(card, BA0_CLKCR1) & ~CLKCR1_SWCE; */
/* cs461x_pokeBA0(card, BA0_CLKCR1, tmp); */
/*
* Reset the processor.
*/
cs461x_reset(card);
/*
* Download the image to the processor.
*/
cs461x_download_image(card);
/*
* Stop playback DMA.
*/
tmp = cs461x_peek(card, BA1_PCTL);
card->pctl = tmp & 0xffff0000;
cs461x_poke(card, BA1_PCTL, tmp & 0x0000ffff);
/*
* Stop capture DMA.
*/
tmp = cs461x_peek(card, BA1_CCTL);
card->cctl = tmp & 0x0000ffff;
cs461x_poke(card, BA1_CCTL, tmp & 0xffff0000);
/* initialize AC97 codec and register /dev/mixer */
if (card->pm.flags & CS46XX_PM_IDLE) {
if (cs_ac97_init(card) <= 0) {
CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO
"cs46xx: cs_ac97_init() failure\n"));
return -EIO;
}
} else {
cs46xx_ac97_resume(card);
}
cs461x_proc_start(card);
/*
* Enable interrupts on the part.
*/
cs461x_pokeBA0(card, BA0_HICR, HICR_IEV | HICR_CHGM);
tmp = cs461x_peek(card, BA1_PFIE);
tmp &= ~0x0000f03f;
cs461x_poke(card, BA1_PFIE, tmp); /* playback interrupt enable */
tmp = cs461x_peek(card, BA1_CIE);
tmp &= ~0x0000003f;
tmp |= 0x00000001;
cs461x_poke(card, BA1_CIE, tmp); /* capture interrupt enable */
/*
* If IDLE then Power down the part. We will power components up
* when we need them.
*/
if (card->pm.flags & CS46XX_PM_IDLE) {
if (!cs_powerdown) {
if ((tmp = cs46xx_powerup(card, CS_POWER_DAC | CS_POWER_ADC |
CS_POWER_MIXVON))) {
CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO
"cs46xx: cs461x_powerup() failure (0x%x)\n",tmp) );
return -EIO;
}
} else {
if ((tmp = cs461x_powerdown(card, CS_POWER_DAC | CS_POWER_ADC |
CS_POWER_MIXVON, CS_FALSE))) {
CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO
"cs46xx: cs461x_powerdown() failure (0x%x)\n",tmp) );
return -EIO;
}
}
}
CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO
"cs46xx: cs_hardware_init()- 0\n"));
return 0;
}
/* install the driver, we do not allocate hardware channel nor DMA buffer now, they are defered
until "ACCESS" time (in prog_dmabuf called by open/read/write/ioctl/mmap) */
/*
* Card subid table
*/
struct cs_card_type
{
u16 vendor;
u16 id;
char *name;
void (*amp)(struct cs_card *, int);
void (*amp_init)(struct cs_card *);
void (*active)(struct cs_card *, int);
};
static struct cs_card_type cards[] = {
{
.vendor = 0x1489,
.id = 0x7001,
.name = "Genius Soundmaker 128 value",
.amp = amp_none,
},
{
.vendor = 0x5053,
.id = 0x3357,
.name = "Voyetra",
.amp = amp_voyetra,
},
{
.vendor = 0x1071,
.id = 0x6003,
.name = "Mitac MI6020/21",
.amp = amp_voyetra,
},
{
.vendor = 0x14AF,
.id = 0x0050,
.name = "Hercules Game Theatre XP",
.amp = amp_hercules,
},
{
.vendor = 0x1681,
.id = 0x0050,
.name = "Hercules Game Theatre XP",
.amp = amp_hercules,
},
{
.vendor = 0x1681,
.id = 0x0051,
.name = "Hercules Game Theatre XP",
.amp = amp_hercules,
},
{
.vendor = 0x1681,
.id = 0x0052,
.name = "Hercules Game Theatre XP",
.amp = amp_hercules,
},
{
.vendor = 0x1681,
.id = 0x0053,
.name = "Hercules Game Theatre XP",
.amp = amp_hercules,
},
{
.vendor = 0x1681,
.id = 0x0054,
.name = "Hercules Game Theatre XP",
.amp = amp_hercules,
},
{
.vendor = 0x1681,
.id = 0xa010,
.name = "Hercules Fortissimo II",
.amp = amp_none,
},
/* Not sure if the 570 needs the clkrun hack */
{
.vendor = PCI_VENDOR_ID_IBM,
.id = 0x0132,
.name = "Thinkpad 570",
.amp = amp_none,
.active = clkrun_hack,
},
{
.vendor = PCI_VENDOR_ID_IBM,
.id = 0x0153,
.name = "Thinkpad 600X/A20/T20",
.amp = amp_none,
.active = clkrun_hack,
},
{
.vendor = PCI_VENDOR_ID_IBM,
.id = 0x1010,
.name = "Thinkpad 600E (unsupported)",
},
{
.name = "Card without SSID set",
},
{ 0, },
};
MODULE_AUTHOR("Alan Cox <alan@redhat.com>, Jaroslav Kysela, <pcaudio@crystal.cirrus.com>");
MODULE_DESCRIPTION("Crystal SoundFusion Audio Support");
MODULE_LICENSE("GPL");
static const char cs46xx_banner[] = KERN_INFO "Crystal 4280/46xx + AC97 Audio, version " CS46XX_MAJOR_VERSION "." CS46XX_MINOR_VERSION "." CS46XX_ARCH ", " __TIME__ " " __DATE__ "\n";
static const char fndmsg[] = KERN_INFO "cs46xx: Found %d audio device(s).\n";
static int __devinit cs46xx_probe(struct pci_dev *pci_dev,
const struct pci_device_id *pciid)
{
int i, j;
u16 ss_card, ss_vendor;
struct cs_card *card;
dma_addr_t dma_mask;
struct cs_card_type *cp = &cards[0];
CS_DBGOUT(CS_FUNCTION | CS_INIT, 2,
printk(KERN_INFO "cs46xx: probe()+\n"));
dma_mask = 0xffffffff; /* this enables playback and recording */
if (pci_enable_device(pci_dev)) {
CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
"cs46xx: pci_enable_device() failed\n"));
return -1;
}
if (!RSRCISMEMORYREGION(pci_dev, 0) ||
!RSRCISMEMORYREGION(pci_dev, 1)) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
"cs46xx: probe()- Memory region not assigned\n"));
return -1;
}
if (pci_dev->irq == 0) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
"cs46xx: probe() IRQ not assigned\n"));
return -1;
}
if (!pci_dma_supported(pci_dev, 0xffffffff)) {
CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
"cs46xx: probe() architecture does not support 32bit PCI busmaster DMA\n"));
return -1;
}
pci_read_config_word(pci_dev, PCI_SUBSYSTEM_VENDOR_ID, &ss_vendor);
pci_read_config_word(pci_dev, PCI_SUBSYSTEM_ID, &ss_card);
if ((card = kmalloc(sizeof(struct cs_card), GFP_KERNEL)) == NULL) {
printk(KERN_ERR "cs46xx: out of memory\n");
return -ENOMEM;
}
memset(card, 0, sizeof(*card));
card->ba0_addr = RSRCADDRESS(pci_dev, 0);
card->ba1_addr = RSRCADDRESS(pci_dev, 1);
card->pci_dev = pci_dev;
card->irq = pci_dev->irq;
card->magic = CS_CARD_MAGIC;
spin_lock_init(&card->lock);
spin_lock_init(&card->ac97_lock);
pci_set_master(pci_dev);
printk(cs46xx_banner);
printk(KERN_INFO "cs46xx: Card found at 0x%08lx and 0x%08lx, IRQ %d\n",
card->ba0_addr, card->ba1_addr, card->irq);
card->alloc_pcm_channel = cs_alloc_pcm_channel;
card->alloc_rec_pcm_channel = cs_alloc_rec_pcm_channel;
card->free_pcm_channel = cs_free_pcm_channel;
card->amplifier_ctrl = amp_none;
card->active_ctrl = amp_none;
while (cp->name)
{
if (cp->vendor == ss_vendor && cp->id == ss_card) {
card->amplifier_ctrl = cp->amp;
if (cp->active)
card->active_ctrl = cp->active;
if (cp->amp_init)
card->amp_init = cp->amp_init;
break;
}
cp++;
}
if (cp->name == NULL) {
printk(KERN_INFO "cs46xx: Unknown card (%04X:%04X) at 0x%08lx/0x%08lx, IRQ %d\n",
ss_vendor, ss_card, card->ba0_addr, card->ba1_addr, card->irq);
} else {
printk(KERN_INFO "cs46xx: %s (%04X:%04X) at 0x%08lx/0x%08lx, IRQ %d\n",
cp->name, ss_vendor, ss_card, card->ba0_addr, card->ba1_addr, card->irq);
}
if (card->amplifier_ctrl == NULL) {
card->amplifier_ctrl = amp_none;
card->active_ctrl = clkrun_hack;
}
if (external_amp == 1) {
printk(KERN_INFO "cs46xx: Crystal EAPD support forced on.\n");
card->amplifier_ctrl = amp_voyetra;
}
if (thinkpad == 1) {
printk(KERN_INFO "cs46xx: Activating CLKRUN hack for Thinkpad.\n");
card->active_ctrl = clkrun_hack;
}
/*
* The thinkpads don't work well without runtime updating on their kernel
* delay values (or any laptop with variable CPU speeds really).
* so, just to be safe set the init delay to 2100. Eliminates
* failures on T21 Thinkpads. remove this code when the udelay
* and mdelay kernel code is replaced by a pm timer, or the delays
* work well for battery and/or AC power both.
*/
if (card->active_ctrl == clkrun_hack) {
initdelay = 2100;
cs_laptop_wait = 5;
}
if ((card->active_ctrl == clkrun_hack) && !(powerdown == 1)) {
/*
* for some currently unknown reason, powering down the DAC and ADC component
* blocks on thinkpads causes some funky behavior... distoorrrtion and ac97
* codec access problems. probably the serial clock becomes unsynced.
* added code to sync the chips back up, but only helped about 70% the time.
*/
cs_powerdown = 0;
}
if (powerdown == 0)
cs_powerdown = 0;
card->active_ctrl(card, 1);
/* claim our iospace and irq */
card->ba0 = ioremap_nocache(card->ba0_addr, CS461X_BA0_SIZE);
card->ba1.name.data0 = ioremap_nocache(card->ba1_addr + BA1_SP_DMEM0, CS461X_BA1_DATA0_SIZE);
card->ba1.name.data1 = ioremap_nocache(card->ba1_addr + BA1_SP_DMEM1, CS461X_BA1_DATA1_SIZE);
card->ba1.name.pmem = ioremap_nocache(card->ba1_addr + BA1_SP_PMEM, CS461X_BA1_PRG_SIZE);
card->ba1.name.reg = ioremap_nocache(card->ba1_addr + BA1_SP_REG, CS461X_BA1_REG_SIZE);
CS_DBGOUT(CS_INIT, 4, printk(KERN_INFO
"cs46xx: card=%p card->ba0=%p\n",card,card->ba0) );
CS_DBGOUT(CS_INIT, 4, printk(KERN_INFO
"cs46xx: card->ba1=%p %p %p %p\n",
card->ba1.name.data0,
card->ba1.name.data1,
card->ba1.name.pmem,
card->ba1.name.reg) );
if (card->ba0 == 0 || card->ba1.name.data0 == 0 ||
card->ba1.name.data1 == 0 || card->ba1.name.pmem == 0 ||
card->ba1.name.reg == 0)
goto fail2;
if (request_irq(card->irq, &cs_interrupt, IRQF_SHARED, "cs46xx", card)) {
printk(KERN_ERR "cs46xx: unable to allocate irq %d\n", card->irq);
goto fail2;
}
/* register /dev/dsp */
if ((card->dev_audio = register_sound_dsp(&cs461x_fops, -1)) < 0) {
printk(KERN_ERR "cs46xx: unable to register dsp\n");
goto fail;
}
/* register /dev/midi */
if ((card->dev_midi = register_sound_midi(&cs_midi_fops, -1)) < 0)
printk(KERN_ERR "cs46xx: unable to register midi\n");
card->pm.flags |= CS46XX_PM_IDLE;
for (i = 0; i < 5; i++) {
if (cs_hardware_init(card) != 0) {
CS_DBGOUT(CS_ERROR, 4, printk(
"cs46xx: ERROR in cs_hardware_init()... retrying\n"));
for (j = 0; j < NR_AC97; j++)
if (card->ac97_codec[j] != NULL) {
unregister_sound_mixer(card->ac97_codec[j]->dev_mixer);
ac97_release_codec(card->ac97_codec[j]);
}
mdelay(10 * cs_laptop_wait);
continue;
}
break;
}
if(i >= 4) {
CS_DBGOUT(CS_PM | CS_ERROR, 1, printk(
"cs46xx: cs46xx_probe()- cs_hardware_init() failed, retried %d times.\n",i));
unregister_sound_dsp(card->dev_audio);
if (card->dev_midi)
unregister_sound_midi(card->dev_midi);
goto fail;
}
init_waitqueue_head(&card->midi.open_wait);
mutex_init(&card->midi.open_mutex);
init_waitqueue_head(&card->midi.iwait);
init_waitqueue_head(&card->midi.owait);
cs461x_pokeBA0(card, BA0_MIDCR, MIDCR_MRST);
cs461x_pokeBA0(card, BA0_MIDCR, 0);
/*
* Check if we have to init the amplifier, but probably already done
* since the CD logic in the ac97 init code will turn on the ext amp.
*/
if (cp->amp_init)
cp->amp_init(card);
card->active_ctrl(card, -1);
PCI_SET_DRIVER_DATA(pci_dev, card);
PCI_SET_DMA_MASK(pci_dev, dma_mask);
list_add(&card->list, &cs46xx_devs);
CS_DBGOUT(CS_PM, 9, printk(KERN_INFO "cs46xx: pm.flags=0x%x card=%p\n",
(unsigned)card->pm.flags,card));
CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
"cs46xx: probe()- device allocated successfully\n"));
return 0;
fail:
free_irq(card->irq, card);
fail2:
if (card->ba0)
iounmap(card->ba0);
if (card->ba1.name.data0)
iounmap(card->ba1.name.data0);
if (card->ba1.name.data1)
iounmap(card->ba1.name.data1);
if (card->ba1.name.pmem)
iounmap(card->ba1.name.pmem);
if (card->ba1.name.reg)
iounmap(card->ba1.name.reg);
kfree(card);
CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_INFO
"cs46xx: probe()- no device allocated\n"));
return -ENODEV;
} // probe_cs46xx
// ---------------------------------------------------------------------
static void __devexit cs46xx_remove(struct pci_dev *pci_dev)
{
struct cs_card *card = PCI_GET_DRIVER_DATA(pci_dev);
int i;
unsigned int tmp;
CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
"cs46xx: cs46xx_remove()+\n"));
card->active_ctrl(card,1);
tmp = cs461x_peek(card, BA1_PFIE);
tmp &= ~0x0000f03f;
tmp |= 0x00000010;
cs461x_poke(card, BA1_PFIE, tmp); /* playback interrupt disable */
tmp = cs461x_peek(card, BA1_CIE);
tmp &= ~0x0000003f;
tmp |= 0x00000011;
cs461x_poke(card, BA1_CIE, tmp); /* capture interrupt disable */
/*
* Stop playback DMA.
*/
tmp = cs461x_peek(card, BA1_PCTL);
cs461x_poke(card, BA1_PCTL, tmp & 0x0000ffff);
/*
* Stop capture DMA.
*/
tmp = cs461x_peek(card, BA1_CCTL);
cs461x_poke(card, BA1_CCTL, tmp & 0xffff0000);
/*
* Reset the processor.
*/
cs461x_reset(card);
cs461x_proc_stop(card);
/*
* Power down the DAC and ADC. We will power them up (if) when we need
* them.
*/
if ((tmp = cs461x_powerdown(card, CS_POWER_DAC | CS_POWER_ADC |
CS_POWER_MIXVON, CS_TRUE))) {
CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO
"cs46xx: cs461x_powerdown() failure (0x%x)\n",tmp) );
}
/*
* Power down the PLL.
*/
cs461x_pokeBA0(card, BA0_CLKCR1, 0);
/*
* Turn off the Processor by turning off the software clock enable flag in
* the clock control register.
*/
tmp = cs461x_peekBA0(card, BA0_CLKCR1) & ~CLKCR1_SWCE;
cs461x_pokeBA0(card, BA0_CLKCR1, tmp);
card->active_ctrl(card,-1);
/* free hardware resources */
free_irq(card->irq, card);
iounmap(card->ba0);
iounmap(card->ba1.name.data0);
iounmap(card->ba1.name.data1);
iounmap(card->ba1.name.pmem);
iounmap(card->ba1.name.reg);
/* unregister audio devices */
for (i = 0; i < NR_AC97; i++)
if (card->ac97_codec[i] != NULL) {
unregister_sound_mixer(card->ac97_codec[i]->dev_mixer);
ac97_release_codec(card->ac97_codec[i]);
}
unregister_sound_dsp(card->dev_audio);
if (card->dev_midi)
unregister_sound_midi(card->dev_midi);
list_del(&card->list);
kfree(card);
PCI_SET_DRIVER_DATA(pci_dev,NULL);
CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
"cs46xx: cs46xx_remove()-: remove successful\n"));
}
enum {
CS46XX_4610 = 0,
CS46XX_4612, /* same as 4630 */
CS46XX_4615, /* same as 4624 */
};
static struct pci_device_id cs46xx_pci_tbl[] = {
{
.vendor = PCI_VENDOR_ID_CIRRUS,
.device = PCI_DEVICE_ID_CIRRUS_4610,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = CS46XX_4610,
},
{
.vendor = PCI_VENDOR_ID_CIRRUS,
.device = PCI_DEVICE_ID_CIRRUS_4612,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = CS46XX_4612,
},
{
.vendor = PCI_VENDOR_ID_CIRRUS,
.device = PCI_DEVICE_ID_CIRRUS_4615,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = CS46XX_4615,
},
{ 0, },
};
MODULE_DEVICE_TABLE(pci, cs46xx_pci_tbl);
static struct pci_driver cs46xx_pci_driver = {
.name = "cs46xx",
.id_table = cs46xx_pci_tbl,
.probe = cs46xx_probe,
.remove = __devexit_p(cs46xx_remove),
#ifdef CONFIG_PM
.suspend = cs46xx_suspend_tbl,
.resume = cs46xx_resume_tbl,
#endif
};
static int __init cs46xx_init_module(void)
{
int rtn = 0;
CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
"cs46xx: cs46xx_init_module()+ \n"));
rtn = pci_register_driver(&cs46xx_pci_driver);
if (rtn == -ENODEV) {
CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(
"cs46xx: Unable to detect valid cs46xx device\n"));
}
CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
printk(KERN_INFO "cs46xx: cs46xx_init_module()- (%d)\n",rtn));
return rtn;
}
static void __exit cs46xx_cleanup_module(void)
{
pci_unregister_driver(&cs46xx_pci_driver);
CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
printk(KERN_INFO "cs46xx: cleanup_cs46xx() finished\n"));
}
module_init(cs46xx_init_module);
module_exit(cs46xx_cleanup_module);
#ifdef CONFIG_PM
static int cs46xx_suspend_tbl(struct pci_dev *pcidev, pm_message_t state)
{
struct cs_card *s = PCI_GET_DRIVER_DATA(pcidev);
CS_DBGOUT(CS_PM | CS_FUNCTION, 2,
printk(KERN_INFO "cs46xx: cs46xx_suspend_tbl request\n"));
cs46xx_suspend(s, state);
return 0;
}
static int cs46xx_resume_tbl(struct pci_dev *pcidev)
{
struct cs_card *s = PCI_GET_DRIVER_DATA(pcidev);
CS_DBGOUT(CS_PM | CS_FUNCTION, 2,
printk(KERN_INFO "cs46xx: cs46xx_resume_tbl request\n"));
cs46xx_resume(s);
return 0;
}
#endif