Marc Zyngier 6dcf7316e0 Merge branch kvm-arm64/smccc-filtering into kvmarm-master/next
* kvm-arm64/smccc-filtering:
  : .
  : SMCCC call filtering and forwarding to userspace, courtesy of
  : Oliver Upton. From the cover letter:
  :
  : "The Arm SMCCC is rather prescriptive in regards to the allocation of
  : SMCCC function ID ranges. Many of the hypercall ranges have an
  : associated specification from Arm (FF-A, PSCI, SDEI, etc.) with some
  : room for vendor-specific implementations.
  :
  : The ever-expanding SMCCC surface leaves a lot of work within KVM for
  : providing new features. Furthermore, KVM implements its own
  : vendor-specific ABI, with little room for other implementations (like
  : Hyper-V, for example). Rather than cramming it all into the kernel we
  : should provide a way for userspace to handle hypercalls."
  : .
  KVM: selftests: Fix spelling mistake "KVM_HYPERCAL_EXIT_SMC" -> "KVM_HYPERCALL_EXIT_SMC"
  KVM: arm64: Test that SMC64 arch calls are reserved
  KVM: arm64: Prevent userspace from handling SMC64 arch range
  KVM: arm64: Expose SMC/HVC width to userspace
  KVM: selftests: Add test for SMCCC filter
  KVM: selftests: Add a helper for SMCCC calls with SMC instruction
  KVM: arm64: Let errors from SMCCC emulation to reach userspace
  KVM: arm64: Return NOT_SUPPORTED to guest for unknown PSCI version
  KVM: arm64: Introduce support for userspace SMCCC filtering
  KVM: arm64: Add support for KVM_EXIT_HYPERCALL
  KVM: arm64: Use a maple tree to represent the SMCCC filter
  KVM: arm64: Refactor hvc filtering to support different actions
  KVM: arm64: Start handling SMCs from EL1
  KVM: arm64: Rename SMC/HVC call handler to reflect reality
  KVM: arm64: Add vm fd device attribute accessors
  KVM: arm64: Add a helper to check if a VM has ran once
  KVM: x86: Redefine 'longmode' as a flag for KVM_EXIT_HYPERCALL

Signed-off-by: Marc Zyngier <maz@kernel.org>
2023-04-21 09:44:32 +01:00

466 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <linux/arm-smccc.h>
#include <linux/preempt.h>
#include <linux/kvm_host.h>
#include <linux/uaccess.h>
#include <linux/wait.h>
#include <asm/cputype.h>
#include <asm/kvm_emulate.h>
#include <kvm/arm_psci.h>
#include <kvm/arm_hypercalls.h>
/*
* This is an implementation of the Power State Coordination Interface
* as described in ARM document number ARM DEN 0022A.
*/
#define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)
static unsigned long psci_affinity_mask(unsigned long affinity_level)
{
if (affinity_level <= 3)
return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);
return 0;
}
static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
{
/*
* NOTE: For simplicity, we make VCPU suspend emulation to be
* same-as WFI (Wait-for-interrupt) emulation.
*
* This means for KVM the wakeup events are interrupts and
* this is consistent with intended use of StateID as described
* in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
*
* Further, we also treat power-down request to be same as
* stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
* specification (ARM DEN 0022A). This means all suspend states
* for KVM will preserve the register state.
*/
kvm_vcpu_wfi(vcpu);
return PSCI_RET_SUCCESS;
}
static inline bool kvm_psci_valid_affinity(struct kvm_vcpu *vcpu,
unsigned long affinity)
{
return !(affinity & ~MPIDR_HWID_BITMASK);
}
static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
{
struct vcpu_reset_state *reset_state;
struct kvm *kvm = source_vcpu->kvm;
struct kvm_vcpu *vcpu = NULL;
int ret = PSCI_RET_SUCCESS;
unsigned long cpu_id;
cpu_id = smccc_get_arg1(source_vcpu);
if (!kvm_psci_valid_affinity(source_vcpu, cpu_id))
return PSCI_RET_INVALID_PARAMS;
vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
/*
* Make sure the caller requested a valid CPU and that the CPU is
* turned off.
*/
if (!vcpu)
return PSCI_RET_INVALID_PARAMS;
spin_lock(&vcpu->arch.mp_state_lock);
if (!kvm_arm_vcpu_stopped(vcpu)) {
if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1)
ret = PSCI_RET_ALREADY_ON;
else
ret = PSCI_RET_INVALID_PARAMS;
goto out_unlock;
}
reset_state = &vcpu->arch.reset_state;
reset_state->pc = smccc_get_arg2(source_vcpu);
/* Propagate caller endianness */
reset_state->be = kvm_vcpu_is_be(source_vcpu);
/*
* NOTE: We always update r0 (or x0) because for PSCI v0.1
* the general purpose registers are undefined upon CPU_ON.
*/
reset_state->r0 = smccc_get_arg3(source_vcpu);
reset_state->reset = true;
kvm_make_request(KVM_REQ_VCPU_RESET, vcpu);
/*
* Make sure the reset request is observed if the RUNNABLE mp_state is
* observed.
*/
smp_wmb();
WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
kvm_vcpu_wake_up(vcpu);
out_unlock:
spin_unlock(&vcpu->arch.mp_state_lock);
return ret;
}
static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
{
int matching_cpus = 0;
unsigned long i, mpidr;
unsigned long target_affinity;
unsigned long target_affinity_mask;
unsigned long lowest_affinity_level;
struct kvm *kvm = vcpu->kvm;
struct kvm_vcpu *tmp;
target_affinity = smccc_get_arg1(vcpu);
lowest_affinity_level = smccc_get_arg2(vcpu);
if (!kvm_psci_valid_affinity(vcpu, target_affinity))
return PSCI_RET_INVALID_PARAMS;
/* Determine target affinity mask */
target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
if (!target_affinity_mask)
return PSCI_RET_INVALID_PARAMS;
/* Ignore other bits of target affinity */
target_affinity &= target_affinity_mask;
/*
* If one or more VCPU matching target affinity are running
* then ON else OFF
*/
kvm_for_each_vcpu(i, tmp, kvm) {
mpidr = kvm_vcpu_get_mpidr_aff(tmp);
if ((mpidr & target_affinity_mask) == target_affinity) {
matching_cpus++;
if (!kvm_arm_vcpu_stopped(tmp))
return PSCI_0_2_AFFINITY_LEVEL_ON;
}
}
if (!matching_cpus)
return PSCI_RET_INVALID_PARAMS;
return PSCI_0_2_AFFINITY_LEVEL_OFF;
}
static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type, u64 flags)
{
unsigned long i;
struct kvm_vcpu *tmp;
/*
* The KVM ABI specifies that a system event exit may call KVM_RUN
* again and may perform shutdown/reboot at a later time that when the
* actual request is made. Since we are implementing PSCI and a
* caller of PSCI reboot and shutdown expects that the system shuts
* down or reboots immediately, let's make sure that VCPUs are not run
* after this call is handled and before the VCPUs have been
* re-initialized.
*/
kvm_for_each_vcpu(i, tmp, vcpu->kvm) {
spin_lock(&tmp->arch.mp_state_lock);
WRITE_ONCE(tmp->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
spin_unlock(&tmp->arch.mp_state_lock);
}
kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP);
memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
vcpu->run->system_event.type = type;
vcpu->run->system_event.ndata = 1;
vcpu->run->system_event.data[0] = flags;
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
}
static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
{
kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN, 0);
}
static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
{
kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 0);
}
static void kvm_psci_system_reset2(struct kvm_vcpu *vcpu)
{
kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET,
KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2);
}
static void kvm_psci_system_suspend(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
memset(&run->system_event, 0, sizeof(vcpu->run->system_event));
run->system_event.type = KVM_SYSTEM_EVENT_SUSPEND;
run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
}
static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu)
{
int i;
/*
* Zero the input registers' upper 32 bits. They will be fully
* zeroed on exit, so we're fine changing them in place.
*/
for (i = 1; i < 4; i++)
vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i)));
}
static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn)
{
/*
* Prevent 32 bit guests from calling 64 bit PSCI functions.
*/
if ((fn & PSCI_0_2_64BIT) && vcpu_mode_is_32bit(vcpu))
return PSCI_RET_NOT_SUPPORTED;
return 0;
}
static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
{
u32 psci_fn = smccc_get_function(vcpu);
unsigned long val;
int ret = 1;
switch (psci_fn) {
case PSCI_0_2_FN_PSCI_VERSION:
/*
* Bits[31:16] = Major Version = 0
* Bits[15:0] = Minor Version = 2
*/
val = KVM_ARM_PSCI_0_2;
break;
case PSCI_0_2_FN_CPU_SUSPEND:
case PSCI_0_2_FN64_CPU_SUSPEND:
val = kvm_psci_vcpu_suspend(vcpu);
break;
case PSCI_0_2_FN_CPU_OFF:
kvm_arm_vcpu_power_off(vcpu);
val = PSCI_RET_SUCCESS;
break;
case PSCI_0_2_FN_CPU_ON:
kvm_psci_narrow_to_32bit(vcpu);
fallthrough;
case PSCI_0_2_FN64_CPU_ON:
val = kvm_psci_vcpu_on(vcpu);
break;
case PSCI_0_2_FN_AFFINITY_INFO:
kvm_psci_narrow_to_32bit(vcpu);
fallthrough;
case PSCI_0_2_FN64_AFFINITY_INFO:
val = kvm_psci_vcpu_affinity_info(vcpu);
break;
case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
/*
* Trusted OS is MP hence does not require migration
* or
* Trusted OS is not present
*/
val = PSCI_0_2_TOS_MP;
break;
case PSCI_0_2_FN_SYSTEM_OFF:
kvm_psci_system_off(vcpu);
/*
* We shouldn't be going back to guest VCPU after
* receiving SYSTEM_OFF request.
*
* If user space accidentally/deliberately resumes
* guest VCPU after SYSTEM_OFF request then guest
* VCPU should see internal failure from PSCI return
* value. To achieve this, we preload r0 (or x0) with
* PSCI return value INTERNAL_FAILURE.
*/
val = PSCI_RET_INTERNAL_FAILURE;
ret = 0;
break;
case PSCI_0_2_FN_SYSTEM_RESET:
kvm_psci_system_reset(vcpu);
/*
* Same reason as SYSTEM_OFF for preloading r0 (or x0)
* with PSCI return value INTERNAL_FAILURE.
*/
val = PSCI_RET_INTERNAL_FAILURE;
ret = 0;
break;
default:
val = PSCI_RET_NOT_SUPPORTED;
break;
}
smccc_set_retval(vcpu, val, 0, 0, 0);
return ret;
}
static int kvm_psci_1_x_call(struct kvm_vcpu *vcpu, u32 minor)
{
unsigned long val = PSCI_RET_NOT_SUPPORTED;
u32 psci_fn = smccc_get_function(vcpu);
struct kvm *kvm = vcpu->kvm;
u32 arg;
int ret = 1;
switch(psci_fn) {
case PSCI_0_2_FN_PSCI_VERSION:
val = minor == 0 ? KVM_ARM_PSCI_1_0 : KVM_ARM_PSCI_1_1;
break;
case PSCI_1_0_FN_PSCI_FEATURES:
arg = smccc_get_arg1(vcpu);
val = kvm_psci_check_allowed_function(vcpu, arg);
if (val)
break;
val = PSCI_RET_NOT_SUPPORTED;
switch(arg) {
case PSCI_0_2_FN_PSCI_VERSION:
case PSCI_0_2_FN_CPU_SUSPEND:
case PSCI_0_2_FN64_CPU_SUSPEND:
case PSCI_0_2_FN_CPU_OFF:
case PSCI_0_2_FN_CPU_ON:
case PSCI_0_2_FN64_CPU_ON:
case PSCI_0_2_FN_AFFINITY_INFO:
case PSCI_0_2_FN64_AFFINITY_INFO:
case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
case PSCI_0_2_FN_SYSTEM_OFF:
case PSCI_0_2_FN_SYSTEM_RESET:
case PSCI_1_0_FN_PSCI_FEATURES:
case ARM_SMCCC_VERSION_FUNC_ID:
val = 0;
break;
case PSCI_1_0_FN_SYSTEM_SUSPEND:
case PSCI_1_0_FN64_SYSTEM_SUSPEND:
if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags))
val = 0;
break;
case PSCI_1_1_FN_SYSTEM_RESET2:
case PSCI_1_1_FN64_SYSTEM_RESET2:
if (minor >= 1)
val = 0;
break;
}
break;
case PSCI_1_0_FN_SYSTEM_SUSPEND:
kvm_psci_narrow_to_32bit(vcpu);
fallthrough;
case PSCI_1_0_FN64_SYSTEM_SUSPEND:
/*
* Return directly to userspace without changing the vCPU's
* registers. Userspace depends on reading the SMCCC parameters
* to implement SYSTEM_SUSPEND.
*/
if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags)) {
kvm_psci_system_suspend(vcpu);
return 0;
}
break;
case PSCI_1_1_FN_SYSTEM_RESET2:
kvm_psci_narrow_to_32bit(vcpu);
fallthrough;
case PSCI_1_1_FN64_SYSTEM_RESET2:
if (minor >= 1) {
arg = smccc_get_arg1(vcpu);
if (arg <= PSCI_1_1_RESET_TYPE_SYSTEM_WARM_RESET ||
arg >= PSCI_1_1_RESET_TYPE_VENDOR_START) {
kvm_psci_system_reset2(vcpu);
vcpu_set_reg(vcpu, 0, PSCI_RET_INTERNAL_FAILURE);
return 0;
}
val = PSCI_RET_INVALID_PARAMS;
break;
}
break;
default:
return kvm_psci_0_2_call(vcpu);
}
smccc_set_retval(vcpu, val, 0, 0, 0);
return ret;
}
static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
{
u32 psci_fn = smccc_get_function(vcpu);
unsigned long val;
switch (psci_fn) {
case KVM_PSCI_FN_CPU_OFF:
kvm_arm_vcpu_power_off(vcpu);
val = PSCI_RET_SUCCESS;
break;
case KVM_PSCI_FN_CPU_ON:
val = kvm_psci_vcpu_on(vcpu);
break;
default:
val = PSCI_RET_NOT_SUPPORTED;
break;
}
smccc_set_retval(vcpu, val, 0, 0, 0);
return 1;
}
/**
* kvm_psci_call - handle PSCI call if r0 value is in range
* @vcpu: Pointer to the VCPU struct
*
* Handle PSCI calls from guests through traps from HVC instructions.
* The calling convention is similar to SMC calls to the secure world
* where the function number is placed in r0.
*
* This function returns: > 0 (success), 0 (success but exit to user
* space), and < 0 (errors)
*
* Errors:
* -EINVAL: Unrecognized PSCI function
*/
int kvm_psci_call(struct kvm_vcpu *vcpu)
{
u32 psci_fn = smccc_get_function(vcpu);
int version = kvm_psci_version(vcpu);
unsigned long val;
val = kvm_psci_check_allowed_function(vcpu, psci_fn);
if (val) {
smccc_set_retval(vcpu, val, 0, 0, 0);
return 1;
}
switch (version) {
case KVM_ARM_PSCI_1_1:
return kvm_psci_1_x_call(vcpu, 1);
case KVM_ARM_PSCI_1_0:
return kvm_psci_1_x_call(vcpu, 0);
case KVM_ARM_PSCI_0_2:
return kvm_psci_0_2_call(vcpu);
case KVM_ARM_PSCI_0_1:
return kvm_psci_0_1_call(vcpu);
default:
WARN_ONCE(1, "Unknown PSCI version %d", version);
smccc_set_retval(vcpu, SMCCC_RET_NOT_SUPPORTED, 0, 0, 0);
return 1;
}
}