linux-next/security/lsm_audit.c
Al Viro d36a1dd9f7 dump_common_audit_data(): fix racy accesses to ->d_name
We are not guaranteed the locking environment that would prevent
dentry getting renamed right under us.  And it's possible for
old long name to be freed after rename, leading to UAF here.

Cc: stable@kernel.org # v2.6.2+
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2021-01-16 15:11:35 -05:00

473 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* common LSM auditing functions
*
* Based on code written for SELinux by :
* Stephen Smalley, <sds@tycho.nsa.gov>
* James Morris <jmorris@redhat.com>
* Author : Etienne Basset, <etienne.basset@ensta.org>
*/
#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/gfp.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <net/sock.h>
#include <linux/un.h>
#include <net/af_unix.h>
#include <linux/audit.h>
#include <linux/ipv6.h>
#include <linux/ip.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/dccp.h>
#include <linux/sctp.h>
#include <linux/lsm_audit.h>
#include <linux/security.h>
/**
* ipv4_skb_to_auditdata : fill auditdata from skb
* @skb : the skb
* @ad : the audit data to fill
* @proto : the layer 4 protocol
*
* return 0 on success
*/
int ipv4_skb_to_auditdata(struct sk_buff *skb,
struct common_audit_data *ad, u8 *proto)
{
int ret = 0;
struct iphdr *ih;
ih = ip_hdr(skb);
if (ih == NULL)
return -EINVAL;
ad->u.net->v4info.saddr = ih->saddr;
ad->u.net->v4info.daddr = ih->daddr;
if (proto)
*proto = ih->protocol;
/* non initial fragment */
if (ntohs(ih->frag_off) & IP_OFFSET)
return 0;
switch (ih->protocol) {
case IPPROTO_TCP: {
struct tcphdr *th = tcp_hdr(skb);
if (th == NULL)
break;
ad->u.net->sport = th->source;
ad->u.net->dport = th->dest;
break;
}
case IPPROTO_UDP: {
struct udphdr *uh = udp_hdr(skb);
if (uh == NULL)
break;
ad->u.net->sport = uh->source;
ad->u.net->dport = uh->dest;
break;
}
case IPPROTO_DCCP: {
struct dccp_hdr *dh = dccp_hdr(skb);
if (dh == NULL)
break;
ad->u.net->sport = dh->dccph_sport;
ad->u.net->dport = dh->dccph_dport;
break;
}
case IPPROTO_SCTP: {
struct sctphdr *sh = sctp_hdr(skb);
if (sh == NULL)
break;
ad->u.net->sport = sh->source;
ad->u.net->dport = sh->dest;
break;
}
default:
ret = -EINVAL;
}
return ret;
}
#if IS_ENABLED(CONFIG_IPV6)
/**
* ipv6_skb_to_auditdata : fill auditdata from skb
* @skb : the skb
* @ad : the audit data to fill
* @proto : the layer 4 protocol
*
* return 0 on success
*/
int ipv6_skb_to_auditdata(struct sk_buff *skb,
struct common_audit_data *ad, u8 *proto)
{
int offset, ret = 0;
struct ipv6hdr *ip6;
u8 nexthdr;
__be16 frag_off;
ip6 = ipv6_hdr(skb);
if (ip6 == NULL)
return -EINVAL;
ad->u.net->v6info.saddr = ip6->saddr;
ad->u.net->v6info.daddr = ip6->daddr;
ret = 0;
/* IPv6 can have several extension header before the Transport header
* skip them */
offset = skb_network_offset(skb);
offset += sizeof(*ip6);
nexthdr = ip6->nexthdr;
offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
if (offset < 0)
return 0;
if (proto)
*proto = nexthdr;
switch (nexthdr) {
case IPPROTO_TCP: {
struct tcphdr _tcph, *th;
th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
if (th == NULL)
break;
ad->u.net->sport = th->source;
ad->u.net->dport = th->dest;
break;
}
case IPPROTO_UDP: {
struct udphdr _udph, *uh;
uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
if (uh == NULL)
break;
ad->u.net->sport = uh->source;
ad->u.net->dport = uh->dest;
break;
}
case IPPROTO_DCCP: {
struct dccp_hdr _dccph, *dh;
dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
if (dh == NULL)
break;
ad->u.net->sport = dh->dccph_sport;
ad->u.net->dport = dh->dccph_dport;
break;
}
case IPPROTO_SCTP: {
struct sctphdr _sctph, *sh;
sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
if (sh == NULL)
break;
ad->u.net->sport = sh->source;
ad->u.net->dport = sh->dest;
break;
}
default:
ret = -EINVAL;
}
return ret;
}
#endif
static inline void print_ipv6_addr(struct audit_buffer *ab,
const struct in6_addr *addr, __be16 port,
char *name1, char *name2)
{
if (!ipv6_addr_any(addr))
audit_log_format(ab, " %s=%pI6c", name1, addr);
if (port)
audit_log_format(ab, " %s=%d", name2, ntohs(port));
}
static inline void print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
__be16 port, char *name1, char *name2)
{
if (addr)
audit_log_format(ab, " %s=%pI4", name1, &addr);
if (port)
audit_log_format(ab, " %s=%d", name2, ntohs(port));
}
/**
* dump_common_audit_data - helper to dump common audit data
* @a : common audit data
*
*/
static void dump_common_audit_data(struct audit_buffer *ab,
struct common_audit_data *a)
{
char comm[sizeof(current->comm)];
/*
* To keep stack sizes in check force programers to notice if they
* start making this union too large! See struct lsm_network_audit
* as an example of how to deal with large data.
*/
BUILD_BUG_ON(sizeof(a->u) > sizeof(void *)*2);
audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
audit_log_untrustedstring(ab, memcpy(comm, current->comm, sizeof(comm)));
switch (a->type) {
case LSM_AUDIT_DATA_NONE:
return;
case LSM_AUDIT_DATA_IPC:
audit_log_format(ab, " key=%d ", a->u.ipc_id);
break;
case LSM_AUDIT_DATA_CAP:
audit_log_format(ab, " capability=%d ", a->u.cap);
break;
case LSM_AUDIT_DATA_PATH: {
struct inode *inode;
audit_log_d_path(ab, " path=", &a->u.path);
inode = d_backing_inode(a->u.path.dentry);
if (inode) {
audit_log_format(ab, " dev=");
audit_log_untrustedstring(ab, inode->i_sb->s_id);
audit_log_format(ab, " ino=%lu", inode->i_ino);
}
break;
}
case LSM_AUDIT_DATA_FILE: {
struct inode *inode;
audit_log_d_path(ab, " path=", &a->u.file->f_path);
inode = file_inode(a->u.file);
if (inode) {
audit_log_format(ab, " dev=");
audit_log_untrustedstring(ab, inode->i_sb->s_id);
audit_log_format(ab, " ino=%lu", inode->i_ino);
}
break;
}
case LSM_AUDIT_DATA_IOCTL_OP: {
struct inode *inode;
audit_log_d_path(ab, " path=", &a->u.op->path);
inode = a->u.op->path.dentry->d_inode;
if (inode) {
audit_log_format(ab, " dev=");
audit_log_untrustedstring(ab, inode->i_sb->s_id);
audit_log_format(ab, " ino=%lu", inode->i_ino);
}
audit_log_format(ab, " ioctlcmd=0x%hx", a->u.op->cmd);
break;
}
case LSM_AUDIT_DATA_DENTRY: {
struct inode *inode;
audit_log_format(ab, " name=");
spin_lock(&a->u.dentry->d_lock);
audit_log_untrustedstring(ab, a->u.dentry->d_name.name);
spin_unlock(&a->u.dentry->d_lock);
inode = d_backing_inode(a->u.dentry);
if (inode) {
audit_log_format(ab, " dev=");
audit_log_untrustedstring(ab, inode->i_sb->s_id);
audit_log_format(ab, " ino=%lu", inode->i_ino);
}
break;
}
case LSM_AUDIT_DATA_INODE: {
struct dentry *dentry;
struct inode *inode;
inode = a->u.inode;
dentry = d_find_alias(inode);
if (dentry) {
audit_log_format(ab, " name=");
spin_lock(&dentry->d_lock);
audit_log_untrustedstring(ab, dentry->d_name.name);
spin_unlock(&dentry->d_lock);
dput(dentry);
}
audit_log_format(ab, " dev=");
audit_log_untrustedstring(ab, inode->i_sb->s_id);
audit_log_format(ab, " ino=%lu", inode->i_ino);
break;
}
case LSM_AUDIT_DATA_TASK: {
struct task_struct *tsk = a->u.tsk;
if (tsk) {
pid_t pid = task_tgid_nr(tsk);
if (pid) {
char comm[sizeof(tsk->comm)];
audit_log_format(ab, " opid=%d ocomm=", pid);
audit_log_untrustedstring(ab,
memcpy(comm, tsk->comm, sizeof(comm)));
}
}
break;
}
case LSM_AUDIT_DATA_NET:
if (a->u.net->sk) {
const struct sock *sk = a->u.net->sk;
struct unix_sock *u;
struct unix_address *addr;
int len = 0;
char *p = NULL;
switch (sk->sk_family) {
case AF_INET: {
struct inet_sock *inet = inet_sk(sk);
print_ipv4_addr(ab, inet->inet_rcv_saddr,
inet->inet_sport,
"laddr", "lport");
print_ipv4_addr(ab, inet->inet_daddr,
inet->inet_dport,
"faddr", "fport");
break;
}
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6: {
struct inet_sock *inet = inet_sk(sk);
print_ipv6_addr(ab, &sk->sk_v6_rcv_saddr,
inet->inet_sport,
"laddr", "lport");
print_ipv6_addr(ab, &sk->sk_v6_daddr,
inet->inet_dport,
"faddr", "fport");
break;
}
#endif
case AF_UNIX:
u = unix_sk(sk);
addr = smp_load_acquire(&u->addr);
if (!addr)
break;
if (u->path.dentry) {
audit_log_d_path(ab, " path=", &u->path);
break;
}
len = addr->len-sizeof(short);
p = &addr->name->sun_path[0];
audit_log_format(ab, " path=");
if (*p)
audit_log_untrustedstring(ab, p);
else
audit_log_n_hex(ab, p, len);
break;
}
}
switch (a->u.net->family) {
case AF_INET:
print_ipv4_addr(ab, a->u.net->v4info.saddr,
a->u.net->sport,
"saddr", "src");
print_ipv4_addr(ab, a->u.net->v4info.daddr,
a->u.net->dport,
"daddr", "dest");
break;
case AF_INET6:
print_ipv6_addr(ab, &a->u.net->v6info.saddr,
a->u.net->sport,
"saddr", "src");
print_ipv6_addr(ab, &a->u.net->v6info.daddr,
a->u.net->dport,
"daddr", "dest");
break;
}
if (a->u.net->netif > 0) {
struct net_device *dev;
/* NOTE: we always use init's namespace */
dev = dev_get_by_index(&init_net, a->u.net->netif);
if (dev) {
audit_log_format(ab, " netif=%s", dev->name);
dev_put(dev);
}
}
break;
#ifdef CONFIG_KEYS
case LSM_AUDIT_DATA_KEY:
audit_log_format(ab, " key_serial=%u", a->u.key_struct.key);
if (a->u.key_struct.key_desc) {
audit_log_format(ab, " key_desc=");
audit_log_untrustedstring(ab, a->u.key_struct.key_desc);
}
break;
#endif
case LSM_AUDIT_DATA_KMOD:
audit_log_format(ab, " kmod=");
audit_log_untrustedstring(ab, a->u.kmod_name);
break;
case LSM_AUDIT_DATA_IBPKEY: {
struct in6_addr sbn_pfx;
memset(&sbn_pfx.s6_addr, 0,
sizeof(sbn_pfx.s6_addr));
memcpy(&sbn_pfx.s6_addr, &a->u.ibpkey->subnet_prefix,
sizeof(a->u.ibpkey->subnet_prefix));
audit_log_format(ab, " pkey=0x%x subnet_prefix=%pI6c",
a->u.ibpkey->pkey, &sbn_pfx);
break;
}
case LSM_AUDIT_DATA_IBENDPORT:
audit_log_format(ab, " device=%s port_num=%u",
a->u.ibendport->dev_name,
a->u.ibendport->port);
break;
case LSM_AUDIT_DATA_LOCKDOWN:
audit_log_format(ab, " lockdown_reason=\"%s\"",
lockdown_reasons[a->u.reason]);
break;
} /* switch (a->type) */
}
/**
* common_lsm_audit - generic LSM auditing function
* @a: auxiliary audit data
* @pre_audit: lsm-specific pre-audit callback
* @post_audit: lsm-specific post-audit callback
*
* setup the audit buffer for common security information
* uses callback to print LSM specific information
*/
void common_lsm_audit(struct common_audit_data *a,
void (*pre_audit)(struct audit_buffer *, void *),
void (*post_audit)(struct audit_buffer *, void *))
{
struct audit_buffer *ab;
if (a == NULL)
return;
/* we use GFP_ATOMIC so we won't sleep */
ab = audit_log_start(audit_context(), GFP_ATOMIC | __GFP_NOWARN,
AUDIT_AVC);
if (ab == NULL)
return;
if (pre_audit)
pre_audit(ab, a);
dump_common_audit_data(ab, a);
if (post_audit)
post_audit(ab, a);
audit_log_end(ab);
}