Max Kellermann 194ced7a5a [media] dvb_frontend: tuner_ops.release returns void
It is not clear what this return value means.  All implemenations
return 0, and the one caller ignores the value.  Let's remove this
useless return value completely.

Signed-off-by: Max Kellermann <max.kellermann@gmail.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2016-11-18 15:07:26 -02:00

744 lines
18 KiB
C

/*
Montage Technology TS2020 - Silicon Tuner driver
Copyright (C) 2009-2012 Konstantin Dimitrov <kosio.dimitrov@gmail.com>
Copyright (C) 2009-2012 TurboSight.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "dvb_frontend.h"
#include "ts2020.h"
#include <linux/regmap.h>
#include <linux/math64.h>
#define TS2020_XTAL_FREQ 27000 /* in kHz */
#define FREQ_OFFSET_LOW_SYM_RATE 3000
struct ts2020_priv {
struct i2c_client *client;
struct mutex regmap_mutex;
struct regmap_config regmap_config;
struct regmap *regmap;
struct dvb_frontend *fe;
struct delayed_work stat_work;
int (*get_agc_pwm)(struct dvb_frontend *fe, u8 *_agc_pwm);
/* i2c details */
struct i2c_adapter *i2c;
int i2c_address;
bool loop_through:1;
u8 clk_out:2;
u8 clk_out_div:5;
bool dont_poll:1;
u32 frequency_div; /* LO output divider switch frequency */
u32 frequency_khz; /* actual used LO frequency */
#define TS2020_M88TS2020 0
#define TS2020_M88TS2022 1
u8 tuner;
};
struct ts2020_reg_val {
u8 reg;
u8 val;
};
static void ts2020_stat_work(struct work_struct *work);
static void ts2020_release(struct dvb_frontend *fe)
{
struct ts2020_priv *priv = fe->tuner_priv;
struct i2c_client *client = priv->client;
dev_dbg(&client->dev, "\n");
i2c_unregister_device(client);
}
static int ts2020_sleep(struct dvb_frontend *fe)
{
struct ts2020_priv *priv = fe->tuner_priv;
int ret;
u8 u8tmp;
if (priv->tuner == TS2020_M88TS2020)
u8tmp = 0x0a; /* XXX: probably wrong */
else
u8tmp = 0x00;
ret = regmap_write(priv->regmap, u8tmp, 0x00);
if (ret < 0)
return ret;
/* stop statistics polling */
if (!priv->dont_poll)
cancel_delayed_work_sync(&priv->stat_work);
return 0;
}
static int ts2020_init(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct ts2020_priv *priv = fe->tuner_priv;
int i;
u8 u8tmp;
if (priv->tuner == TS2020_M88TS2020) {
regmap_write(priv->regmap, 0x42, 0x73);
regmap_write(priv->regmap, 0x05, priv->clk_out_div);
regmap_write(priv->regmap, 0x20, 0x27);
regmap_write(priv->regmap, 0x07, 0x02);
regmap_write(priv->regmap, 0x11, 0xff);
regmap_write(priv->regmap, 0x60, 0xf9);
regmap_write(priv->regmap, 0x08, 0x01);
regmap_write(priv->regmap, 0x00, 0x41);
} else {
static const struct ts2020_reg_val reg_vals[] = {
{0x7d, 0x9d},
{0x7c, 0x9a},
{0x7a, 0x76},
{0x3b, 0x01},
{0x63, 0x88},
{0x61, 0x85},
{0x22, 0x30},
{0x30, 0x40},
{0x20, 0x23},
{0x24, 0x02},
{0x12, 0xa0},
};
regmap_write(priv->regmap, 0x00, 0x01);
regmap_write(priv->regmap, 0x00, 0x03);
switch (priv->clk_out) {
case TS2020_CLK_OUT_DISABLED:
u8tmp = 0x60;
break;
case TS2020_CLK_OUT_ENABLED:
u8tmp = 0x70;
regmap_write(priv->regmap, 0x05, priv->clk_out_div);
break;
case TS2020_CLK_OUT_ENABLED_XTALOUT:
u8tmp = 0x6c;
break;
default:
u8tmp = 0x60;
break;
}
regmap_write(priv->regmap, 0x42, u8tmp);
if (priv->loop_through)
u8tmp = 0xec;
else
u8tmp = 0x6c;
regmap_write(priv->regmap, 0x62, u8tmp);
for (i = 0; i < ARRAY_SIZE(reg_vals); i++)
regmap_write(priv->regmap, reg_vals[i].reg,
reg_vals[i].val);
}
/* Initialise v5 stats here */
c->strength.len = 1;
c->strength.stat[0].scale = FE_SCALE_DECIBEL;
c->strength.stat[0].uvalue = 0;
/* Start statistics polling by invoking the work function */
ts2020_stat_work(&priv->stat_work.work);
return 0;
}
static int ts2020_tuner_gate_ctrl(struct dvb_frontend *fe, u8 offset)
{
struct ts2020_priv *priv = fe->tuner_priv;
int ret;
ret = regmap_write(priv->regmap, 0x51, 0x1f - offset);
ret |= regmap_write(priv->regmap, 0x51, 0x1f);
ret |= regmap_write(priv->regmap, 0x50, offset);
ret |= regmap_write(priv->regmap, 0x50, 0x00);
msleep(20);
return ret;
}
static int ts2020_set_tuner_rf(struct dvb_frontend *fe)
{
struct ts2020_priv *dev = fe->tuner_priv;
int ret;
unsigned int utmp;
ret = regmap_read(dev->regmap, 0x3d, &utmp);
utmp &= 0x7f;
if (utmp < 0x16)
utmp = 0xa1;
else if (utmp == 0x16)
utmp = 0x99;
else
utmp = 0xf9;
regmap_write(dev->regmap, 0x60, utmp);
ret = ts2020_tuner_gate_ctrl(fe, 0x08);
return ret;
}
static int ts2020_set_params(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct ts2020_priv *priv = fe->tuner_priv;
int ret;
unsigned int utmp;
u32 f3db, gdiv28;
u16 u16tmp, value, lpf_coeff;
u8 buf[3], reg10, lpf_mxdiv, mlpf_max, mlpf_min, nlpf;
unsigned int f_ref_khz, f_vco_khz, div_ref, div_out, pll_n;
unsigned int frequency_khz = c->frequency;
/*
* Integer-N PLL synthesizer
* kHz is used for all calculations to keep calculations within 32-bit
*/
f_ref_khz = TS2020_XTAL_FREQ;
div_ref = DIV_ROUND_CLOSEST(f_ref_khz, 2000);
/* select LO output divider */
if (frequency_khz < priv->frequency_div) {
div_out = 4;
reg10 = 0x10;
} else {
div_out = 2;
reg10 = 0x00;
}
f_vco_khz = frequency_khz * div_out;
pll_n = f_vco_khz * div_ref / f_ref_khz;
pll_n += pll_n % 2;
priv->frequency_khz = pll_n * f_ref_khz / div_ref / div_out;
pr_debug("frequency=%u offset=%d f_vco_khz=%u pll_n=%u div_ref=%u div_out=%u\n",
priv->frequency_khz, priv->frequency_khz - c->frequency,
f_vco_khz, pll_n, div_ref, div_out);
if (priv->tuner == TS2020_M88TS2020) {
lpf_coeff = 2766;
reg10 |= 0x01;
ret = regmap_write(priv->regmap, 0x10, reg10);
} else {
lpf_coeff = 3200;
reg10 |= 0x0b;
ret = regmap_write(priv->regmap, 0x10, reg10);
ret |= regmap_write(priv->regmap, 0x11, 0x40);
}
u16tmp = pll_n - 1024;
buf[0] = (u16tmp >> 8) & 0xff;
buf[1] = (u16tmp >> 0) & 0xff;
buf[2] = div_ref - 8;
ret |= regmap_write(priv->regmap, 0x01, buf[0]);
ret |= regmap_write(priv->regmap, 0x02, buf[1]);
ret |= regmap_write(priv->regmap, 0x03, buf[2]);
ret |= ts2020_tuner_gate_ctrl(fe, 0x10);
if (ret < 0)
return -ENODEV;
ret |= ts2020_tuner_gate_ctrl(fe, 0x08);
/* Tuner RF */
if (priv->tuner == TS2020_M88TS2020)
ret |= ts2020_set_tuner_rf(fe);
gdiv28 = (TS2020_XTAL_FREQ / 1000 * 1694 + 500) / 1000;
ret |= regmap_write(priv->regmap, 0x04, gdiv28 & 0xff);
ret |= ts2020_tuner_gate_ctrl(fe, 0x04);
if (ret < 0)
return -ENODEV;
if (priv->tuner == TS2020_M88TS2022) {
ret = regmap_write(priv->regmap, 0x25, 0x00);
ret |= regmap_write(priv->regmap, 0x27, 0x70);
ret |= regmap_write(priv->regmap, 0x41, 0x09);
ret |= regmap_write(priv->regmap, 0x08, 0x0b);
if (ret < 0)
return -ENODEV;
}
regmap_read(priv->regmap, 0x26, &utmp);
value = utmp;
f3db = (c->bandwidth_hz / 1000 / 2) + 2000;
f3db += FREQ_OFFSET_LOW_SYM_RATE; /* FIXME: ~always too wide filter */
f3db = clamp(f3db, 7000U, 40000U);
gdiv28 = gdiv28 * 207 / (value * 2 + 151);
mlpf_max = gdiv28 * 135 / 100;
mlpf_min = gdiv28 * 78 / 100;
if (mlpf_max > 63)
mlpf_max = 63;
nlpf = (f3db * gdiv28 * 2 / lpf_coeff /
(TS2020_XTAL_FREQ / 1000) + 1) / 2;
if (nlpf > 23)
nlpf = 23;
if (nlpf < 1)
nlpf = 1;
lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000)
* lpf_coeff * 2 / f3db + 1) / 2;
if (lpf_mxdiv < mlpf_min) {
nlpf++;
lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000)
* lpf_coeff * 2 / f3db + 1) / 2;
}
if (lpf_mxdiv > mlpf_max)
lpf_mxdiv = mlpf_max;
ret = regmap_write(priv->regmap, 0x04, lpf_mxdiv);
ret |= regmap_write(priv->regmap, 0x06, nlpf);
ret |= ts2020_tuner_gate_ctrl(fe, 0x04);
ret |= ts2020_tuner_gate_ctrl(fe, 0x01);
msleep(80);
return (ret < 0) ? -EINVAL : 0;
}
static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct ts2020_priv *priv = fe->tuner_priv;
*frequency = priv->frequency_khz;
return 0;
}
static int ts2020_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
*frequency = 0; /* Zero-IF */
return 0;
}
/*
* Get the tuner gain.
* @fe: The front end for which we're determining the gain
* @v_agc: The voltage of the AGC from the demodulator (0-2600mV)
* @_gain: Where to store the gain (in 0.001dB units)
*
* Returns 0 or a negative error code.
*/
static int ts2020_read_tuner_gain(struct dvb_frontend *fe, unsigned v_agc,
__s64 *_gain)
{
struct ts2020_priv *priv = fe->tuner_priv;
unsigned long gain1, gain2, gain3;
unsigned utmp;
int ret;
/* Read the RF gain */
ret = regmap_read(priv->regmap, 0x3d, &utmp);
if (ret < 0)
return ret;
gain1 = utmp & 0x1f;
/* Read the baseband gain */
ret = regmap_read(priv->regmap, 0x21, &utmp);
if (ret < 0)
return ret;
gain2 = utmp & 0x1f;
switch (priv->tuner) {
case TS2020_M88TS2020:
gain1 = clamp_t(long, gain1, 0, 15);
gain2 = clamp_t(long, gain2, 0, 13);
v_agc = clamp_t(long, v_agc, 400, 1100);
*_gain = -(gain1 * 2330 +
gain2 * 3500 +
v_agc * 24 / 10 * 10 +
10000);
/* gain in range -19600 to -116850 in units of 0.001dB */
break;
case TS2020_M88TS2022:
ret = regmap_read(priv->regmap, 0x66, &utmp);
if (ret < 0)
return ret;
gain3 = (utmp >> 3) & 0x07;
gain1 = clamp_t(long, gain1, 0, 15);
gain2 = clamp_t(long, gain2, 2, 16);
gain3 = clamp_t(long, gain3, 0, 6);
v_agc = clamp_t(long, v_agc, 600, 1600);
*_gain = -(gain1 * 2650 +
gain2 * 3380 +
gain3 * 2850 +
v_agc * 176 / 100 * 10 -
30000);
/* gain in range -47320 to -158950 in units of 0.001dB */
break;
}
return 0;
}
/*
* Get the AGC information from the demodulator and use that to calculate the
* tuner gain.
*/
static int ts2020_get_tuner_gain(struct dvb_frontend *fe, __s64 *_gain)
{
struct ts2020_priv *priv = fe->tuner_priv;
int v_agc = 0, ret;
u8 agc_pwm;
/* Read the AGC PWM rate from the demodulator */
if (priv->get_agc_pwm) {
ret = priv->get_agc_pwm(fe, &agc_pwm);
if (ret < 0)
return ret;
switch (priv->tuner) {
case TS2020_M88TS2020:
v_agc = (int)agc_pwm * 20 - 1166;
break;
case TS2020_M88TS2022:
v_agc = (int)agc_pwm * 16 - 670;
break;
}
if (v_agc < 0)
v_agc = 0;
}
return ts2020_read_tuner_gain(fe, v_agc, _gain);
}
/*
* Gather statistics on a regular basis
*/
static void ts2020_stat_work(struct work_struct *work)
{
struct ts2020_priv *priv = container_of(work, struct ts2020_priv,
stat_work.work);
struct i2c_client *client = priv->client;
struct dtv_frontend_properties *c = &priv->fe->dtv_property_cache;
int ret;
dev_dbg(&client->dev, "\n");
ret = ts2020_get_tuner_gain(priv->fe, &c->strength.stat[0].svalue);
if (ret < 0)
goto err;
c->strength.stat[0].scale = FE_SCALE_DECIBEL;
if (!priv->dont_poll)
schedule_delayed_work(&priv->stat_work, msecs_to_jiffies(2000));
return;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
}
/*
* Read TS2020 signal strength in v3 format.
*/
static int ts2020_read_signal_strength(struct dvb_frontend *fe,
u16 *_signal_strength)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct ts2020_priv *priv = fe->tuner_priv;
unsigned strength;
__s64 gain;
if (priv->dont_poll)
ts2020_stat_work(&priv->stat_work.work);
if (c->strength.stat[0].scale == FE_SCALE_NOT_AVAILABLE) {
*_signal_strength = 0;
return 0;
}
gain = c->strength.stat[0].svalue;
/* Calculate the signal strength based on the total gain of the tuner */
if (gain < -85000)
/* 0%: no signal or weak signal */
strength = 0;
else if (gain < -65000)
/* 0% - 60%: weak signal */
strength = 0 + div64_s64((85000 + gain) * 3, 1000);
else if (gain < -45000)
/* 60% - 90%: normal signal */
strength = 60 + div64_s64((65000 + gain) * 3, 2000);
else
/* 90% - 99%: strong signal */
strength = 90 + div64_s64((45000 + gain), 5000);
*_signal_strength = strength * 65535 / 100;
return 0;
}
static const struct dvb_tuner_ops ts2020_tuner_ops = {
.info = {
.name = "TS2020",
.frequency_min = 950000,
.frequency_max = 2150000
},
.init = ts2020_init,
.release = ts2020_release,
.sleep = ts2020_sleep,
.set_params = ts2020_set_params,
.get_frequency = ts2020_get_frequency,
.get_if_frequency = ts2020_get_if_frequency,
.get_rf_strength = ts2020_read_signal_strength,
};
struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe,
const struct ts2020_config *config,
struct i2c_adapter *i2c)
{
struct i2c_client *client;
struct i2c_board_info board_info;
/* This is only used by ts2020_probe() so can be on the stack */
struct ts2020_config pdata;
memcpy(&pdata, config, sizeof(pdata));
pdata.fe = fe;
pdata.attach_in_use = true;
memset(&board_info, 0, sizeof(board_info));
strlcpy(board_info.type, "ts2020", I2C_NAME_SIZE);
board_info.addr = config->tuner_address;
board_info.platform_data = &pdata;
client = i2c_new_device(i2c, &board_info);
if (!client || !client->dev.driver)
return NULL;
return fe;
}
EXPORT_SYMBOL(ts2020_attach);
/*
* We implement own regmap locking due to legacy DVB attach which uses frontend
* gate control callback to control I2C bus access. We can open / close gate and
* serialize whole open / I2C-operation / close sequence at the same.
*/
static void ts2020_regmap_lock(void *__dev)
{
struct ts2020_priv *dev = __dev;
mutex_lock(&dev->regmap_mutex);
if (dev->fe->ops.i2c_gate_ctrl)
dev->fe->ops.i2c_gate_ctrl(dev->fe, 1);
}
static void ts2020_regmap_unlock(void *__dev)
{
struct ts2020_priv *dev = __dev;
if (dev->fe->ops.i2c_gate_ctrl)
dev->fe->ops.i2c_gate_ctrl(dev->fe, 0);
mutex_unlock(&dev->regmap_mutex);
}
static int ts2020_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct ts2020_config *pdata = client->dev.platform_data;
struct dvb_frontend *fe = pdata->fe;
struct ts2020_priv *dev;
int ret;
u8 u8tmp;
unsigned int utmp;
char *chip_str;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
ret = -ENOMEM;
goto err;
}
/* create regmap */
mutex_init(&dev->regmap_mutex);
dev->regmap_config.reg_bits = 8,
dev->regmap_config.val_bits = 8,
dev->regmap_config.lock = ts2020_regmap_lock,
dev->regmap_config.unlock = ts2020_regmap_unlock,
dev->regmap_config.lock_arg = dev,
dev->regmap = regmap_init_i2c(client, &dev->regmap_config);
if (IS_ERR(dev->regmap)) {
ret = PTR_ERR(dev->regmap);
goto err_kfree;
}
dev->i2c = client->adapter;
dev->i2c_address = client->addr;
dev->loop_through = pdata->loop_through;
dev->clk_out = pdata->clk_out;
dev->clk_out_div = pdata->clk_out_div;
dev->dont_poll = pdata->dont_poll;
dev->frequency_div = pdata->frequency_div;
dev->fe = fe;
dev->get_agc_pwm = pdata->get_agc_pwm;
fe->tuner_priv = dev;
dev->client = client;
INIT_DELAYED_WORK(&dev->stat_work, ts2020_stat_work);
/* check if the tuner is there */
ret = regmap_read(dev->regmap, 0x00, &utmp);
if (ret)
goto err_regmap_exit;
if ((utmp & 0x03) == 0x00) {
ret = regmap_write(dev->regmap, 0x00, 0x01);
if (ret)
goto err_regmap_exit;
usleep_range(2000, 50000);
}
ret = regmap_write(dev->regmap, 0x00, 0x03);
if (ret)
goto err_regmap_exit;
usleep_range(2000, 50000);
ret = regmap_read(dev->regmap, 0x00, &utmp);
if (ret)
goto err_regmap_exit;
dev_dbg(&client->dev, "chip_id=%02x\n", utmp);
switch (utmp) {
case 0x01:
case 0x41:
case 0x81:
dev->tuner = TS2020_M88TS2020;
chip_str = "TS2020";
if (!dev->frequency_div)
dev->frequency_div = 1060000;
break;
case 0xc3:
case 0x83:
dev->tuner = TS2020_M88TS2022;
chip_str = "TS2022";
if (!dev->frequency_div)
dev->frequency_div = 1103000;
break;
default:
ret = -ENODEV;
goto err_regmap_exit;
}
if (dev->tuner == TS2020_M88TS2022) {
switch (dev->clk_out) {
case TS2020_CLK_OUT_DISABLED:
u8tmp = 0x60;
break;
case TS2020_CLK_OUT_ENABLED:
u8tmp = 0x70;
ret = regmap_write(dev->regmap, 0x05, dev->clk_out_div);
if (ret)
goto err_regmap_exit;
break;
case TS2020_CLK_OUT_ENABLED_XTALOUT:
u8tmp = 0x6c;
break;
default:
ret = -EINVAL;
goto err_regmap_exit;
}
ret = regmap_write(dev->regmap, 0x42, u8tmp);
if (ret)
goto err_regmap_exit;
if (dev->loop_through)
u8tmp = 0xec;
else
u8tmp = 0x6c;
ret = regmap_write(dev->regmap, 0x62, u8tmp);
if (ret)
goto err_regmap_exit;
}
/* sleep */
ret = regmap_write(dev->regmap, 0x00, 0x00);
if (ret)
goto err_regmap_exit;
dev_info(&client->dev,
"Montage Technology %s successfully identified\n", chip_str);
memcpy(&fe->ops.tuner_ops, &ts2020_tuner_ops,
sizeof(struct dvb_tuner_ops));
if (!pdata->attach_in_use)
fe->ops.tuner_ops.release = NULL;
i2c_set_clientdata(client, dev);
return 0;
err_regmap_exit:
regmap_exit(dev->regmap);
err_kfree:
kfree(dev);
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int ts2020_remove(struct i2c_client *client)
{
struct ts2020_priv *dev = i2c_get_clientdata(client);
dev_dbg(&client->dev, "\n");
/* stop statistics polling */
if (!dev->dont_poll)
cancel_delayed_work_sync(&dev->stat_work);
regmap_exit(dev->regmap);
kfree(dev);
return 0;
}
static const struct i2c_device_id ts2020_id_table[] = {
{"ts2020", 0},
{"ts2022", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, ts2020_id_table);
static struct i2c_driver ts2020_driver = {
.driver = {
.name = "ts2020",
},
.probe = ts2020_probe,
.remove = ts2020_remove,
.id_table = ts2020_id_table,
};
module_i2c_driver(ts2020_driver);
MODULE_AUTHOR("Konstantin Dimitrov <kosio.dimitrov@gmail.com>");
MODULE_DESCRIPTION("Montage Technology TS2020 - Silicon tuner driver module");
MODULE_LICENSE("GPL");