mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-16 21:35:07 +00:00
2050327242
The vmclock device addresses the problem of live migration with precision clocks. The tolerances of a hardware counter (e.g. TSC) are typically around ±50PPM. A guest will use NTP/PTP/PPS to discipline that counter against an external source of 'real' time, and track the precise frequency of the counter as it changes with environmental conditions. When a guest is live migrated, anything it knows about the frequency of the underlying counter becomes invalid. It may move from a host where the counter running at -50PPM of its nominal frequency, to a host where it runs at +50PPM. There will also be a step change in the value of the counter, as the correctness of its absolute value at migration is limited by the accuracy of the source and destination host's time synchronization. In its simplest form, the device merely advertises a 'disruption_marker' which indicates that the guest should throw away any NTP synchronization it thinks it has, and start again. Because the shared memory region can be exposed all the way to userspace through the /dev/vmclock0 node, applications can still use time from a fast vDSO 'system call', and check the disruption marker to be sure that their timestamp is indeed truthful. The structure also allows for the precise time, as known by the host, to be exposed directly to guests so that they don't have to wait for NTP to resync from scratch. The PTP driver consumes this information if present. Like the KVM PTP clock, this PTP driver can convert TSC-based cross timestamps into KVM clock values. Unlike the KVM PTP clock, it does so only when such is actually helpful. The values and fields are based on the nascent virtio-rtc specification, and the intent is that a version (hopefully precisely this version) of this structure will be included as an optional part of that spec. In the meantime, this driver supports the simple ACPI form of the device which is being shipped in certain commercial hypervisors (and submitted for inclusion in QEMU). Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
616 lines
15 KiB
C
616 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Virtual PTP 1588 clock for use with LM-safe VMclock device.
|
|
*
|
|
* Copyright © 2024 Amazon.com, Inc. or its affiliates.
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/device.h>
|
|
#include <linux/err.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <uapi/linux/vmclock-abi.h>
|
|
|
|
#include <linux/ptp_clock_kernel.h>
|
|
|
|
#ifdef CONFIG_X86
|
|
#include <asm/pvclock.h>
|
|
#include <asm/kvmclock.h>
|
|
#endif
|
|
|
|
#ifdef CONFIG_KVM_GUEST
|
|
#define SUPPORT_KVMCLOCK
|
|
#endif
|
|
|
|
static DEFINE_IDA(vmclock_ida);
|
|
|
|
ACPI_MODULE_NAME("vmclock");
|
|
|
|
struct vmclock_state {
|
|
struct resource res;
|
|
struct vmclock_abi *clk;
|
|
struct miscdevice miscdev;
|
|
struct ptp_clock_info ptp_clock_info;
|
|
struct ptp_clock *ptp_clock;
|
|
enum clocksource_ids cs_id, sys_cs_id;
|
|
int index;
|
|
char *name;
|
|
};
|
|
|
|
#define VMCLOCK_MAX_WAIT ms_to_ktime(100)
|
|
|
|
/* Require at least the flags field to be present. All else can be optional. */
|
|
#define VMCLOCK_MIN_SIZE offsetof(struct vmclock_abi, pad)
|
|
|
|
#define VMCLOCK_FIELD_PRESENT(_c, _f) \
|
|
(le32_to_cpu((_c)->size) >= (offsetof(struct vmclock_abi, _f) + \
|
|
sizeof((_c)->_f)))
|
|
|
|
/*
|
|
* Multiply a 64-bit count by a 64-bit tick 'period' in units of seconds >> 64
|
|
* and add the fractional second part of the reference time.
|
|
*
|
|
* The result is a 128-bit value, the top 64 bits of which are seconds, and
|
|
* the low 64 bits are (seconds >> 64).
|
|
*/
|
|
static uint64_t mul_u64_u64_shr_add_u64(uint64_t *res_hi, uint64_t delta,
|
|
uint64_t period, uint8_t shift,
|
|
uint64_t frac_sec)
|
|
{
|
|
unsigned __int128 res = (unsigned __int128)delta * period;
|
|
|
|
res >>= shift;
|
|
res += frac_sec;
|
|
*res_hi = res >> 64;
|
|
return (uint64_t)res;
|
|
}
|
|
|
|
static bool tai_adjust(struct vmclock_abi *clk, uint64_t *sec)
|
|
{
|
|
if (likely(clk->time_type == VMCLOCK_TIME_UTC))
|
|
return true;
|
|
|
|
if (clk->time_type == VMCLOCK_TIME_TAI &&
|
|
(le64_to_cpu(clk->flags) & VMCLOCK_FLAG_TAI_OFFSET_VALID)) {
|
|
if (sec)
|
|
*sec += (int16_t)le16_to_cpu(clk->tai_offset_sec);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int vmclock_get_crosststamp(struct vmclock_state *st,
|
|
struct ptp_system_timestamp *sts,
|
|
struct system_counterval_t *system_counter,
|
|
struct timespec64 *tspec)
|
|
{
|
|
ktime_t deadline = ktime_add(ktime_get(), VMCLOCK_MAX_WAIT);
|
|
struct system_time_snapshot systime_snapshot;
|
|
uint64_t cycle, delta, seq, frac_sec;
|
|
|
|
#ifdef CONFIG_X86
|
|
/*
|
|
* We'd expect the hypervisor to know this and to report the clock
|
|
* status as VMCLOCK_STATUS_UNRELIABLE. But be paranoid.
|
|
*/
|
|
if (check_tsc_unstable())
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
while (1) {
|
|
seq = le32_to_cpu(st->clk->seq_count) & ~1ULL;
|
|
|
|
/*
|
|
* This pairs with a write barrier in the hypervisor
|
|
* which populates this structure.
|
|
*/
|
|
virt_rmb();
|
|
|
|
if (st->clk->clock_status == VMCLOCK_STATUS_UNRELIABLE)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* When invoked for gettimex64(), fill in the pre/post system
|
|
* times. The simple case is when system time is based on the
|
|
* same counter as st->cs_id, in which case all three times
|
|
* will be derived from the *same* counter value.
|
|
*
|
|
* If the system isn't using the same counter, then the value
|
|
* from ktime_get_snapshot() will still be used as pre_ts, and
|
|
* ptp_read_system_postts() is called to populate postts after
|
|
* calling get_cycles().
|
|
*
|
|
* The conversion to timespec64 happens further down, outside
|
|
* the seq_count loop.
|
|
*/
|
|
if (sts) {
|
|
ktime_get_snapshot(&systime_snapshot);
|
|
if (systime_snapshot.cs_id == st->cs_id) {
|
|
cycle = systime_snapshot.cycles;
|
|
} else {
|
|
cycle = get_cycles();
|
|
ptp_read_system_postts(sts);
|
|
}
|
|
} else {
|
|
cycle = get_cycles();
|
|
}
|
|
|
|
delta = cycle - le64_to_cpu(st->clk->counter_value);
|
|
|
|
frac_sec = mul_u64_u64_shr_add_u64(&tspec->tv_sec, delta,
|
|
le64_to_cpu(st->clk->counter_period_frac_sec),
|
|
st->clk->counter_period_shift,
|
|
le64_to_cpu(st->clk->time_frac_sec));
|
|
tspec->tv_nsec = mul_u64_u64_shr(frac_sec, NSEC_PER_SEC, 64);
|
|
tspec->tv_sec += le64_to_cpu(st->clk->time_sec);
|
|
|
|
if (!tai_adjust(st->clk, &tspec->tv_sec))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* This pairs with a write barrier in the hypervisor
|
|
* which populates this structure.
|
|
*/
|
|
virt_rmb();
|
|
if (seq == le32_to_cpu(st->clk->seq_count))
|
|
break;
|
|
|
|
if (ktime_after(ktime_get(), deadline))
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
if (system_counter) {
|
|
system_counter->cycles = cycle;
|
|
system_counter->cs_id = st->cs_id;
|
|
}
|
|
|
|
if (sts) {
|
|
sts->pre_ts = ktime_to_timespec64(systime_snapshot.real);
|
|
if (systime_snapshot.cs_id == st->cs_id)
|
|
sts->post_ts = sts->pre_ts;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef SUPPORT_KVMCLOCK
|
|
/*
|
|
* In the case where the system is using the KVM clock for timekeeping, convert
|
|
* the TSC value into a KVM clock time in order to return a paired reading that
|
|
* get_device_system_crosststamp() can cope with.
|
|
*/
|
|
static int vmclock_get_crosststamp_kvmclock(struct vmclock_state *st,
|
|
struct ptp_system_timestamp *sts,
|
|
struct system_counterval_t *system_counter,
|
|
struct timespec64 *tspec)
|
|
{
|
|
struct pvclock_vcpu_time_info *pvti = this_cpu_pvti();
|
|
unsigned int pvti_ver;
|
|
int ret;
|
|
|
|
preempt_disable_notrace();
|
|
|
|
do {
|
|
pvti_ver = pvclock_read_begin(pvti);
|
|
|
|
ret = vmclock_get_crosststamp(st, sts, system_counter, tspec);
|
|
if (ret)
|
|
break;
|
|
|
|
system_counter->cycles = __pvclock_read_cycles(pvti,
|
|
system_counter->cycles);
|
|
system_counter->cs_id = CSID_X86_KVM_CLK;
|
|
|
|
/*
|
|
* This retry should never really happen; if the TSC is
|
|
* stable and reliable enough across vCPUS that it is sane
|
|
* for the hypervisor to expose a VMCLOCK device which uses
|
|
* it as the reference counter, then the KVM clock sohuld be
|
|
* in 'master clock mode' and basically never changed. But
|
|
* the KVM clock is a fickle and often broken thing, so do
|
|
* it "properly" just in case.
|
|
*/
|
|
} while (pvclock_read_retry(pvti, pvti_ver));
|
|
|
|
preempt_enable_notrace();
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static int ptp_vmclock_get_time_fn(ktime_t *device_time,
|
|
struct system_counterval_t *system_counter,
|
|
void *ctx)
|
|
{
|
|
struct vmclock_state *st = ctx;
|
|
struct timespec64 tspec;
|
|
int ret;
|
|
|
|
#ifdef SUPPORT_KVMCLOCK
|
|
if (READ_ONCE(st->sys_cs_id) == CSID_X86_KVM_CLK)
|
|
ret = vmclock_get_crosststamp_kvmclock(st, NULL, system_counter,
|
|
&tspec);
|
|
else
|
|
#endif
|
|
ret = vmclock_get_crosststamp(st, NULL, system_counter, &tspec);
|
|
|
|
if (!ret)
|
|
*device_time = timespec64_to_ktime(tspec);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ptp_vmclock_getcrosststamp(struct ptp_clock_info *ptp,
|
|
struct system_device_crosststamp *xtstamp)
|
|
{
|
|
struct vmclock_state *st = container_of(ptp, struct vmclock_state,
|
|
ptp_clock_info);
|
|
int ret = get_device_system_crosststamp(ptp_vmclock_get_time_fn, st,
|
|
NULL, xtstamp);
|
|
#ifdef SUPPORT_KVMCLOCK
|
|
/*
|
|
* On x86, the KVM clock may be used for the system time. We can
|
|
* actually convert a TSC reading to that, and return a paired
|
|
* timestamp that get_device_system_crosststamp() *can* handle.
|
|
*/
|
|
if (ret == -ENODEV) {
|
|
struct system_time_snapshot systime_snapshot;
|
|
|
|
ktime_get_snapshot(&systime_snapshot);
|
|
|
|
if (systime_snapshot.cs_id == CSID_X86_TSC ||
|
|
systime_snapshot.cs_id == CSID_X86_KVM_CLK) {
|
|
WRITE_ONCE(st->sys_cs_id, systime_snapshot.cs_id);
|
|
ret = get_device_system_crosststamp(ptp_vmclock_get_time_fn,
|
|
st, NULL, xtstamp);
|
|
}
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* PTP clock operations
|
|
*/
|
|
|
|
static int ptp_vmclock_adjfine(struct ptp_clock_info *ptp, long delta)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int ptp_vmclock_adjtime(struct ptp_clock_info *ptp, s64 delta)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int ptp_vmclock_settime(struct ptp_clock_info *ptp,
|
|
const struct timespec64 *ts)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int ptp_vmclock_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
|
|
struct ptp_system_timestamp *sts)
|
|
{
|
|
struct vmclock_state *st = container_of(ptp, struct vmclock_state,
|
|
ptp_clock_info);
|
|
|
|
return vmclock_get_crosststamp(st, sts, NULL, ts);
|
|
}
|
|
|
|
static int ptp_vmclock_enable(struct ptp_clock_info *ptp,
|
|
struct ptp_clock_request *rq, int on)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static const struct ptp_clock_info ptp_vmclock_info = {
|
|
.owner = THIS_MODULE,
|
|
.max_adj = 0,
|
|
.n_ext_ts = 0,
|
|
.n_pins = 0,
|
|
.pps = 0,
|
|
.adjfine = ptp_vmclock_adjfine,
|
|
.adjtime = ptp_vmclock_adjtime,
|
|
.gettimex64 = ptp_vmclock_gettimex,
|
|
.settime64 = ptp_vmclock_settime,
|
|
.enable = ptp_vmclock_enable,
|
|
.getcrosststamp = ptp_vmclock_getcrosststamp,
|
|
};
|
|
|
|
static struct ptp_clock *vmclock_ptp_register(struct device *dev,
|
|
struct vmclock_state *st)
|
|
{
|
|
enum clocksource_ids cs_id;
|
|
|
|
if (IS_ENABLED(CONFIG_ARM64) &&
|
|
st->clk->counter_id == VMCLOCK_COUNTER_ARM_VCNT) {
|
|
/* Can we check it's the virtual counter? */
|
|
cs_id = CSID_ARM_ARCH_COUNTER;
|
|
} else if (IS_ENABLED(CONFIG_X86) &&
|
|
st->clk->counter_id == VMCLOCK_COUNTER_X86_TSC) {
|
|
cs_id = CSID_X86_TSC;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
/* Only UTC, or TAI with offset */
|
|
if (!tai_adjust(st->clk, NULL)) {
|
|
dev_info(dev, "vmclock does not provide unambiguous UTC\n");
|
|
return NULL;
|
|
}
|
|
|
|
st->sys_cs_id = cs_id;
|
|
st->cs_id = cs_id;
|
|
st->ptp_clock_info = ptp_vmclock_info;
|
|
strscpy(st->ptp_clock_info.name, st->name);
|
|
|
|
return ptp_clock_register(&st->ptp_clock_info, dev);
|
|
}
|
|
|
|
static int vmclock_miscdev_mmap(struct file *fp, struct vm_area_struct *vma)
|
|
{
|
|
struct vmclock_state *st = container_of(fp->private_data,
|
|
struct vmclock_state, miscdev);
|
|
|
|
if ((vma->vm_flags & (VM_READ|VM_WRITE)) != VM_READ)
|
|
return -EROFS;
|
|
|
|
if (vma->vm_end - vma->vm_start != PAGE_SIZE || vma->vm_pgoff)
|
|
return -EINVAL;
|
|
|
|
if (io_remap_pfn_range(vma, vma->vm_start,
|
|
st->res.start >> PAGE_SHIFT, PAGE_SIZE,
|
|
vma->vm_page_prot))
|
|
return -EAGAIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t vmclock_miscdev_read(struct file *fp, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct vmclock_state *st = container_of(fp->private_data,
|
|
struct vmclock_state, miscdev);
|
|
ktime_t deadline = ktime_add(ktime_get(), VMCLOCK_MAX_WAIT);
|
|
size_t max_count;
|
|
uint32_t seq;
|
|
|
|
if (*ppos >= PAGE_SIZE)
|
|
return 0;
|
|
|
|
max_count = PAGE_SIZE - *ppos;
|
|
if (count > max_count)
|
|
count = max_count;
|
|
|
|
while (1) {
|
|
seq = le32_to_cpu(st->clk->seq_count) & ~1U;
|
|
/* Pairs with hypervisor wmb */
|
|
virt_rmb();
|
|
|
|
if (copy_to_user(buf, ((char *)st->clk) + *ppos, count))
|
|
return -EFAULT;
|
|
|
|
/* Pairs with hypervisor wmb */
|
|
virt_rmb();
|
|
if (seq == le32_to_cpu(st->clk->seq_count))
|
|
break;
|
|
|
|
if (ktime_after(ktime_get(), deadline))
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
*ppos += count;
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations vmclock_miscdev_fops = {
|
|
.mmap = vmclock_miscdev_mmap,
|
|
.read = vmclock_miscdev_read,
|
|
};
|
|
|
|
/* module operations */
|
|
|
|
static void vmclock_remove(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct vmclock_state *st = dev_get_drvdata(dev);
|
|
|
|
if (st->ptp_clock)
|
|
ptp_clock_unregister(st->ptp_clock);
|
|
|
|
if (st->miscdev.minor != MISC_DYNAMIC_MINOR)
|
|
misc_deregister(&st->miscdev);
|
|
}
|
|
|
|
static acpi_status vmclock_acpi_resources(struct acpi_resource *ares, void *data)
|
|
{
|
|
struct vmclock_state *st = data;
|
|
struct resource_win win;
|
|
struct resource *res = &win.res;
|
|
|
|
if (ares->type == ACPI_RESOURCE_TYPE_END_TAG)
|
|
return AE_OK;
|
|
|
|
/* There can be only one */
|
|
if (resource_type(&st->res) == IORESOURCE_MEM)
|
|
return AE_ERROR;
|
|
|
|
if (acpi_dev_resource_memory(ares, res) ||
|
|
acpi_dev_resource_address_space(ares, &win)) {
|
|
|
|
if (resource_type(res) != IORESOURCE_MEM ||
|
|
resource_size(res) < sizeof(st->clk))
|
|
return AE_ERROR;
|
|
|
|
st->res = *res;
|
|
return AE_OK;
|
|
}
|
|
|
|
return AE_ERROR;
|
|
}
|
|
|
|
static int vmclock_probe_acpi(struct device *dev, struct vmclock_state *st)
|
|
{
|
|
struct acpi_device *adev = ACPI_COMPANION(dev);
|
|
acpi_status status;
|
|
|
|
/*
|
|
* This should never happen as this function is only called when
|
|
* has_acpi_companion(dev) is true, but the logic is sufficiently
|
|
* complex that Coverity can't see the tautology.
|
|
*/
|
|
if (!adev)
|
|
return -ENODEV;
|
|
|
|
status = acpi_walk_resources(adev->handle, METHOD_NAME__CRS,
|
|
vmclock_acpi_resources, st);
|
|
if (ACPI_FAILURE(status) || resource_type(&st->res) != IORESOURCE_MEM) {
|
|
dev_err(dev, "failed to get resources\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vmclock_put_idx(void *data)
|
|
{
|
|
struct vmclock_state *st = data;
|
|
|
|
ida_free(&vmclock_ida, st->index);
|
|
}
|
|
|
|
static int vmclock_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct vmclock_state *st;
|
|
int ret;
|
|
|
|
st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL);
|
|
if (!st)
|
|
return -ENOMEM;
|
|
|
|
if (has_acpi_companion(dev))
|
|
ret = vmclock_probe_acpi(dev, st);
|
|
else
|
|
ret = -EINVAL; /* Only ACPI for now */
|
|
|
|
if (ret) {
|
|
dev_info(dev, "Failed to obtain physical address: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
if (resource_size(&st->res) < VMCLOCK_MIN_SIZE) {
|
|
dev_info(dev, "Region too small (0x%llx)\n",
|
|
resource_size(&st->res));
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
st->clk = devm_memremap(dev, st->res.start, resource_size(&st->res),
|
|
MEMREMAP_WB | MEMREMAP_DEC);
|
|
if (IS_ERR(st->clk)) {
|
|
ret = PTR_ERR(st->clk);
|
|
dev_info(dev, "failed to map shared memory\n");
|
|
st->clk = NULL;
|
|
goto out;
|
|
}
|
|
|
|
if (le32_to_cpu(st->clk->magic) != VMCLOCK_MAGIC ||
|
|
le32_to_cpu(st->clk->size) > resource_size(&st->res) ||
|
|
le16_to_cpu(st->clk->version) != 1) {
|
|
dev_info(dev, "vmclock magic fields invalid\n");
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = ida_alloc(&vmclock_ida, GFP_KERNEL);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
st->index = ret;
|
|
ret = devm_add_action_or_reset(&pdev->dev, vmclock_put_idx, st);
|
|
if (ret)
|
|
goto out;
|
|
|
|
st->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "vmclock%d", st->index);
|
|
if (!st->name) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the structure is big enough, it can be mapped to userspace.
|
|
* Theoretically a guest OS even using larger pages could still
|
|
* use 4KiB PTEs to map smaller MMIO regions like this, but let's
|
|
* cross that bridge if/when we come to it.
|
|
*/
|
|
if (le32_to_cpu(st->clk->size) >= PAGE_SIZE) {
|
|
st->miscdev.minor = MISC_DYNAMIC_MINOR;
|
|
st->miscdev.fops = &vmclock_miscdev_fops;
|
|
st->miscdev.name = st->name;
|
|
|
|
ret = misc_register(&st->miscdev);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/* If there is valid clock information, register a PTP clock */
|
|
if (VMCLOCK_FIELD_PRESENT(st->clk, time_frac_sec)) {
|
|
/* Can return a silent NULL, or an error. */
|
|
st->ptp_clock = vmclock_ptp_register(dev, st);
|
|
if (IS_ERR(st->ptp_clock)) {
|
|
ret = PTR_ERR(st->ptp_clock);
|
|
st->ptp_clock = NULL;
|
|
vmclock_remove(pdev);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (!st->miscdev.minor && !st->ptp_clock) {
|
|
/* Neither miscdev nor PTP registered */
|
|
dev_info(dev, "vmclock: Neither miscdev nor PTP available; not registering\n");
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
dev_info(dev, "%s: registered %s%s%s\n", st->name,
|
|
st->miscdev.minor ? "miscdev" : "",
|
|
(st->miscdev.minor && st->ptp_clock) ? ", " : "",
|
|
st->ptp_clock ? "PTP" : "");
|
|
|
|
dev_set_drvdata(dev, st);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static const struct acpi_device_id vmclock_acpi_ids[] = {
|
|
{ "AMZNC10C", 0 },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(acpi, vmclock_acpi_ids);
|
|
|
|
static struct platform_driver vmclock_platform_driver = {
|
|
.probe = vmclock_probe,
|
|
.remove_new = vmclock_remove,
|
|
.driver = {
|
|
.name = "vmclock",
|
|
.acpi_match_table = vmclock_acpi_ids,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(vmclock_platform_driver)
|
|
|
|
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
|
|
MODULE_DESCRIPTION("PTP clock using VMCLOCK");
|
|
MODULE_LICENSE("GPL");
|