mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 13:15:57 +00:00
d6f0f22c3c
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
675 lines
19 KiB
C
675 lines
19 KiB
C
/*
|
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/kernel.h>
|
|
#include <asm/system.h>
|
|
#include <asm/stack.h>
|
|
#include <asm/homecache.h>
|
|
#include <asm/syscalls.h>
|
|
#ifdef CONFIG_HARDWALL
|
|
#include <asm/hardwall.h>
|
|
#endif
|
|
#include <arch/chip.h>
|
|
#include <arch/abi.h>
|
|
|
|
|
|
/*
|
|
* Use the (x86) "idle=poll" option to prefer low latency when leaving the
|
|
* idle loop over low power while in the idle loop, e.g. if we have
|
|
* one thread per core and we want to get threads out of futex waits fast.
|
|
*/
|
|
static int no_idle_nap;
|
|
static int __init idle_setup(char *str)
|
|
{
|
|
if (!str)
|
|
return -EINVAL;
|
|
|
|
if (!strcmp(str, "poll")) {
|
|
pr_info("using polling idle threads.\n");
|
|
no_idle_nap = 1;
|
|
} else if (!strcmp(str, "halt"))
|
|
no_idle_nap = 0;
|
|
else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
early_param("idle", idle_setup);
|
|
|
|
/*
|
|
* The idle thread. There's no useful work to be
|
|
* done, so just try to conserve power and have a
|
|
* low exit latency (ie sit in a loop waiting for
|
|
* somebody to say that they'd like to reschedule)
|
|
*/
|
|
void cpu_idle(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
|
|
current_thread_info()->status |= TS_POLLING;
|
|
|
|
if (no_idle_nap) {
|
|
while (1) {
|
|
while (!need_resched())
|
|
cpu_relax();
|
|
schedule();
|
|
}
|
|
}
|
|
|
|
/* endless idle loop with no priority at all */
|
|
while (1) {
|
|
tick_nohz_stop_sched_tick(1);
|
|
while (!need_resched()) {
|
|
if (cpu_is_offline(cpu))
|
|
BUG(); /* no HOTPLUG_CPU */
|
|
|
|
local_irq_disable();
|
|
__get_cpu_var(irq_stat).idle_timestamp = jiffies;
|
|
current_thread_info()->status &= ~TS_POLLING;
|
|
/*
|
|
* TS_POLLING-cleared state must be visible before we
|
|
* test NEED_RESCHED:
|
|
*/
|
|
smp_mb();
|
|
|
|
if (!need_resched())
|
|
_cpu_idle();
|
|
else
|
|
local_irq_enable();
|
|
current_thread_info()->status |= TS_POLLING;
|
|
}
|
|
tick_nohz_restart_sched_tick();
|
|
preempt_enable_no_resched();
|
|
schedule();
|
|
preempt_disable();
|
|
}
|
|
}
|
|
|
|
struct thread_info *alloc_thread_info(struct task_struct *task)
|
|
{
|
|
struct page *page;
|
|
gfp_t flags = GFP_KERNEL;
|
|
|
|
#ifdef CONFIG_DEBUG_STACK_USAGE
|
|
flags |= __GFP_ZERO;
|
|
#endif
|
|
|
|
page = alloc_pages(flags, THREAD_SIZE_ORDER);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
return (struct thread_info *)page_address(page);
|
|
}
|
|
|
|
/*
|
|
* Free a thread_info node, and all of its derivative
|
|
* data structures.
|
|
*/
|
|
void free_thread_info(struct thread_info *info)
|
|
{
|
|
struct single_step_state *step_state = info->step_state;
|
|
|
|
#ifdef CONFIG_HARDWALL
|
|
/*
|
|
* We free a thread_info from the context of the task that has
|
|
* been scheduled next, so the original task is already dead.
|
|
* Calling deactivate here just frees up the data structures.
|
|
* If the task we're freeing held the last reference to a
|
|
* hardwall fd, it would have been released prior to this point
|
|
* anyway via exit_files(), and "hardwall" would be NULL by now.
|
|
*/
|
|
if (info->task->thread.hardwall)
|
|
hardwall_deactivate(info->task);
|
|
#endif
|
|
|
|
if (step_state) {
|
|
|
|
/*
|
|
* FIXME: we don't munmap step_state->buffer
|
|
* because the mm_struct for this process (info->task->mm)
|
|
* has already been zeroed in exit_mm(). Keeping a
|
|
* reference to it here seems like a bad move, so this
|
|
* means we can't munmap() the buffer, and therefore if we
|
|
* ptrace multiple threads in a process, we will slowly
|
|
* leak user memory. (Note that as soon as the last
|
|
* thread in a process dies, we will reclaim all user
|
|
* memory including single-step buffers in the usual way.)
|
|
* We should either assign a kernel VA to this buffer
|
|
* somehow, or we should associate the buffer(s) with the
|
|
* mm itself so we can clean them up that way.
|
|
*/
|
|
kfree(step_state);
|
|
}
|
|
|
|
free_page((unsigned long)info);
|
|
}
|
|
|
|
static void save_arch_state(struct thread_struct *t);
|
|
|
|
int copy_thread(unsigned long clone_flags, unsigned long sp,
|
|
unsigned long stack_size,
|
|
struct task_struct *p, struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *childregs;
|
|
unsigned long ksp;
|
|
|
|
/*
|
|
* When creating a new kernel thread we pass sp as zero.
|
|
* Assign it to a reasonable value now that we have the stack.
|
|
*/
|
|
if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0))
|
|
sp = KSTK_TOP(p);
|
|
|
|
/*
|
|
* Do not clone step state from the parent; each thread
|
|
* must make its own lazily.
|
|
*/
|
|
task_thread_info(p)->step_state = NULL;
|
|
|
|
/*
|
|
* Start new thread in ret_from_fork so it schedules properly
|
|
* and then return from interrupt like the parent.
|
|
*/
|
|
p->thread.pc = (unsigned long) ret_from_fork;
|
|
|
|
/* Save user stack top pointer so we can ID the stack vm area later. */
|
|
p->thread.usp0 = sp;
|
|
|
|
/* Record the pid of the process that created this one. */
|
|
p->thread.creator_pid = current->pid;
|
|
|
|
/*
|
|
* Copy the registers onto the kernel stack so the
|
|
* return-from-interrupt code will reload it into registers.
|
|
*/
|
|
childregs = task_pt_regs(p);
|
|
*childregs = *regs;
|
|
childregs->regs[0] = 0; /* return value is zero */
|
|
childregs->sp = sp; /* override with new user stack pointer */
|
|
|
|
/*
|
|
* Copy the callee-saved registers from the passed pt_regs struct
|
|
* into the context-switch callee-saved registers area.
|
|
* This way when we start the interrupt-return sequence, the
|
|
* callee-save registers will be correctly in registers, which
|
|
* is how we assume the compiler leaves them as we start doing
|
|
* the normal return-from-interrupt path after calling C code.
|
|
* Zero out the C ABI save area to mark the top of the stack.
|
|
*/
|
|
ksp = (unsigned long) childregs;
|
|
ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
|
|
((long *)ksp)[0] = ((long *)ksp)[1] = 0;
|
|
ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
|
|
memcpy((void *)ksp, ®s->regs[CALLEE_SAVED_FIRST_REG],
|
|
CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
|
|
ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
|
|
((long *)ksp)[0] = ((long *)ksp)[1] = 0;
|
|
p->thread.ksp = ksp;
|
|
|
|
#if CHIP_HAS_TILE_DMA()
|
|
/*
|
|
* No DMA in the new thread. We model this on the fact that
|
|
* fork() clears the pending signals, alarms, and aio for the child.
|
|
*/
|
|
memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
|
|
memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
|
|
#endif
|
|
|
|
#if CHIP_HAS_SN_PROC()
|
|
/* Likewise, the new thread is not running static processor code. */
|
|
p->thread.sn_proc_running = 0;
|
|
memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
|
|
#endif
|
|
|
|
#if CHIP_HAS_PROC_STATUS_SPR()
|
|
/* New thread has its miscellaneous processor state bits clear. */
|
|
p->thread.proc_status = 0;
|
|
#endif
|
|
|
|
#ifdef CONFIG_HARDWALL
|
|
/* New thread does not own any networks. */
|
|
p->thread.hardwall = NULL;
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Start the new thread with the current architecture state
|
|
* (user interrupt masks, etc.).
|
|
*/
|
|
save_arch_state(&p->thread);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return "current" if it looks plausible, or else a pointer to a dummy.
|
|
* This can be helpful if we are just trying to emit a clean panic.
|
|
*/
|
|
struct task_struct *validate_current(void)
|
|
{
|
|
static struct task_struct corrupt = { .comm = "<corrupt>" };
|
|
struct task_struct *tsk = current;
|
|
if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
|
|
(void *)tsk > high_memory ||
|
|
((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
|
|
pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
|
|
tsk = &corrupt;
|
|
}
|
|
return tsk;
|
|
}
|
|
|
|
/* Take and return the pointer to the previous task, for schedule_tail(). */
|
|
struct task_struct *sim_notify_fork(struct task_struct *prev)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
|
|
(tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
|
|
__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
|
|
(tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
|
|
return prev;
|
|
}
|
|
|
|
int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
|
|
{
|
|
struct pt_regs *ptregs = task_pt_regs(tsk);
|
|
elf_core_copy_regs(regs, ptregs);
|
|
return 1;
|
|
}
|
|
|
|
#if CHIP_HAS_TILE_DMA()
|
|
|
|
/* Allow user processes to access the DMA SPRs */
|
|
void grant_dma_mpls(void)
|
|
{
|
|
__insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
|
|
__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
|
|
}
|
|
|
|
/* Forbid user processes from accessing the DMA SPRs */
|
|
void restrict_dma_mpls(void)
|
|
{
|
|
__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
|
|
__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
|
|
}
|
|
|
|
/* Pause the DMA engine, then save off its state registers. */
|
|
static void save_tile_dma_state(struct tile_dma_state *dma)
|
|
{
|
|
unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
|
|
unsigned long post_suspend_state;
|
|
|
|
/* If we're running, suspend the engine. */
|
|
if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
|
|
__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
|
|
|
|
/*
|
|
* Wait for the engine to idle, then save regs. Note that we
|
|
* want to record the "running" bit from before suspension,
|
|
* and the "done" bit from after, so that we can properly
|
|
* distinguish a case where the user suspended the engine from
|
|
* the case where the kernel suspended as part of the context
|
|
* swap.
|
|
*/
|
|
do {
|
|
post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
|
|
} while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
|
|
|
|
dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
|
|
dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
|
|
dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
|
|
dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
|
|
dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
|
|
dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
|
|
dma->byte = __insn_mfspr(SPR_DMA_BYTE);
|
|
dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
|
|
(post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
|
|
}
|
|
|
|
/* Restart a DMA that was running before we were context-switched out. */
|
|
static void restore_tile_dma_state(struct thread_struct *t)
|
|
{
|
|
const struct tile_dma_state *dma = &t->tile_dma_state;
|
|
|
|
/*
|
|
* The only way to restore the done bit is to run a zero
|
|
* length transaction.
|
|
*/
|
|
if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
|
|
!(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
|
|
__insn_mtspr(SPR_DMA_BYTE, 0);
|
|
__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
|
|
while (__insn_mfspr(SPR_DMA_USER_STATUS) &
|
|
SPR_DMA_STATUS__BUSY_MASK)
|
|
;
|
|
}
|
|
|
|
__insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
|
|
__insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
|
|
__insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
|
|
__insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
|
|
__insn_mtspr(SPR_DMA_STRIDE, dma->strides);
|
|
__insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
|
|
__insn_mtspr(SPR_DMA_BYTE, dma->byte);
|
|
|
|
/*
|
|
* Restart the engine if we were running and not done.
|
|
* Clear a pending async DMA fault that we were waiting on return
|
|
* to user space to execute, since we expect the DMA engine
|
|
* to regenerate those faults for us now. Note that we don't
|
|
* try to clear the TIF_ASYNC_TLB flag, since it's relatively
|
|
* harmless if set, and it covers both DMA and the SN processor.
|
|
*/
|
|
if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
|
|
t->dma_async_tlb.fault_num = 0;
|
|
__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
static void save_arch_state(struct thread_struct *t)
|
|
{
|
|
#if CHIP_HAS_SPLIT_INTR_MASK()
|
|
t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
|
|
((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
|
|
#else
|
|
t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
|
|
#endif
|
|
t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
|
|
t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
|
|
t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
|
|
t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
|
|
t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
|
|
t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
|
|
t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
|
|
#if CHIP_HAS_PROC_STATUS_SPR()
|
|
t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
|
|
#endif
|
|
#if !CHIP_HAS_FIXED_INTVEC_BASE()
|
|
t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
|
|
#endif
|
|
#if CHIP_HAS_TILE_RTF_HWM()
|
|
t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
|
|
#endif
|
|
#if CHIP_HAS_DSTREAM_PF()
|
|
t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
|
|
#endif
|
|
}
|
|
|
|
static void restore_arch_state(const struct thread_struct *t)
|
|
{
|
|
#if CHIP_HAS_SPLIT_INTR_MASK()
|
|
__insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
|
|
__insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
|
|
#else
|
|
__insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
|
|
#endif
|
|
__insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
|
|
__insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
|
|
__insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
|
|
__insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
|
|
__insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
|
|
__insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
|
|
__insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
|
|
#if CHIP_HAS_PROC_STATUS_SPR()
|
|
__insn_mtspr(SPR_PROC_STATUS, t->proc_status);
|
|
#endif
|
|
#if !CHIP_HAS_FIXED_INTVEC_BASE()
|
|
__insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
|
|
#endif
|
|
#if CHIP_HAS_TILE_RTF_HWM()
|
|
__insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
|
|
#endif
|
|
#if CHIP_HAS_DSTREAM_PF()
|
|
__insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
|
|
#endif
|
|
}
|
|
|
|
|
|
void _prepare_arch_switch(struct task_struct *next)
|
|
{
|
|
#if CHIP_HAS_SN_PROC()
|
|
int snctl;
|
|
#endif
|
|
#if CHIP_HAS_TILE_DMA()
|
|
struct tile_dma_state *dma = ¤t->thread.tile_dma_state;
|
|
if (dma->enabled)
|
|
save_tile_dma_state(dma);
|
|
#endif
|
|
#if CHIP_HAS_SN_PROC()
|
|
/*
|
|
* Suspend the static network processor if it was running.
|
|
* We do not suspend the fabric itself, just like we don't
|
|
* try to suspend the UDN.
|
|
*/
|
|
snctl = __insn_mfspr(SPR_SNCTL);
|
|
current->thread.sn_proc_running =
|
|
(snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
|
|
if (current->thread.sn_proc_running)
|
|
__insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
|
|
#endif
|
|
}
|
|
|
|
|
|
struct task_struct *__sched _switch_to(struct task_struct *prev,
|
|
struct task_struct *next)
|
|
{
|
|
/* DMA state is already saved; save off other arch state. */
|
|
save_arch_state(&prev->thread);
|
|
|
|
#if CHIP_HAS_TILE_DMA()
|
|
/*
|
|
* Restore DMA in new task if desired.
|
|
* Note that it is only safe to restart here since interrupts
|
|
* are disabled, so we can't take any DMATLB miss or access
|
|
* interrupts before we have finished switching stacks.
|
|
*/
|
|
if (next->thread.tile_dma_state.enabled) {
|
|
restore_tile_dma_state(&next->thread);
|
|
grant_dma_mpls();
|
|
} else {
|
|
restrict_dma_mpls();
|
|
}
|
|
#endif
|
|
|
|
/* Restore other arch state. */
|
|
restore_arch_state(&next->thread);
|
|
|
|
#if CHIP_HAS_SN_PROC()
|
|
/*
|
|
* Restart static network processor in the new process
|
|
* if it was running before.
|
|
*/
|
|
if (next->thread.sn_proc_running) {
|
|
int snctl = __insn_mfspr(SPR_SNCTL);
|
|
__insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_HARDWALL
|
|
/* Enable or disable access to the network registers appropriately. */
|
|
if (prev->thread.hardwall != NULL) {
|
|
if (next->thread.hardwall == NULL)
|
|
restrict_network_mpls();
|
|
} else if (next->thread.hardwall != NULL) {
|
|
grant_network_mpls();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Switch kernel SP, PC, and callee-saved registers.
|
|
* In the context of the new task, return the old task pointer
|
|
* (i.e. the task that actually called __switch_to).
|
|
* Pass the value to use for SYSTEM_SAVE_1_0 when we reset our sp.
|
|
*/
|
|
return __switch_to(prev, next, next_current_ksp0(next));
|
|
}
|
|
|
|
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
|
|
void __user *, parent_tidptr, void __user *, child_tidptr,
|
|
struct pt_regs *, regs)
|
|
{
|
|
if (!newsp)
|
|
newsp = regs->sp;
|
|
return do_fork(clone_flags, newsp, regs, 0,
|
|
parent_tidptr, child_tidptr);
|
|
}
|
|
|
|
/*
|
|
* sys_execve() executes a new program.
|
|
*/
|
|
SYSCALL_DEFINE4(execve, const char __user *, path,
|
|
const char __user *const __user *, argv,
|
|
const char __user *const __user *, envp,
|
|
struct pt_regs *, regs)
|
|
{
|
|
long error;
|
|
char *filename;
|
|
|
|
filename = getname(path);
|
|
error = PTR_ERR(filename);
|
|
if (IS_ERR(filename))
|
|
goto out;
|
|
error = do_execve(filename, argv, envp, regs);
|
|
putname(filename);
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
long compat_sys_execve(const char __user *path,
|
|
const compat_uptr_t __user *argv,
|
|
const compat_uptr_t __user *envp,
|
|
struct pt_regs *regs)
|
|
{
|
|
long error;
|
|
char *filename;
|
|
|
|
filename = getname(path);
|
|
error = PTR_ERR(filename);
|
|
if (IS_ERR(filename))
|
|
goto out;
|
|
error = compat_do_execve(filename, argv, envp, regs);
|
|
putname(filename);
|
|
out:
|
|
return error;
|
|
}
|
|
#endif
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
struct KBacktraceIterator kbt;
|
|
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
|
|
for (KBacktraceIterator_init(&kbt, p, NULL);
|
|
!KBacktraceIterator_end(&kbt);
|
|
KBacktraceIterator_next(&kbt)) {
|
|
if (!in_sched_functions(kbt.it.pc))
|
|
return kbt.it.pc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We pass in lr as zero (cleared in kernel_thread) and the caller
|
|
* part of the backtrace ABI on the stack also zeroed (in copy_thread)
|
|
* so that backtraces will stop with this function.
|
|
* Note that we don't use r0, since copy_thread() clears it.
|
|
*/
|
|
static void start_kernel_thread(int dummy, int (*fn)(int), int arg)
|
|
{
|
|
do_exit(fn(arg));
|
|
}
|
|
|
|
/*
|
|
* Create a kernel thread
|
|
*/
|
|
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
|
|
{
|
|
struct pt_regs regs;
|
|
|
|
memset(®s, 0, sizeof(regs));
|
|
regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0); /* run at kernel PL, no ICS */
|
|
regs.pc = (long) start_kernel_thread;
|
|
regs.flags = PT_FLAGS_CALLER_SAVES; /* need to restore r1 and r2 */
|
|
regs.regs[1] = (long) fn; /* function pointer */
|
|
regs.regs[2] = (long) arg; /* parameter register */
|
|
|
|
/* Ok, create the new process.. */
|
|
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s,
|
|
0, NULL, NULL);
|
|
}
|
|
EXPORT_SYMBOL(kernel_thread);
|
|
|
|
/* Flush thread state. */
|
|
void flush_thread(void)
|
|
{
|
|
/* Nothing */
|
|
}
|
|
|
|
/*
|
|
* Free current thread data structures etc..
|
|
*/
|
|
void exit_thread(void)
|
|
{
|
|
/* Nothing */
|
|
}
|
|
|
|
void show_regs(struct pt_regs *regs)
|
|
{
|
|
struct task_struct *tsk = validate_current();
|
|
int i;
|
|
|
|
pr_err("\n");
|
|
pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
|
|
tsk->pid, tsk->comm, smp_processor_id());
|
|
#ifdef __tilegx__
|
|
for (i = 0; i < 51; i += 3)
|
|
pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
|
|
i, regs->regs[i], i+1, regs->regs[i+1],
|
|
i+2, regs->regs[i+2]);
|
|
pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
|
|
regs->regs[51], regs->regs[52], regs->tp);
|
|
pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
|
|
#else
|
|
for (i = 0; i < 52; i += 4)
|
|
pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
|
|
" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
|
|
i, regs->regs[i], i+1, regs->regs[i+1],
|
|
i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
|
|
pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
|
|
regs->regs[52], regs->tp, regs->sp, regs->lr);
|
|
#endif
|
|
pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n",
|
|
regs->pc, regs->ex1, regs->faultnum);
|
|
|
|
dump_stack_regs(regs);
|
|
}
|