Michael Ellerman f9effe9250 powerpc: Fix DAR reporting when alignment handler faults
Anton noticed that if we fault part way through emulating an unaligned
instruction, we don't update the DAR to reflect that.

The DAR value is eventually reported back to userspace as the address
in the SEGV signal, and if userspace is using that value to demand
fault then it can be confused by us not setting the value correctly.

This patch is ugly as hell, but is intended to be the minimal fix and
back ports easily.

Cc: stable@vger.kernel.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Paul Mackerras <paulus@ozlabs.org>
2017-08-31 22:06:57 +10:00

1098 lines
27 KiB
C

/* align.c - handle alignment exceptions for the Power PC.
*
* Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
* Copyright (c) 1998-1999 TiVo, Inc.
* PowerPC 403GCX modifications.
* Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
* PowerPC 403GCX/405GP modifications.
* Copyright (c) 2001-2002 PPC64 team, IBM Corp
* 64-bit and Power4 support
* Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
* <benh@kernel.crashing.org>
* Merge ppc32 and ppc64 implementations
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <asm/processor.h>
#include <linux/uaccess.h>
#include <asm/cache.h>
#include <asm/cputable.h>
#include <asm/emulated_ops.h>
#include <asm/switch_to.h>
#include <asm/disassemble.h>
#include <asm/cpu_has_feature.h>
struct aligninfo {
unsigned char len;
unsigned char flags;
};
#define INVALID { 0, 0 }
/* Bits in the flags field */
#define LD 0 /* load */
#define ST 1 /* store */
#define SE 2 /* sign-extend value, or FP ld/st as word */
#define F 4 /* to/from fp regs */
#define U 8 /* update index register */
#define M 0x10 /* multiple load/store */
#define SW 0x20 /* byte swap */
#define S 0x40 /* single-precision fp or... */
#define SX 0x40 /* ... byte count in XER */
#define HARD 0x80 /* string, stwcx. */
#define E4 0x40 /* SPE endianness is word */
#define E8 0x80 /* SPE endianness is double word */
#define SPLT 0x80 /* VSX SPLAT load */
/* DSISR bits reported for a DCBZ instruction: */
#define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
/*
* The PowerPC stores certain bits of the instruction that caused the
* alignment exception in the DSISR register. This array maps those
* bits to information about the operand length and what the
* instruction would do.
*/
static struct aligninfo aligninfo[128] = {
{ 4, LD }, /* 00 0 0000: lwz / lwarx */
INVALID, /* 00 0 0001 */
{ 4, ST }, /* 00 0 0010: stw */
INVALID, /* 00 0 0011 */
{ 2, LD }, /* 00 0 0100: lhz */
{ 2, LD+SE }, /* 00 0 0101: lha */
{ 2, ST }, /* 00 0 0110: sth */
{ 4, LD+M }, /* 00 0 0111: lmw */
{ 4, LD+F+S }, /* 00 0 1000: lfs */
{ 8, LD+F }, /* 00 0 1001: lfd */
{ 4, ST+F+S }, /* 00 0 1010: stfs */
{ 8, ST+F }, /* 00 0 1011: stfd */
{ 16, LD }, /* 00 0 1100: lq */
{ 8, LD }, /* 00 0 1101: ld/ldu/lwa */
INVALID, /* 00 0 1110 */
{ 8, ST }, /* 00 0 1111: std/stdu */
{ 4, LD+U }, /* 00 1 0000: lwzu */
INVALID, /* 00 1 0001 */
{ 4, ST+U }, /* 00 1 0010: stwu */
INVALID, /* 00 1 0011 */
{ 2, LD+U }, /* 00 1 0100: lhzu */
{ 2, LD+SE+U }, /* 00 1 0101: lhau */
{ 2, ST+U }, /* 00 1 0110: sthu */
{ 4, ST+M }, /* 00 1 0111: stmw */
{ 4, LD+F+S+U }, /* 00 1 1000: lfsu */
{ 8, LD+F+U }, /* 00 1 1001: lfdu */
{ 4, ST+F+S+U }, /* 00 1 1010: stfsu */
{ 8, ST+F+U }, /* 00 1 1011: stfdu */
{ 16, LD+F }, /* 00 1 1100: lfdp */
INVALID, /* 00 1 1101 */
{ 16, ST+F }, /* 00 1 1110: stfdp */
INVALID, /* 00 1 1111 */
{ 8, LD }, /* 01 0 0000: ldx */
INVALID, /* 01 0 0001 */
{ 8, ST }, /* 01 0 0010: stdx */
INVALID, /* 01 0 0011 */
INVALID, /* 01 0 0100 */
{ 4, LD+SE }, /* 01 0 0101: lwax */
INVALID, /* 01 0 0110 */
INVALID, /* 01 0 0111 */
{ 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */
{ 4, LD+M+HARD }, /* 01 0 1001: lswi */
{ 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */
{ 4, ST+M+HARD }, /* 01 0 1011: stswi */
INVALID, /* 01 0 1100 */
{ 8, LD+U }, /* 01 0 1101: ldu */
INVALID, /* 01 0 1110 */
{ 8, ST+U }, /* 01 0 1111: stdu */
{ 8, LD+U }, /* 01 1 0000: ldux */
INVALID, /* 01 1 0001 */
{ 8, ST+U }, /* 01 1 0010: stdux */
INVALID, /* 01 1 0011 */
INVALID, /* 01 1 0100 */
{ 4, LD+SE+U }, /* 01 1 0101: lwaux */
INVALID, /* 01 1 0110 */
INVALID, /* 01 1 0111 */
INVALID, /* 01 1 1000 */
INVALID, /* 01 1 1001 */
INVALID, /* 01 1 1010 */
INVALID, /* 01 1 1011 */
INVALID, /* 01 1 1100 */
INVALID, /* 01 1 1101 */
INVALID, /* 01 1 1110 */
INVALID, /* 01 1 1111 */
INVALID, /* 10 0 0000 */
INVALID, /* 10 0 0001 */
INVALID, /* 10 0 0010: stwcx. */
INVALID, /* 10 0 0011 */
INVALID, /* 10 0 0100 */
INVALID, /* 10 0 0101 */
INVALID, /* 10 0 0110 */
INVALID, /* 10 0 0111 */
{ 4, LD+SW }, /* 10 0 1000: lwbrx */
INVALID, /* 10 0 1001 */
{ 4, ST+SW }, /* 10 0 1010: stwbrx */
INVALID, /* 10 0 1011 */
{ 2, LD+SW }, /* 10 0 1100: lhbrx */
{ 4, LD+SE }, /* 10 0 1101 lwa */
{ 2, ST+SW }, /* 10 0 1110: sthbrx */
{ 16, ST }, /* 10 0 1111: stq */
INVALID, /* 10 1 0000 */
INVALID, /* 10 1 0001 */
INVALID, /* 10 1 0010 */
INVALID, /* 10 1 0011 */
INVALID, /* 10 1 0100 */
INVALID, /* 10 1 0101 */
INVALID, /* 10 1 0110 */
INVALID, /* 10 1 0111 */
INVALID, /* 10 1 1000 */
INVALID, /* 10 1 1001 */
INVALID, /* 10 1 1010 */
INVALID, /* 10 1 1011 */
INVALID, /* 10 1 1100 */
INVALID, /* 10 1 1101 */
INVALID, /* 10 1 1110 */
{ 0, ST+HARD }, /* 10 1 1111: dcbz */
{ 4, LD }, /* 11 0 0000: lwzx */
INVALID, /* 11 0 0001 */
{ 4, ST }, /* 11 0 0010: stwx */
INVALID, /* 11 0 0011 */
{ 2, LD }, /* 11 0 0100: lhzx */
{ 2, LD+SE }, /* 11 0 0101: lhax */
{ 2, ST }, /* 11 0 0110: sthx */
INVALID, /* 11 0 0111 */
{ 4, LD+F+S }, /* 11 0 1000: lfsx */
{ 8, LD+F }, /* 11 0 1001: lfdx */
{ 4, ST+F+S }, /* 11 0 1010: stfsx */
{ 8, ST+F }, /* 11 0 1011: stfdx */
{ 16, LD+F }, /* 11 0 1100: lfdpx */
{ 4, LD+F+SE }, /* 11 0 1101: lfiwax */
{ 16, ST+F }, /* 11 0 1110: stfdpx */
{ 4, ST+F }, /* 11 0 1111: stfiwx */
{ 4, LD+U }, /* 11 1 0000: lwzux */
INVALID, /* 11 1 0001 */
{ 4, ST+U }, /* 11 1 0010: stwux */
INVALID, /* 11 1 0011 */
{ 2, LD+U }, /* 11 1 0100: lhzux */
{ 2, LD+SE+U }, /* 11 1 0101: lhaux */
{ 2, ST+U }, /* 11 1 0110: sthux */
INVALID, /* 11 1 0111 */
{ 4, LD+F+S+U }, /* 11 1 1000: lfsux */
{ 8, LD+F+U }, /* 11 1 1001: lfdux */
{ 4, ST+F+S+U }, /* 11 1 1010: stfsux */
{ 8, ST+F+U }, /* 11 1 1011: stfdux */
INVALID, /* 11 1 1100 */
{ 4, LD+F }, /* 11 1 1101: lfiwzx */
INVALID, /* 11 1 1110 */
INVALID, /* 11 1 1111 */
};
/*
* The dcbz (data cache block zero) instruction
* gives an alignment fault if used on non-cacheable
* memory. We handle the fault mainly for the
* case when we are running with the cache disabled
* for debugging.
*/
static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
{
long __user *p;
int i, size;
#ifdef __powerpc64__
size = ppc64_caches.l1d.block_size;
#else
size = L1_CACHE_BYTES;
#endif
p = (long __user *) (regs->dar & -size);
if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
return -EFAULT;
for (i = 0; i < size / sizeof(long); ++i)
if (__put_user_inatomic(0, p+i))
return -EFAULT;
return 1;
}
/*
* Emulate load & store multiple instructions
* On 64-bit machines, these instructions only affect/use the
* bottom 4 bytes of each register, and the loads clear the
* top 4 bytes of the affected register.
*/
#ifdef __BIG_ENDIAN__
#ifdef CONFIG_PPC64
#define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
#else
#define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
#endif
#else
#define REG_BYTE(rp, i) (*(((u8 *)((rp) + ((i)>>2)) + ((i)&3))))
#endif
#define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
#define __get_user_or_set_dar(_regs, _dest, _addr) \
({ \
int rc = 0; \
typeof(_addr) __addr = (_addr); \
if (__get_user_inatomic(_dest, __addr)) { \
_regs->dar = (unsigned long)__addr; \
rc = -EFAULT; \
} \
rc; \
})
#define __put_user_or_set_dar(_regs, _src, _addr) \
({ \
int rc = 0; \
typeof(_addr) __addr = (_addr); \
if (__put_user_inatomic(_src, __addr)) { \
_regs->dar = (unsigned long)__addr; \
rc = -EFAULT; \
} \
rc; \
})
static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
unsigned int reg, unsigned int nb,
unsigned int flags, unsigned int instr,
unsigned long swiz)
{
unsigned long *rptr;
unsigned int nb0, i, bswiz;
unsigned long p;
/*
* We do not try to emulate 8 bytes multiple as they aren't really
* available in our operating environments and we don't try to
* emulate multiples operations in kernel land as they should never
* be used/generated there at least not on unaligned boundaries
*/
if (unlikely((nb > 4) || !user_mode(regs)))
return 0;
/* lmw, stmw, lswi/x, stswi/x */
nb0 = 0;
if (flags & HARD) {
if (flags & SX) {
nb = regs->xer & 127;
if (nb == 0)
return 1;
} else {
unsigned long pc = regs->nip ^ (swiz & 4);
if (__get_user_or_set_dar(regs, instr,
(unsigned int __user *)pc))
return -EFAULT;
if (swiz == 0 && (flags & SW))
instr = cpu_to_le32(instr);
nb = (instr >> 11) & 0x1f;
if (nb == 0)
nb = 32;
}
if (nb + reg * 4 > 128) {
nb0 = nb + reg * 4 - 128;
nb = 128 - reg * 4;
}
#ifdef __LITTLE_ENDIAN__
/*
* String instructions are endian neutral but the code
* below is not. Force byte swapping on so that the
* effects of swizzling are undone in the load/store
* loops below.
*/
flags ^= SW;
#endif
} else {
/* lwm, stmw */
nb = (32 - reg) * 4;
}
if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
return -EFAULT; /* bad address */
rptr = &regs->gpr[reg];
p = (unsigned long) addr;
bswiz = (flags & SW)? 3: 0;
if (!(flags & ST)) {
/*
* This zeroes the top 4 bytes of the affected registers
* in 64-bit mode, and also zeroes out any remaining
* bytes of the last register for lsw*.
*/
memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
if (nb0 > 0)
memset(&regs->gpr[0], 0,
((nb0 + 3) / 4) * sizeof(unsigned long));
for (i = 0; i < nb; ++i, ++p)
if (__get_user_or_set_dar(regs, REG_BYTE(rptr, i ^ bswiz),
SWIZ_PTR(p)))
return -EFAULT;
if (nb0 > 0) {
rptr = &regs->gpr[0];
addr += nb;
for (i = 0; i < nb0; ++i, ++p)
if (__get_user_or_set_dar(regs,
REG_BYTE(rptr, i ^ bswiz),
SWIZ_PTR(p)))
return -EFAULT;
}
} else {
for (i = 0; i < nb; ++i, ++p)
if (__put_user_or_set_dar(regs, REG_BYTE(rptr, i ^ bswiz),
SWIZ_PTR(p)))
return -EFAULT;
if (nb0 > 0) {
rptr = &regs->gpr[0];
addr += nb;
for (i = 0; i < nb0; ++i, ++p)
if (__put_user_or_set_dar(regs,
REG_BYTE(rptr, i ^ bswiz),
SWIZ_PTR(p)))
return -EFAULT;
}
}
return 1;
}
/*
* Emulate floating-point pair loads and stores.
* Only POWER6 has these instructions, and it does true little-endian,
* so we don't need the address swizzling.
*/
static int emulate_fp_pair(struct pt_regs *regs, unsigned char __user *addr,
unsigned int reg, unsigned int flags)
{
char *ptr0 = (char *) &current->thread.TS_FPR(reg);
char *ptr1 = (char *) &current->thread.TS_FPR(reg+1);
int i, sw = 0;
if (reg & 1)
return 0; /* invalid form: FRS/FRT must be even */
if (flags & SW)
sw = 7;
for (i = 0; i < 8; ++i) {
if (!(flags & ST)) {
if (__get_user_or_set_dar(regs, ptr0[i^sw], addr + i))
return -EFAULT;
if (__get_user_or_set_dar(regs, ptr1[i^sw], addr + i + 8))
return -EFAULT;
} else {
if (__put_user_or_set_dar(regs, ptr0[i^sw], addr + i))
return -EFAULT;
if (__put_user_or_set_dar(regs, ptr1[i^sw], addr + i + 8))
return -EFAULT;
}
}
return 1; /* exception handled and fixed up */
}
#ifdef CONFIG_PPC64
static int emulate_lq_stq(struct pt_regs *regs, unsigned char __user *addr,
unsigned int reg, unsigned int flags)
{
char *ptr0 = (char *)&regs->gpr[reg];
char *ptr1 = (char *)&regs->gpr[reg+1];
int i, sw = 0;
if (reg & 1)
return 0; /* invalid form: GPR must be even */
if (flags & SW)
sw = 7;
for (i = 0; i < 8; ++i) {
if (!(flags & ST)) {
if (__get_user_or_set_dar(regs, ptr0[i^sw], addr + i))
return -EFAULT;
if (__get_user_or_set_dar(regs, ptr1[i^sw], addr + i + 8))
return -EFAULT;
} else {
if (__put_user_or_set_dar(regs, ptr0[i^sw], addr + i))
return -EFAULT;
if (__put_user_or_set_dar(regs, ptr1[i^sw], addr + i + 8))
return -EFAULT;
}
}
return 1; /* exception handled and fixed up */
}
#endif /* CONFIG_PPC64 */
#ifdef CONFIG_SPE
static struct aligninfo spe_aligninfo[32] = {
{ 8, LD+E8 }, /* 0 00 00: evldd[x] */
{ 8, LD+E4 }, /* 0 00 01: evldw[x] */
{ 8, LD }, /* 0 00 10: evldh[x] */
INVALID, /* 0 00 11 */
{ 2, LD }, /* 0 01 00: evlhhesplat[x] */
INVALID, /* 0 01 01 */
{ 2, LD }, /* 0 01 10: evlhhousplat[x] */
{ 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
{ 4, LD }, /* 0 10 00: evlwhe[x] */
INVALID, /* 0 10 01 */
{ 4, LD }, /* 0 10 10: evlwhou[x] */
{ 4, LD+SE }, /* 0 10 11: evlwhos[x] */
{ 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
INVALID, /* 0 11 01 */
{ 4, LD }, /* 0 11 10: evlwhsplat[x] */
INVALID, /* 0 11 11 */
{ 8, ST+E8 }, /* 1 00 00: evstdd[x] */
{ 8, ST+E4 }, /* 1 00 01: evstdw[x] */
{ 8, ST }, /* 1 00 10: evstdh[x] */
INVALID, /* 1 00 11 */
INVALID, /* 1 01 00 */
INVALID, /* 1 01 01 */
INVALID, /* 1 01 10 */
INVALID, /* 1 01 11 */
{ 4, ST }, /* 1 10 00: evstwhe[x] */
INVALID, /* 1 10 01 */
{ 4, ST }, /* 1 10 10: evstwho[x] */
INVALID, /* 1 10 11 */
{ 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
INVALID, /* 1 11 01 */
{ 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
INVALID, /* 1 11 11 */
};
#define EVLDD 0x00
#define EVLDW 0x01
#define EVLDH 0x02
#define EVLHHESPLAT 0x04
#define EVLHHOUSPLAT 0x06
#define EVLHHOSSPLAT 0x07
#define EVLWHE 0x08
#define EVLWHOU 0x0A
#define EVLWHOS 0x0B
#define EVLWWSPLAT 0x0C
#define EVLWHSPLAT 0x0E
#define EVSTDD 0x10
#define EVSTDW 0x11
#define EVSTDH 0x12
#define EVSTWHE 0x18
#define EVSTWHO 0x1A
#define EVSTWWE 0x1C
#define EVSTWWO 0x1E
/*
* Emulate SPE loads and stores.
* Only Book-E has these instructions, and it does true little-endian,
* so we don't need the address swizzling.
*/
static int emulate_spe(struct pt_regs *regs, unsigned int reg,
unsigned int instr)
{
int ret;
union {
u64 ll;
u32 w[2];
u16 h[4];
u8 v[8];
} data, temp;
unsigned char __user *p, *addr;
unsigned long *evr = &current->thread.evr[reg];
unsigned int nb, flags;
instr = (instr >> 1) & 0x1f;
/* DAR has the operand effective address */
addr = (unsigned char __user *)regs->dar;
nb = spe_aligninfo[instr].len;
flags = spe_aligninfo[instr].flags;
/* Verify the address of the operand */
if (unlikely(user_mode(regs) &&
!access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
addr, nb)))
return -EFAULT;
/* userland only */
if (unlikely(!user_mode(regs)))
return 0;
flush_spe_to_thread(current);
/* If we are loading, get the data from user space, else
* get it from register values
*/
if (flags & ST) {
data.ll = 0;
switch (instr) {
case EVSTDD:
case EVSTDW:
case EVSTDH:
data.w[0] = *evr;
data.w[1] = regs->gpr[reg];
break;
case EVSTWHE:
data.h[2] = *evr >> 16;
data.h[3] = regs->gpr[reg] >> 16;
break;
case EVSTWHO:
data.h[2] = *evr & 0xffff;
data.h[3] = regs->gpr[reg] & 0xffff;
break;
case EVSTWWE:
data.w[1] = *evr;
break;
case EVSTWWO:
data.w[1] = regs->gpr[reg];
break;
default:
return -EINVAL;
}
} else {
temp.ll = data.ll = 0;
ret = 0;
p = addr;
switch (nb) {
case 8:
ret |= __get_user_inatomic(temp.v[0], p++);
ret |= __get_user_inatomic(temp.v[1], p++);
ret |= __get_user_inatomic(temp.v[2], p++);
ret |= __get_user_inatomic(temp.v[3], p++);
case 4:
ret |= __get_user_inatomic(temp.v[4], p++);
ret |= __get_user_inatomic(temp.v[5], p++);
case 2:
ret |= __get_user_inatomic(temp.v[6], p++);
ret |= __get_user_inatomic(temp.v[7], p++);
if (unlikely(ret))
return -EFAULT;
}
switch (instr) {
case EVLDD:
case EVLDW:
case EVLDH:
data.ll = temp.ll;
break;
case EVLHHESPLAT:
data.h[0] = temp.h[3];
data.h[2] = temp.h[3];
break;
case EVLHHOUSPLAT:
case EVLHHOSSPLAT:
data.h[1] = temp.h[3];
data.h[3] = temp.h[3];
break;
case EVLWHE:
data.h[0] = temp.h[2];
data.h[2] = temp.h[3];
break;
case EVLWHOU:
case EVLWHOS:
data.h[1] = temp.h[2];
data.h[3] = temp.h[3];
break;
case EVLWWSPLAT:
data.w[0] = temp.w[1];
data.w[1] = temp.w[1];
break;
case EVLWHSPLAT:
data.h[0] = temp.h[2];
data.h[1] = temp.h[2];
data.h[2] = temp.h[3];
data.h[3] = temp.h[3];
break;
default:
return -EINVAL;
}
}
if (flags & SW) {
switch (flags & 0xf0) {
case E8:
data.ll = swab64(data.ll);
break;
case E4:
data.w[0] = swab32(data.w[0]);
data.w[1] = swab32(data.w[1]);
break;
/* Its half word endian */
default:
data.h[0] = swab16(data.h[0]);
data.h[1] = swab16(data.h[1]);
data.h[2] = swab16(data.h[2]);
data.h[3] = swab16(data.h[3]);
break;
}
}
if (flags & SE) {
data.w[0] = (s16)data.h[1];
data.w[1] = (s16)data.h[3];
}
/* Store result to memory or update registers */
if (flags & ST) {
ret = 0;
p = addr;
switch (nb) {
case 8:
ret |= __put_user_inatomic(data.v[0], p++);
ret |= __put_user_inatomic(data.v[1], p++);
ret |= __put_user_inatomic(data.v[2], p++);
ret |= __put_user_inatomic(data.v[3], p++);
case 4:
ret |= __put_user_inatomic(data.v[4], p++);
ret |= __put_user_inatomic(data.v[5], p++);
case 2:
ret |= __put_user_inatomic(data.v[6], p++);
ret |= __put_user_inatomic(data.v[7], p++);
}
if (unlikely(ret))
return -EFAULT;
} else {
*evr = data.w[0];
regs->gpr[reg] = data.w[1];
}
return 1;
}
#endif /* CONFIG_SPE */
#ifdef CONFIG_VSX
/*
* Emulate VSX instructions...
*/
static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
unsigned int areg, struct pt_regs *regs,
unsigned int flags, unsigned int length,
unsigned int elsize)
{
char *ptr;
unsigned long *lptr;
int ret = 0;
int sw = 0;
int i, j;
/* userland only */
if (unlikely(!user_mode(regs)))
return 0;
flush_vsx_to_thread(current);
if (reg < 32)
ptr = (char *) &current->thread.fp_state.fpr[reg][0];
else
ptr = (char *) &current->thread.vr_state.vr[reg - 32];
lptr = (unsigned long *) ptr;
#ifdef __LITTLE_ENDIAN__
if (flags & SW) {
elsize = length;
sw = length-1;
} else {
/*
* The elements are BE ordered, even in LE mode, so process
* them in reverse order.
*/
addr += length - elsize;
/* 8 byte memory accesses go in the top 8 bytes of the VR */
if (length == 8)
ptr += 8;
}
#else
if (flags & SW)
sw = elsize-1;
#endif
for (j = 0; j < length; j += elsize) {
for (i = 0; i < elsize; ++i) {
if (flags & ST)
ret = __put_user_or_set_dar(regs, ptr[i^sw],
addr + i);
else
ret = __get_user_or_set_dar(regs, ptr[i^sw],
addr + i);
if (ret)
return ret;
}
ptr += elsize;
#ifdef __LITTLE_ENDIAN__
addr -= elsize;
#else
addr += elsize;
#endif
}
#ifdef __BIG_ENDIAN__
#define VSX_HI 0
#define VSX_LO 1
#else
#define VSX_HI 1
#define VSX_LO 0
#endif
if (!ret) {
if (flags & U)
regs->gpr[areg] = regs->dar;
/* Splat load copies the same data to top and bottom 8 bytes */
if (flags & SPLT)
lptr[VSX_LO] = lptr[VSX_HI];
/* For 8 byte loads, zero the low 8 bytes */
else if (!(flags & ST) && (8 == length))
lptr[VSX_LO] = 0;
} else
return -EFAULT;
return 1;
}
#endif
/*
* Called on alignment exception. Attempts to fixup
*
* Return 1 on success
* Return 0 if unable to handle the interrupt
* Return -EFAULT if data address is bad
*/
int fix_alignment(struct pt_regs *regs)
{
unsigned int instr, nb, flags, instruction = 0;
unsigned int reg, areg;
unsigned int dsisr;
unsigned char __user *addr;
unsigned long p, swiz;
int i;
union data {
u64 ll;
double dd;
unsigned char v[8];
struct {
#ifdef __LITTLE_ENDIAN__
int low32;
unsigned hi32;
#else
unsigned hi32;
int low32;
#endif
} x32;
struct {
#ifdef __LITTLE_ENDIAN__
short low16;
unsigned char hi48[6];
#else
unsigned char hi48[6];
short low16;
#endif
} x16;
} data;
/*
* We require a complete register set, if not, then our assembly
* is broken
*/
CHECK_FULL_REGS(regs);
dsisr = regs->dsisr;
/* Some processors don't provide us with a DSISR we can use here,
* let's make one up from the instruction
*/
if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
unsigned long pc = regs->nip;
if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
pc ^= 4;
if (unlikely(__get_user_inatomic(instr,
(unsigned int __user *)pc)))
return -EFAULT;
if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
instr = cpu_to_le32(instr);
dsisr = make_dsisr(instr);
instruction = instr;
}
/* extract the operation and registers from the dsisr */
reg = (dsisr >> 5) & 0x1f; /* source/dest register */
areg = dsisr & 0x1f; /* register to update */
#ifdef CONFIG_SPE
if ((instr >> 26) == 0x4) {
PPC_WARN_ALIGNMENT(spe, regs);
return emulate_spe(regs, reg, instr);
}
#endif
instr = (dsisr >> 10) & 0x7f;
instr |= (dsisr >> 13) & 0x60;
/* Lookup the operation in our table */
nb = aligninfo[instr].len;
flags = aligninfo[instr].flags;
/*
* Handle some cases which give overlaps in the DSISR values.
*/
if (IS_XFORM(instruction)) {
switch (get_xop(instruction)) {
case 532: /* ldbrx */
nb = 8;
flags = LD+SW;
break;
case 660: /* stdbrx */
nb = 8;
flags = ST+SW;
break;
case 20: /* lwarx */
case 84: /* ldarx */
case 116: /* lharx */
case 276: /* lqarx */
return 0; /* not emulated ever */
}
}
/* Byteswap little endian loads and stores */
swiz = 0;
if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
flags ^= SW;
#ifdef __BIG_ENDIAN__
/*
* So-called "PowerPC little endian" mode works by
* swizzling addresses rather than by actually doing
* any byte-swapping. To emulate this, we XOR each
* byte address with 7. We also byte-swap, because
* the processor's address swizzling depends on the
* operand size (it xors the address with 7 for bytes,
* 6 for halfwords, 4 for words, 0 for doublewords) but
* we will xor with 7 and load/store each byte separately.
*/
if (cpu_has_feature(CPU_FTR_PPC_LE))
swiz = 7;
#endif
}
/* DAR has the operand effective address */
addr = (unsigned char __user *)regs->dar;
#ifdef CONFIG_VSX
if ((instruction & 0xfc00003e) == 0x7c000018) {
unsigned int elsize;
/* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
reg |= (instruction & 0x1) << 5;
/* Simple inline decoder instead of a table */
/* VSX has only 8 and 16 byte memory accesses */
nb = 8;
if (instruction & 0x200)
nb = 16;
/* Vector stores in little-endian mode swap individual
elements, so process them separately */
elsize = 4;
if (instruction & 0x80)
elsize = 8;
flags = 0;
if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE))
flags |= SW;
if (instruction & 0x100)
flags |= ST;
if (instruction & 0x040)
flags |= U;
/* splat load needs a special decoder */
if ((instruction & 0x400) == 0){
flags |= SPLT;
nb = 8;
}
PPC_WARN_ALIGNMENT(vsx, regs);
return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
}
#endif
/*
* ISA 3.0 (such as P9) copy, copy_first, paste and paste_last alignment
* check.
*
* Send a SIGBUS to the process that caused the fault.
*
* We do not emulate these because paste may contain additional metadata
* when pasting to a co-processor. Furthermore, paste_last is the
* synchronisation point for preceding copy/paste sequences.
*/
if ((instruction & 0xfc0006fe) == PPC_INST_COPY)
return -EIO;
/* A size of 0 indicates an instruction we don't support, with
* the exception of DCBZ which is handled as a special case here
*/
if (instr == DCBZ) {
PPC_WARN_ALIGNMENT(dcbz, regs);
return emulate_dcbz(regs, addr);
}
if (unlikely(nb == 0))
return 0;
/* Load/Store Multiple instructions are handled in their own
* function
*/
if (flags & M) {
PPC_WARN_ALIGNMENT(multiple, regs);
return emulate_multiple(regs, addr, reg, nb,
flags, instr, swiz);
}
/* Verify the address of the operand */
if (unlikely(user_mode(regs) &&
!access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
addr, nb)))
return -EFAULT;
/* Force the fprs into the save area so we can reference them */
if (flags & F) {
/* userland only */
if (unlikely(!user_mode(regs)))
return 0;
flush_fp_to_thread(current);
}
if (nb == 16) {
if (flags & F) {
/* Special case for 16-byte FP loads and stores */
PPC_WARN_ALIGNMENT(fp_pair, regs);
return emulate_fp_pair(regs, addr, reg, flags);
} else {
#ifdef CONFIG_PPC64
/* Special case for 16-byte loads and stores */
PPC_WARN_ALIGNMENT(lq_stq, regs);
return emulate_lq_stq(regs, addr, reg, flags);
#else
return 0;
#endif
}
}
PPC_WARN_ALIGNMENT(unaligned, regs);
/* If we are loading, get the data from user space, else
* get it from register values
*/
if (!(flags & ST)) {
unsigned int start = 0;
switch (nb) {
case 4:
start = offsetof(union data, x32.low32);
break;
case 2:
start = offsetof(union data, x16.low16);
break;
}
data.ll = 0;
p = (unsigned long)addr;
for (i = 0; i < nb; i++)
if (__get_user_or_set_dar(regs, data.v[start + i],
SWIZ_PTR(p++)))
return -EFAULT;
} else if (flags & F) {
data.ll = current->thread.TS_FPR(reg);
if (flags & S) {
/* Single-precision FP store requires conversion... */
#ifdef CONFIG_PPC_FPU
preempt_disable();
enable_kernel_fp();
cvt_df(&data.dd, (float *)&data.x32.low32);
disable_kernel_fp();
preempt_enable();
#else
return 0;
#endif
}
} else
data.ll = regs->gpr[reg];
if (flags & SW) {
switch (nb) {
case 8:
data.ll = swab64(data.ll);
break;
case 4:
data.x32.low32 = swab32(data.x32.low32);
break;
case 2:
data.x16.low16 = swab16(data.x16.low16);
break;
}
}
/* Perform other misc operations like sign extension
* or floating point single precision conversion
*/
switch (flags & ~(U|SW)) {
case LD+SE: /* sign extending integer loads */
case LD+F+SE: /* sign extend for lfiwax */
if ( nb == 2 )
data.ll = data.x16.low16;
else /* nb must be 4 */
data.ll = data.x32.low32;
break;
/* Single-precision FP load requires conversion... */
case LD+F+S:
#ifdef CONFIG_PPC_FPU
preempt_disable();
enable_kernel_fp();
cvt_fd((float *)&data.x32.low32, &data.dd);
disable_kernel_fp();
preempt_enable();
#else
return 0;
#endif
break;
}
/* Store result to memory or update registers */
if (flags & ST) {
unsigned int start = 0;
switch (nb) {
case 4:
start = offsetof(union data, x32.low32);
break;
case 2:
start = offsetof(union data, x16.low16);
break;
}
p = (unsigned long)addr;
for (i = 0; i < nb; i++)
if (__put_user_or_set_dar(regs, data.v[start + i],
SWIZ_PTR(p++)))
return -EFAULT;
} else if (flags & F)
current->thread.TS_FPR(reg) = data.ll;
else
regs->gpr[reg] = data.ll;
/* Update RA as needed */
if (flags & U)
regs->gpr[areg] = regs->dar;
return 1;
}