linux-next/drivers/media/video/cx18/cx18-av-core.c
Andy Walls 9ad4c6551b V4L/DVB (11898): cx18: Perform 64 bit divide so it works for 32 bit systems
Thanks to David Ward and Mike Krufky for reporting the problem and
debugging this as an unresolved symbol due to a 64 bit divide on a 32 bit
system.  David Ward provided the content of this patch; Andy Walls only
performed some cosmetic edits.

Reported-by: David Ward <david.ward@gatech.edu>
Signed-off-by: David Ward <david.ward@gatech.edu>
Signed-off-by: Andy Walls <awalls@radix.net>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2009-06-16 18:21:16 -03:00

1422 lines
40 KiB
C

/*
* cx18 ADEC audio functions
*
* Derived from cx25840-core.c
*
* Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl>
* Copyright (C) 2008 Andy Walls <awalls@radix.net>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
#include <media/v4l2-chip-ident.h>
#include "cx18-driver.h"
#include "cx18-io.h"
#include "cx18-cards.h"
int cx18_av_write(struct cx18 *cx, u16 addr, u8 value)
{
u32 reg = 0xc40000 + (addr & ~3);
u32 mask = 0xff;
int shift = (addr & 3) * 8;
u32 x = cx18_read_reg(cx, reg);
x = (x & ~(mask << shift)) | ((u32)value << shift);
cx18_write_reg(cx, x, reg);
return 0;
}
int cx18_av_write_expect(struct cx18 *cx, u16 addr, u8 value, u8 eval, u8 mask)
{
u32 reg = 0xc40000 + (addr & ~3);
int shift = (addr & 3) * 8;
u32 x = cx18_read_reg(cx, reg);
x = (x & ~((u32)0xff << shift)) | ((u32)value << shift);
cx18_write_reg_expect(cx, x, reg,
((u32)eval << shift), ((u32)mask << shift));
return 0;
}
int cx18_av_write4(struct cx18 *cx, u16 addr, u32 value)
{
cx18_write_reg(cx, value, 0xc40000 + addr);
return 0;
}
int
cx18_av_write4_expect(struct cx18 *cx, u16 addr, u32 value, u32 eval, u32 mask)
{
cx18_write_reg_expect(cx, value, 0xc40000 + addr, eval, mask);
return 0;
}
int cx18_av_write4_noretry(struct cx18 *cx, u16 addr, u32 value)
{
cx18_write_reg_noretry(cx, value, 0xc40000 + addr);
return 0;
}
u8 cx18_av_read(struct cx18 *cx, u16 addr)
{
u32 x = cx18_read_reg(cx, 0xc40000 + (addr & ~3));
int shift = (addr & 3) * 8;
return (x >> shift) & 0xff;
}
u32 cx18_av_read4(struct cx18 *cx, u16 addr)
{
return cx18_read_reg(cx, 0xc40000 + addr);
}
int cx18_av_and_or(struct cx18 *cx, u16 addr, unsigned and_mask,
u8 or_value)
{
return cx18_av_write(cx, addr,
(cx18_av_read(cx, addr) & and_mask) |
or_value);
}
int cx18_av_and_or4(struct cx18 *cx, u16 addr, u32 and_mask,
u32 or_value)
{
return cx18_av_write4(cx, addr,
(cx18_av_read4(cx, addr) & and_mask) |
or_value);
}
static int cx18_av_init(struct v4l2_subdev *sd, u32 val)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
/*
* The crystal freq used in calculations in this driver will be
* 28.636360 MHz.
* Aim to run the PLLs' VCOs near 400 MHz to minimze errors.
*/
/*
* VDCLK Integer = 0x0f, Post Divider = 0x04
* AIMCLK Integer = 0x0e, Post Divider = 0x16
*/
cx18_av_write4(cx, CXADEC_PLL_CTRL1, 0x160e040f);
/* VDCLK Fraction = 0x2be2fe */
/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz before post divide */
cx18_av_write4(cx, CXADEC_VID_PLL_FRAC, 0x002be2fe);
/* AIMCLK Fraction = 0x05227ad */
/* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz pre post-div*/
cx18_av_write4(cx, CXADEC_AUX_PLL_FRAC, 0x005227ad);
/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
cx18_av_write(cx, CXADEC_I2S_MCLK, 0x56);
return 0;
}
static void cx18_av_initialize(struct v4l2_subdev *sd)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
u32 v;
cx18_av_loadfw(cx);
/* Stop 8051 code execution */
cx18_av_write4_expect(cx, CXADEC_DL_CTL, 0x03000000,
0x03000000, 0x13000000);
/* initallize the PLL by toggling sleep bit */
v = cx18_av_read4(cx, CXADEC_HOST_REG1);
/* enable sleep mode - register appears to be read only... */
cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v | 1, v, 0xfffe);
/* disable sleep mode */
cx18_av_write4_expect(cx, CXADEC_HOST_REG1, v & 0xfffe,
v & 0xfffe, 0xffff);
/* initialize DLLs */
v = cx18_av_read4(cx, CXADEC_DLL1_DIAG_CTRL) & 0xE1FFFEFF;
/* disable FLD */
cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v);
/* enable FLD */
cx18_av_write4(cx, CXADEC_DLL1_DIAG_CTRL, v | 0x10000100);
v = cx18_av_read4(cx, CXADEC_DLL2_DIAG_CTRL) & 0xE1FFFEFF;
/* disable FLD */
cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v);
/* enable FLD */
cx18_av_write4(cx, CXADEC_DLL2_DIAG_CTRL, v | 0x06000100);
/* set analog bias currents. Set Vreg to 1.20V. */
cx18_av_write4(cx, CXADEC_AFE_DIAG_CTRL1, 0x000A1802);
v = cx18_av_read4(cx, CXADEC_AFE_DIAG_CTRL3) | 1;
/* enable TUNE_FIL_RST */
cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3, v, v, 0x03009F0F);
/* disable TUNE_FIL_RST */
cx18_av_write4_expect(cx, CXADEC_AFE_DIAG_CTRL3,
v & 0xFFFFFFFE, v & 0xFFFFFFFE, 0x03009F0F);
/* enable 656 output */
cx18_av_and_or4(cx, CXADEC_PIN_CTRL1, ~0, 0x040C00);
/* video output drive strength */
cx18_av_and_or4(cx, CXADEC_PIN_CTRL2, ~0, 0x2);
/* reset video */
cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0x8000);
cx18_av_write4(cx, CXADEC_SOFT_RST_CTRL, 0);
/*
* Disable Video Auto-config of the Analog Front End and Video PLL.
*
* Since we only use BT.656 pixel mode, which works for both 525 and 625
* line systems, it's just easier for us to set registers
* 0x102 (CXADEC_CHIP_CTRL), 0x104-0x106 (CXADEC_AFE_CTRL),
* 0x108-0x109 (CXADEC_PLL_CTRL1), and 0x10c-0x10f (CXADEC_VID_PLL_FRAC)
* ourselves, than to run around cleaning up after the auto-config.
*
* (Note: my CX23418 chip doesn't seem to let the ACFG_DIS bit
* get set to 1, but OTOH, it doesn't seem to do AFE and VID PLL
* autoconfig either.)
*
* As a default, also turn off Dual mode for ADC2 and set ADC2 to CH3.
*/
cx18_av_and_or4(cx, CXADEC_CHIP_CTRL, 0xFFFBFFFF, 0x00120000);
/* Setup the Video and and Aux/Audio PLLs */
cx18_av_init(sd, 0);
/* set video to auto-detect */
/* Clear bits 11-12 to enable slow locking mode. Set autodetect mode */
/* set the comb notch = 1 */
cx18_av_and_or4(cx, CXADEC_MODE_CTRL, 0xFFF7E7F0, 0x02040800);
/* Enable wtw_en in CRUSH_CTRL (Set bit 22) */
/* Enable maj_sel in CRUSH_CTRL (Set bit 20) */
cx18_av_and_or4(cx, CXADEC_CRUSH_CTRL, ~0, 0x00500000);
/* Set VGA_TRACK_RANGE to 0x20 */
cx18_av_and_or4(cx, CXADEC_DFE_CTRL2, 0xFFFF00FF, 0x00002000);
/*
* Initial VBI setup
* VIP-1.1, 10 bit mode, enable Raw, disable sliced,
* don't clamp raw samples when codes are in use, 1 byte user D-words,
* IDID0 has line #, RP code V bit transition on VBLANK, data during
* blanking intervals
*/
cx18_av_write4(cx, CXADEC_OUT_CTRL1, 0x4013252e);
/* Set the video input.
The setting in MODE_CTRL gets lost when we do the above setup */
/* EncSetSignalStd(dwDevNum, pEnc->dwSigStd); */
/* EncSetVideoInput(dwDevNum, pEnc->VidIndSelection); */
/*
* Analog Front End (AFE)
* Default to luma on ch1/ADC1, chroma on ch2/ADC2, SIF on ch3/ADC2
* bypass_ch[1-3] use filter
* droop_comp_ch[1-3] disable
* clamp_en_ch[1-3] disable
* aud_in_sel ADC2
* luma_in_sel ADC1
* chroma_in_sel ADC2
* clamp_sel_ch[2-3] midcode
* clamp_sel_ch1 video decoder
* vga_sel_ch3 audio decoder
* vga_sel_ch[1-2] video decoder
* half_bw_ch[1-3] disable
* +12db_ch[1-3] disable
*/
cx18_av_and_or4(cx, CXADEC_AFE_CTRL, 0xFF000000, 0x00005D00);
/* if(dwEnable && dw3DCombAvailable) { */
/* CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x7728021F); */
/* } else { */
/* CxDevWrReg(CXADEC_SRC_COMB_CFG, 0x6628021F); */
/* } */
cx18_av_write4(cx, CXADEC_SRC_COMB_CFG, 0x6628021F);
state->default_volume = 228 - cx18_av_read(cx, 0x8d4);
state->default_volume = ((state->default_volume / 2) + 23) << 9;
}
static int cx18_av_reset(struct v4l2_subdev *sd, u32 val)
{
cx18_av_initialize(sd);
return 0;
}
static int cx18_av_load_fw(struct v4l2_subdev *sd)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
if (!state->is_initialized) {
/* initialize on first use */
state->is_initialized = 1;
cx18_av_initialize(sd);
}
return 0;
}
void cx18_av_std_setup(struct cx18 *cx)
{
struct cx18_av_state *state = &cx->av_state;
struct v4l2_subdev *sd = &state->sd;
v4l2_std_id std = state->std;
/*
* Video ADC crystal clock to pixel clock SRC decimation ratio
* 28.636360 MHz/13.5 Mpps * 256 = 0x21f.07b
*/
const int src_decimation = 0x21f;
int hblank, hactive, burst, vblank, vactive, sc;
int vblank656;
int luma_lpf, uv_lpf, comb;
u32 pll_int, pll_frac, pll_post;
/* datasheet startup, step 8d */
if (std & ~V4L2_STD_NTSC)
cx18_av_write(cx, 0x49f, 0x11);
else
cx18_av_write(cx, 0x49f, 0x14);
/*
* Note: At the end of a field, there are 3 sets of half line duration
* (double horizontal rate) pulses:
*
* 5 (625) or 6 (525) half-lines to blank for the vertical retrace
* 5 (625) or 6 (525) vertical sync pulses of half line duration
* 5 (625) or 6 (525) half-lines of equalization pulses
*/
if (std & V4L2_STD_625_50) {
/*
* The following relationships of half line counts should hold:
* 625 = vblank656 + vactive
* 10 = vblank656 - vblank = vsync pulses + equalization pulses
*
* vblank656: half lines after line 625/mid-313 of blanked video
* vblank: half lines, after line 5/317, of blanked video
* vactive: half lines of active video +
* 5 half lines after the end of active video
*
* As far as I can tell:
* vblank656 starts counting from the falling edge of the first
* vsync pulse (start of line 1 or mid-313)
* vblank starts counting from the after the 5 vsync pulses and
* 5 or 4 equalization pulses (start of line 6 or 318)
*
* For 625 line systems the driver will extract VBI information
* from lines 6-23 and lines 318-335 (but the slicer can only
* handle 17 lines, not the 18 in the vblank region).
* In addition, we need vblank656 and vblank to be one whole
* line longer, to cover line 24 and 336, so the SAV/EAV RP
* codes get generated such that the encoder can actually
* extract line 23 & 335 (WSS). We'll lose 1 line in each field
* at the top of the screen.
*
* It appears the 5 half lines that happen after active
* video must be included in vactive (579 instead of 574),
* otherwise the colors get badly displayed in various regions
* of the screen. I guess the chroma comb filter gets confused
* without them (at least when a PVR-350 is the PAL source).
*/
vblank656 = 48; /* lines 1 - 24 & 313 - 336 */
vblank = 38; /* lines 6 - 24 & 318 - 336 */
vactive = 579; /* lines 24 - 313 & 337 - 626 */
/*
* For a 13.5 Mpps clock and 15,625 Hz line rate, a line is
* is 864 pixels = 720 active + 144 blanking. ITU-R BT.601
* specifies 12 luma clock periods or ~ 0.9 * 13.5 Mpps after
* the end of active video to start a horizontal line, so that
* leaves 132 pixels of hblank to ignore.
*/
hblank = 132;
hactive = 720;
/*
* Burst gate delay (for 625 line systems)
* Hsync leading edge to color burst rise = 5.6 us
* Color burst width = 2.25 us
* Gate width = 4 pixel clocks
* (5.6 us + 2.25/2 us) * 13.5 Mpps + 4/2 clocks = 92.79 clocks
*/
burst = 93;
luma_lpf = 2;
if (std & V4L2_STD_PAL) {
uv_lpf = 1;
comb = 0x20;
/* sc = 4433618.75 * src_decimation/28636360 * 2^13 */
sc = 688700;
} else if (std == V4L2_STD_PAL_Nc) {
uv_lpf = 1;
comb = 0x20;
/* sc = 3582056.25 * src_decimation/28636360 * 2^13 */
sc = 556422;
} else { /* SECAM */
uv_lpf = 0;
comb = 0;
/* (fr + fb)/2 = (4406260 + 4250000)/2 = 4328130 */
/* sc = 4328130 * src_decimation/28636360 * 2^13 */
sc = 672314;
}
} else {
/*
* The following relationships of half line counts should hold:
* 525 = prevsync + vblank656 + vactive
* 12 = vblank656 - vblank = vsync pulses + equalization pulses
*
* prevsync: 6 half-lines before the vsync pulses
* vblank656: half lines, after line 3/mid-266, of blanked video
* vblank: half lines, after line 9/272, of blanked video
* vactive: half lines of active video
*
* As far as I can tell:
* vblank656 starts counting from the falling edge of the first
* vsync pulse (start of line 4 or mid-266)
* vblank starts counting from the after the 6 vsync pulses and
* 6 or 5 equalization pulses (start of line 10 or 272)
*
* For 525 line systems the driver will extract VBI information
* from lines 10-21 and lines 273-284.
*/
vblank656 = 38; /* lines 4 - 22 & 266 - 284 */
vblank = 26; /* lines 10 - 22 & 272 - 284 */
vactive = 481; /* lines 23 - 263 & 285 - 525 */
/*
* For a 13.5 Mpps clock and 15,734.26 Hz line rate, a line is
* is 858 pixels = 720 active + 138 blanking. The Hsync leading
* edge should happen 1.2 us * 13.5 Mpps ~= 16 pixels after the
* end of active video, leaving 122 pixels of hblank to ignore
* before active video starts.
*/
hactive = 720;
hblank = 122;
luma_lpf = 1;
uv_lpf = 1;
/*
* Burst gate delay (for 525 line systems)
* Hsync leading edge to color burst rise = 5.3 us
* Color burst width = 2.5 us
* Gate width = 4 pixel clocks
* (5.3 us + 2.5/2 us) * 13.5 Mpps + 4/2 clocks = 90.425 clocks
*/
if (std == V4L2_STD_PAL_60) {
burst = 90;
luma_lpf = 2;
comb = 0x20;
/* sc = 4433618.75 * src_decimation/28636360 * 2^13 */
sc = 688700;
} else if (std == V4L2_STD_PAL_M) {
/* The 97 needs to be verified against PAL-M timings */
burst = 97;
comb = 0x20;
/* sc = 3575611.49 * src_decimation/28636360 * 2^13 */
sc = 555421;
} else {
burst = 90;
comb = 0x66;
/* sc = 3579545.45.. * src_decimation/28636360 * 2^13 */
sc = 556032;
}
}
/* DEBUG: Displays configured PLL frequency */
pll_int = cx18_av_read(cx, 0x108);
pll_frac = cx18_av_read4(cx, 0x10c) & 0x1ffffff;
pll_post = cx18_av_read(cx, 0x109);
CX18_DEBUG_INFO_DEV(sd, "PLL regs = int: %u, frac: %u, post: %u\n",
pll_int, pll_frac, pll_post);
if (pll_post) {
int fsc, pll;
u64 tmp;
pll = (28636360L * ((((u64)pll_int) << 25) + pll_frac)) >> 25;
pll /= pll_post;
CX18_DEBUG_INFO_DEV(sd, "Video PLL = %d.%06d MHz\n",
pll / 1000000, pll % 1000000);
CX18_DEBUG_INFO_DEV(sd, "Pixel rate = %d.%06d Mpixel/sec\n",
pll / 8000000, (pll / 8) % 1000000);
CX18_DEBUG_INFO_DEV(sd, "ADC XTAL/pixel clock decimation ratio "
"= %d.%03d\n", src_decimation / 256,
((src_decimation % 256) * 1000) / 256);
tmp = 28636360 * (u64) sc;
do_div(tmp, src_decimation);
fsc = tmp >> 13;
CX18_DEBUG_INFO_DEV(sd,
"Chroma sub-carrier initial freq = %d.%06d "
"MHz\n", fsc / 1000000, fsc % 1000000);
CX18_DEBUG_INFO_DEV(sd, "hblank %i, hactive %i, vblank %i, "
"vactive %i, vblank656 %i, src_dec %i, "
"burst 0x%02x, luma_lpf %i, uv_lpf %i, "
"comb 0x%02x, sc 0x%06x\n",
hblank, hactive, vblank, vactive, vblank656,
src_decimation, burst, luma_lpf, uv_lpf,
comb, sc);
}
/* Sets horizontal blanking delay and active lines */
cx18_av_write(cx, 0x470, hblank);
cx18_av_write(cx, 0x471, 0xff & (((hblank >> 8) & 0x3) |
(hactive << 4)));
cx18_av_write(cx, 0x472, hactive >> 4);
/* Sets burst gate delay */
cx18_av_write(cx, 0x473, burst);
/* Sets vertical blanking delay and active duration */
cx18_av_write(cx, 0x474, vblank);
cx18_av_write(cx, 0x475, 0xff & (((vblank >> 8) & 0x3) |
(vactive << 4)));
cx18_av_write(cx, 0x476, vactive >> 4);
cx18_av_write(cx, 0x477, vblank656);
/* Sets src decimation rate */
cx18_av_write(cx, 0x478, 0xff & src_decimation);
cx18_av_write(cx, 0x479, 0xff & (src_decimation >> 8));
/* Sets Luma and UV Low pass filters */
cx18_av_write(cx, 0x47a, luma_lpf << 6 | ((uv_lpf << 4) & 0x30));
/* Enables comb filters */
cx18_av_write(cx, 0x47b, comb);
/* Sets SC Step*/
cx18_av_write(cx, 0x47c, sc);
cx18_av_write(cx, 0x47d, 0xff & sc >> 8);
cx18_av_write(cx, 0x47e, 0xff & sc >> 16);
if (std & V4L2_STD_625_50) {
state->slicer_line_delay = 1;
state->slicer_line_offset = (6 + state->slicer_line_delay - 2);
} else {
state->slicer_line_delay = 0;
state->slicer_line_offset = (10 + state->slicer_line_delay - 2);
}
cx18_av_write(cx, 0x47f, state->slicer_line_delay);
}
static void input_change(struct cx18 *cx)
{
struct cx18_av_state *state = &cx->av_state;
v4l2_std_id std = state->std;
u8 v;
/* Follow step 8c and 8d of section 3.16 in the cx18_av datasheet */
cx18_av_write(cx, 0x49f, (std & V4L2_STD_NTSC) ? 0x14 : 0x11);
cx18_av_and_or(cx, 0x401, ~0x60, 0);
cx18_av_and_or(cx, 0x401, ~0x60, 0x60);
if (std & V4L2_STD_525_60) {
if (std == V4L2_STD_NTSC_M_JP) {
/* Japan uses EIAJ audio standard */
cx18_av_write_expect(cx, 0x808, 0xf7, 0xf7, 0xff);
cx18_av_write_expect(cx, 0x80b, 0x02, 0x02, 0x3f);
} else if (std == V4L2_STD_NTSC_M_KR) {
/* South Korea uses A2 audio standard */
cx18_av_write_expect(cx, 0x808, 0xf8, 0xf8, 0xff);
cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f);
} else {
/* Others use the BTSC audio standard */
cx18_av_write_expect(cx, 0x808, 0xf6, 0xf6, 0xff);
cx18_av_write_expect(cx, 0x80b, 0x01, 0x01, 0x3f);
}
} else if (std & V4L2_STD_PAL) {
/* Follow tuner change procedure for PAL */
cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff);
cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f);
} else if (std & V4L2_STD_SECAM) {
/* Select autodetect for SECAM */
cx18_av_write_expect(cx, 0x808, 0xff, 0xff, 0xff);
cx18_av_write_expect(cx, 0x80b, 0x03, 0x03, 0x3f);
}
v = cx18_av_read(cx, 0x803);
if (v & 0x10) {
/* restart audio decoder microcontroller */
v &= ~0x10;
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
v |= 0x10;
cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
}
}
static int cx18_av_s_frequency(struct v4l2_subdev *sd,
struct v4l2_frequency *freq)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
input_change(cx);
return 0;
}
static int set_input(struct cx18 *cx, enum cx18_av_video_input vid_input,
enum cx18_av_audio_input aud_input)
{
struct cx18_av_state *state = &cx->av_state;
struct v4l2_subdev *sd = &state->sd;
enum analog_signal_type {
NONE, CVBS, Y, C, SIF, Pb, Pr
} ch[3] = {NONE, NONE, NONE};
u8 afe_mux_cfg;
u8 adc2_cfg;
u32 afe_cfg;
int i;
CX18_DEBUG_INFO_DEV(sd, "decoder set video input %d, audio input %d\n",
vid_input, aud_input);
if (vid_input >= CX18_AV_COMPOSITE1 &&
vid_input <= CX18_AV_COMPOSITE8) {
afe_mux_cfg = 0xf0 + (vid_input - CX18_AV_COMPOSITE1);
ch[0] = CVBS;
} else {
int luma = vid_input & 0xf0;
int chroma = vid_input & 0xf00;
if ((vid_input & ~0xff0) ||
luma < CX18_AV_SVIDEO_LUMA1 ||
luma > CX18_AV_SVIDEO_LUMA8 ||
chroma < CX18_AV_SVIDEO_CHROMA4 ||
chroma > CX18_AV_SVIDEO_CHROMA8) {
CX18_ERR_DEV(sd, "0x%04x is not a valid video input!\n",
vid_input);
return -EINVAL;
}
afe_mux_cfg = 0xf0 + ((luma - CX18_AV_SVIDEO_LUMA1) >> 4);
ch[0] = Y;
if (chroma >= CX18_AV_SVIDEO_CHROMA7) {
afe_mux_cfg &= 0x3f;
afe_mux_cfg |= (chroma - CX18_AV_SVIDEO_CHROMA7) >> 2;
ch[2] = C;
} else {
afe_mux_cfg &= 0xcf;
afe_mux_cfg |= (chroma - CX18_AV_SVIDEO_CHROMA4) >> 4;
ch[1] = C;
}
}
/* TODO: LeadTek WinFast DVR3100 H & WinFast PVR2100 can do Y/Pb/Pr */
switch (aud_input) {
case CX18_AV_AUDIO_SERIAL1:
case CX18_AV_AUDIO_SERIAL2:
/* do nothing, use serial audio input */
break;
case CX18_AV_AUDIO4:
afe_mux_cfg &= ~0x30;
ch[1] = SIF;
break;
case CX18_AV_AUDIO5:
afe_mux_cfg = (afe_mux_cfg & ~0x30) | 0x10;
ch[1] = SIF;
break;
case CX18_AV_AUDIO6:
afe_mux_cfg = (afe_mux_cfg & ~0x30) | 0x20;
ch[1] = SIF;
break;
case CX18_AV_AUDIO7:
afe_mux_cfg &= ~0xc0;
ch[2] = SIF;
break;
case CX18_AV_AUDIO8:
afe_mux_cfg = (afe_mux_cfg & ~0xc0) | 0x40;
ch[2] = SIF;
break;
default:
CX18_ERR_DEV(sd, "0x%04x is not a valid audio input!\n",
aud_input);
return -EINVAL;
}
/* Set up analog front end multiplexers */
cx18_av_write_expect(cx, 0x103, afe_mux_cfg, afe_mux_cfg, 0xf7);
/* Set INPUT_MODE to Composite (0) or S-Video (1) */
cx18_av_and_or(cx, 0x401, ~0x6, ch[0] == CVBS ? 0 : 0x02);
/* Set CH_SEL_ADC2 to 1 if input comes from CH3 */
adc2_cfg = cx18_av_read(cx, 0x102);
if (ch[2] == NONE)
adc2_cfg &= ~0x2; /* No sig on CH3, set ADC2 to CH2 for input */
else
adc2_cfg |= 0x2; /* Signal on CH3, set ADC2 to CH3 for input */
/* Set DUAL_MODE_ADC2 to 1 if input comes from both CH2 and CH3 */
if (ch[1] != NONE && ch[2] != NONE)
adc2_cfg |= 0x4; /* Set dual mode */
else
adc2_cfg &= ~0x4; /* Clear dual mode */
cx18_av_write_expect(cx, 0x102, adc2_cfg, adc2_cfg, 0x17);
/* Configure the analog front end */
afe_cfg = cx18_av_read4(cx, CXADEC_AFE_CTRL);
afe_cfg &= 0xff000000;
afe_cfg |= 0x00005000; /* CHROMA_IN, AUD_IN: ADC2; LUMA_IN: ADC1 */
if (ch[1] != NONE && ch[2] != NONE)
afe_cfg |= 0x00000030; /* half_bw_ch[2-3] since in dual mode */
for (i = 0; i < 3; i++) {
switch (ch[i]) {
default:
case NONE:
/* CLAMP_SEL = Fixed to midcode clamp level */
afe_cfg |= (0x00000200 << i);
break;
case CVBS:
case Y:
if (i > 0)
afe_cfg |= 0x00002000; /* LUMA_IN_SEL: ADC2 */
break;
case C:
case Pb:
case Pr:
/* CLAMP_SEL = Fixed to midcode clamp level */
afe_cfg |= (0x00000200 << i);
if (i == 0 && ch[i] == C)
afe_cfg &= ~0x00001000; /* CHROMA_IN_SEL ADC1 */
break;
case SIF:
/*
* VGA_GAIN_SEL = Audio Decoder
* CLAMP_SEL = Fixed to midcode clamp level
*/
afe_cfg |= (0x00000240 << i);
if (i == 0)
afe_cfg &= ~0x00004000; /* AUD_IN_SEL ADC1 */
break;
}
}
cx18_av_write4(cx, CXADEC_AFE_CTRL, afe_cfg);
state->vid_input = vid_input;
state->aud_input = aud_input;
cx18_av_audio_set_path(cx);
input_change(cx);
return 0;
}
static int cx18_av_s_video_routing(struct v4l2_subdev *sd,
u32 input, u32 output, u32 config)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
return set_input(cx, input, state->aud_input);
}
static int cx18_av_s_audio_routing(struct v4l2_subdev *sd,
u32 input, u32 output, u32 config)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
return set_input(cx, state->vid_input, input);
}
static int cx18_av_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
u8 vpres;
u8 mode;
int val = 0;
if (state->radio)
return 0;
vpres = cx18_av_read(cx, 0x40e) & 0x20;
vt->signal = vpres ? 0xffff : 0x0;
vt->capability |=
V4L2_TUNER_CAP_STEREO | V4L2_TUNER_CAP_LANG1 |
V4L2_TUNER_CAP_LANG2 | V4L2_TUNER_CAP_SAP;
mode = cx18_av_read(cx, 0x804);
/* get rxsubchans and audmode */
if ((mode & 0xf) == 1)
val |= V4L2_TUNER_SUB_STEREO;
else
val |= V4L2_TUNER_SUB_MONO;
if (mode == 2 || mode == 4)
val = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
if (mode & 0x10)
val |= V4L2_TUNER_SUB_SAP;
vt->rxsubchans = val;
vt->audmode = state->audmode;
return 0;
}
static int cx18_av_s_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
u8 v;
if (state->radio)
return 0;
v = cx18_av_read(cx, 0x809);
v &= ~0xf;
switch (vt->audmode) {
case V4L2_TUNER_MODE_MONO:
/* mono -> mono
stereo -> mono
bilingual -> lang1 */
break;
case V4L2_TUNER_MODE_STEREO:
case V4L2_TUNER_MODE_LANG1:
/* mono -> mono
stereo -> stereo
bilingual -> lang1 */
v |= 0x4;
break;
case V4L2_TUNER_MODE_LANG1_LANG2:
/* mono -> mono
stereo -> stereo
bilingual -> lang1/lang2 */
v |= 0x7;
break;
case V4L2_TUNER_MODE_LANG2:
/* mono -> mono
stereo -> stereo
bilingual -> lang2 */
v |= 0x1;
break;
default:
return -EINVAL;
}
cx18_av_write_expect(cx, 0x809, v, v, 0xff);
state->audmode = vt->audmode;
return 0;
}
static int cx18_av_s_std(struct v4l2_subdev *sd, v4l2_std_id norm)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
u8 fmt = 0; /* zero is autodetect */
u8 pal_m = 0;
if (state->radio == 0 && state->std == norm)
return 0;
state->radio = 0;
state->std = norm;
/* First tests should be against specific std */
if (state->std == V4L2_STD_NTSC_M_JP) {
fmt = 0x2;
} else if (state->std == V4L2_STD_NTSC_443) {
fmt = 0x3;
} else if (state->std == V4L2_STD_PAL_M) {
pal_m = 1;
fmt = 0x5;
} else if (state->std == V4L2_STD_PAL_N) {
fmt = 0x6;
} else if (state->std == V4L2_STD_PAL_Nc) {
fmt = 0x7;
} else if (state->std == V4L2_STD_PAL_60) {
fmt = 0x8;
} else {
/* Then, test against generic ones */
if (state->std & V4L2_STD_NTSC)
fmt = 0x1;
else if (state->std & V4L2_STD_PAL)
fmt = 0x4;
else if (state->std & V4L2_STD_SECAM)
fmt = 0xc;
}
CX18_DEBUG_INFO_DEV(sd, "changing video std to fmt %i\n", fmt);
/* Follow step 9 of section 3.16 in the cx18_av datasheet.
Without this PAL may display a vertical ghosting effect.
This happens for example with the Yuan MPC622. */
if (fmt >= 4 && fmt < 8) {
/* Set format to NTSC-M */
cx18_av_and_or(cx, 0x400, ~0xf, 1);
/* Turn off LCOMB */
cx18_av_and_or(cx, 0x47b, ~6, 0);
}
cx18_av_and_or(cx, 0x400, ~0x2f, fmt | 0x20);
cx18_av_and_or(cx, 0x403, ~0x3, pal_m);
cx18_av_std_setup(cx);
input_change(cx);
return 0;
}
static int cx18_av_s_radio(struct v4l2_subdev *sd)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
state->radio = 1;
return 0;
}
static int cx18_av_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
if (ctrl->value < 0 || ctrl->value > 255) {
CX18_ERR_DEV(sd, "invalid brightness setting %d\n",
ctrl->value);
return -ERANGE;
}
cx18_av_write(cx, 0x414, ctrl->value - 128);
break;
case V4L2_CID_CONTRAST:
if (ctrl->value < 0 || ctrl->value > 127) {
CX18_ERR_DEV(sd, "invalid contrast setting %d\n",
ctrl->value);
return -ERANGE;
}
cx18_av_write(cx, 0x415, ctrl->value << 1);
break;
case V4L2_CID_SATURATION:
if (ctrl->value < 0 || ctrl->value > 127) {
CX18_ERR_DEV(sd, "invalid saturation setting %d\n",
ctrl->value);
return -ERANGE;
}
cx18_av_write(cx, 0x420, ctrl->value << 1);
cx18_av_write(cx, 0x421, ctrl->value << 1);
break;
case V4L2_CID_HUE:
if (ctrl->value < -128 || ctrl->value > 127) {
CX18_ERR_DEV(sd, "invalid hue setting %d\n",
ctrl->value);
return -ERANGE;
}
cx18_av_write(cx, 0x422, ctrl->value);
break;
case V4L2_CID_AUDIO_VOLUME:
case V4L2_CID_AUDIO_BASS:
case V4L2_CID_AUDIO_TREBLE:
case V4L2_CID_AUDIO_BALANCE:
case V4L2_CID_AUDIO_MUTE:
return cx18_av_audio_s_ctrl(cx, ctrl);
default:
return -EINVAL;
}
return 0;
}
static int cx18_av_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
ctrl->value = (s8)cx18_av_read(cx, 0x414) + 128;
break;
case V4L2_CID_CONTRAST:
ctrl->value = cx18_av_read(cx, 0x415) >> 1;
break;
case V4L2_CID_SATURATION:
ctrl->value = cx18_av_read(cx, 0x420) >> 1;
break;
case V4L2_CID_HUE:
ctrl->value = (s8)cx18_av_read(cx, 0x422);
break;
case V4L2_CID_AUDIO_VOLUME:
case V4L2_CID_AUDIO_BASS:
case V4L2_CID_AUDIO_TREBLE:
case V4L2_CID_AUDIO_BALANCE:
case V4L2_CID_AUDIO_MUTE:
return cx18_av_audio_g_ctrl(cx, ctrl);
default:
return -EINVAL;
}
return 0;
}
static int cx18_av_queryctrl(struct v4l2_subdev *sd, struct v4l2_queryctrl *qc)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
switch (qc->id) {
case V4L2_CID_BRIGHTNESS:
return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
case V4L2_CID_CONTRAST:
case V4L2_CID_SATURATION:
return v4l2_ctrl_query_fill(qc, 0, 127, 1, 64);
case V4L2_CID_HUE:
return v4l2_ctrl_query_fill(qc, -128, 127, 1, 0);
default:
break;
}
switch (qc->id) {
case V4L2_CID_AUDIO_VOLUME:
return v4l2_ctrl_query_fill(qc, 0, 65535,
65535 / 100, state->default_volume);
case V4L2_CID_AUDIO_MUTE:
return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
case V4L2_CID_AUDIO_BALANCE:
case V4L2_CID_AUDIO_BASS:
case V4L2_CID_AUDIO_TREBLE:
return v4l2_ctrl_query_fill(qc, 0, 65535, 65535 / 100, 32768);
default:
return -EINVAL;
}
return -EINVAL;
}
static int cx18_av_g_fmt(struct v4l2_subdev *sd, struct v4l2_format *fmt)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
return cx18_av_vbi_g_fmt(cx, fmt);
}
static int cx18_av_s_fmt(struct v4l2_subdev *sd, struct v4l2_format *fmt)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
struct cx18 *cx = v4l2_get_subdevdata(sd);
struct v4l2_pix_format *pix;
int HSC, VSC, Vsrc, Hsrc, filter, Vlines;
int is_50Hz = !(state->std & V4L2_STD_525_60);
switch (fmt->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
pix = &(fmt->fmt.pix);
Vsrc = (cx18_av_read(cx, 0x476) & 0x3f) << 4;
Vsrc |= (cx18_av_read(cx, 0x475) & 0xf0) >> 4;
Hsrc = (cx18_av_read(cx, 0x472) & 0x3f) << 4;
Hsrc |= (cx18_av_read(cx, 0x471) & 0xf0) >> 4;
/*
* This adjustment reflects the excess of vactive, set in
* cx18_av_std_setup(), above standard values:
*
* 480 + 1 for 60 Hz systems
* 576 + 3 for 50 Hz systems
*/
Vlines = pix->height + (is_50Hz ? 3 : 1);
/*
* Invalid height and width scaling requests are:
* 1. width less than 1/16 of the source width
* 2. width greater than the source width
* 3. height less than 1/8 of the source height
* 4. height greater than the source height
*/
if ((pix->width * 16 < Hsrc) || (Hsrc < pix->width) ||
(Vlines * 8 < Vsrc) || (Vsrc < Vlines)) {
CX18_ERR_DEV(sd, "%dx%d is not a valid size!\n",
pix->width, pix->height);
return -ERANGE;
}
HSC = (Hsrc * (1 << 20)) / pix->width - (1 << 20);
VSC = (1 << 16) - (Vsrc * (1 << 9) / Vlines - (1 << 9));
VSC &= 0x1fff;
if (pix->width >= 385)
filter = 0;
else if (pix->width > 192)
filter = 1;
else if (pix->width > 96)
filter = 2;
else
filter = 3;
CX18_DEBUG_INFO_DEV(sd,
"decoder set size %dx%d -> scale %ux%u\n",
pix->width, pix->height, HSC, VSC);
/* HSCALE=HSC */
cx18_av_write(cx, 0x418, HSC & 0xff);
cx18_av_write(cx, 0x419, (HSC >> 8) & 0xff);
cx18_av_write(cx, 0x41a, HSC >> 16);
/* VSCALE=VSC */
cx18_av_write(cx, 0x41c, VSC & 0xff);
cx18_av_write(cx, 0x41d, VSC >> 8);
/* VS_INTRLACE=1 VFILT=filter */
cx18_av_write(cx, 0x41e, 0x8 | filter);
break;
case V4L2_BUF_TYPE_SLICED_VBI_CAPTURE:
return cx18_av_vbi_s_fmt(cx, fmt);
case V4L2_BUF_TYPE_VBI_CAPTURE:
return cx18_av_vbi_s_fmt(cx, fmt);
default:
return -EINVAL;
}
return 0;
}
static int cx18_av_s_stream(struct v4l2_subdev *sd, int enable)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
CX18_DEBUG_INFO_DEV(sd, "%s output\n", enable ? "enable" : "disable");
if (enable) {
cx18_av_write(cx, 0x115, 0x8c);
cx18_av_write(cx, 0x116, 0x07);
} else {
cx18_av_write(cx, 0x115, 0x00);
cx18_av_write(cx, 0x116, 0x00);
}
return 0;
}
static void log_video_status(struct cx18 *cx)
{
static const char *const fmt_strs[] = {
"0x0",
"NTSC-M", "NTSC-J", "NTSC-4.43",
"PAL-BDGHI", "PAL-M", "PAL-N", "PAL-Nc", "PAL-60",
"0x9", "0xA", "0xB",
"SECAM",
"0xD", "0xE", "0xF"
};
struct cx18_av_state *state = &cx->av_state;
struct v4l2_subdev *sd = &state->sd;
u8 vidfmt_sel = cx18_av_read(cx, 0x400) & 0xf;
u8 gen_stat1 = cx18_av_read(cx, 0x40d);
u8 gen_stat2 = cx18_av_read(cx, 0x40e);
int vid_input = state->vid_input;
CX18_INFO_DEV(sd, "Video signal: %spresent\n",
(gen_stat2 & 0x20) ? "" : "not ");
CX18_INFO_DEV(sd, "Detected format: %s\n",
fmt_strs[gen_stat1 & 0xf]);
CX18_INFO_DEV(sd, "Specified standard: %s\n",
vidfmt_sel ? fmt_strs[vidfmt_sel]
: "automatic detection");
if (vid_input >= CX18_AV_COMPOSITE1 &&
vid_input <= CX18_AV_COMPOSITE8) {
CX18_INFO_DEV(sd, "Specified video input: Composite %d\n",
vid_input - CX18_AV_COMPOSITE1 + 1);
} else {
CX18_INFO_DEV(sd, "Specified video input: "
"S-Video (Luma In%d, Chroma In%d)\n",
(vid_input & 0xf0) >> 4,
(vid_input & 0xf00) >> 8);
}
CX18_INFO_DEV(sd, "Specified audioclock freq: %d Hz\n",
state->audclk_freq);
}
static void log_audio_status(struct cx18 *cx)
{
struct cx18_av_state *state = &cx->av_state;
struct v4l2_subdev *sd = &state->sd;
u8 download_ctl = cx18_av_read(cx, 0x803);
u8 mod_det_stat0 = cx18_av_read(cx, 0x804);
u8 mod_det_stat1 = cx18_av_read(cx, 0x805);
u8 audio_config = cx18_av_read(cx, 0x808);
u8 pref_mode = cx18_av_read(cx, 0x809);
u8 afc0 = cx18_av_read(cx, 0x80b);
u8 mute_ctl = cx18_av_read(cx, 0x8d3);
int aud_input = state->aud_input;
char *p;
switch (mod_det_stat0) {
case 0x00: p = "mono"; break;
case 0x01: p = "stereo"; break;
case 0x02: p = "dual"; break;
case 0x04: p = "tri"; break;
case 0x10: p = "mono with SAP"; break;
case 0x11: p = "stereo with SAP"; break;
case 0x12: p = "dual with SAP"; break;
case 0x14: p = "tri with SAP"; break;
case 0xfe: p = "forced mode"; break;
default: p = "not defined"; break;
}
CX18_INFO_DEV(sd, "Detected audio mode: %s\n", p);
switch (mod_det_stat1) {
case 0x00: p = "not defined"; break;
case 0x01: p = "EIAJ"; break;
case 0x02: p = "A2-M"; break;
case 0x03: p = "A2-BG"; break;
case 0x04: p = "A2-DK1"; break;
case 0x05: p = "A2-DK2"; break;
case 0x06: p = "A2-DK3"; break;
case 0x07: p = "A1 (6.0 MHz FM Mono)"; break;
case 0x08: p = "AM-L"; break;
case 0x09: p = "NICAM-BG"; break;
case 0x0a: p = "NICAM-DK"; break;
case 0x0b: p = "NICAM-I"; break;
case 0x0c: p = "NICAM-L"; break;
case 0x0d: p = "BTSC/EIAJ/A2-M Mono (4.5 MHz FMMono)"; break;
case 0x0e: p = "IF FM Radio"; break;
case 0x0f: p = "BTSC"; break;
case 0x10: p = "detected chrominance"; break;
case 0xfd: p = "unknown audio standard"; break;
case 0xfe: p = "forced audio standard"; break;
case 0xff: p = "no detected audio standard"; break;
default: p = "not defined"; break;
}
CX18_INFO_DEV(sd, "Detected audio standard: %s\n", p);
CX18_INFO_DEV(sd, "Audio muted: %s\n",
(mute_ctl & 0x2) ? "yes" : "no");
CX18_INFO_DEV(sd, "Audio microcontroller: %s\n",
(download_ctl & 0x10) ? "running" : "stopped");
switch (audio_config >> 4) {
case 0x00: p = "undefined"; break;
case 0x01: p = "BTSC"; break;
case 0x02: p = "EIAJ"; break;
case 0x03: p = "A2-M"; break;
case 0x04: p = "A2-BG"; break;
case 0x05: p = "A2-DK1"; break;
case 0x06: p = "A2-DK2"; break;
case 0x07: p = "A2-DK3"; break;
case 0x08: p = "A1 (6.0 MHz FM Mono)"; break;
case 0x09: p = "AM-L"; break;
case 0x0a: p = "NICAM-BG"; break;
case 0x0b: p = "NICAM-DK"; break;
case 0x0c: p = "NICAM-I"; break;
case 0x0d: p = "NICAM-L"; break;
case 0x0e: p = "FM radio"; break;
case 0x0f: p = "automatic detection"; break;
default: p = "undefined"; break;
}
CX18_INFO_DEV(sd, "Configured audio standard: %s\n", p);
if ((audio_config >> 4) < 0xF) {
switch (audio_config & 0xF) {
case 0x00: p = "MONO1 (LANGUAGE A/Mono L+R channel for BTSC, EIAJ, A2)"; break;
case 0x01: p = "MONO2 (LANGUAGE B)"; break;
case 0x02: p = "MONO3 (STEREO forced MONO)"; break;
case 0x03: p = "MONO4 (NICAM ANALOG-Language C/Analog Fallback)"; break;
case 0x04: p = "STEREO"; break;
case 0x05: p = "DUAL1 (AC)"; break;
case 0x06: p = "DUAL2 (BC)"; break;
case 0x07: p = "DUAL3 (AB)"; break;
default: p = "undefined";
}
CX18_INFO_DEV(sd, "Configured audio mode: %s\n", p);
} else {
switch (audio_config & 0xF) {
case 0x00: p = "BG"; break;
case 0x01: p = "DK1"; break;
case 0x02: p = "DK2"; break;
case 0x03: p = "DK3"; break;
case 0x04: p = "I"; break;
case 0x05: p = "L"; break;
case 0x06: p = "BTSC"; break;
case 0x07: p = "EIAJ"; break;
case 0x08: p = "A2-M"; break;
case 0x09: p = "FM Radio (4.5 MHz)"; break;
case 0x0a: p = "FM Radio (5.5 MHz)"; break;
case 0x0b: p = "S-Video"; break;
case 0x0f: p = "automatic standard and mode detection"; break;
default: p = "undefined"; break;
}
CX18_INFO_DEV(sd, "Configured audio system: %s\n", p);
}
if (aud_input)
CX18_INFO_DEV(sd, "Specified audio input: Tuner (In%d)\n",
aud_input);
else
CX18_INFO_DEV(sd, "Specified audio input: External\n");
switch (pref_mode & 0xf) {
case 0: p = "mono/language A"; break;
case 1: p = "language B"; break;
case 2: p = "language C"; break;
case 3: p = "analog fallback"; break;
case 4: p = "stereo"; break;
case 5: p = "language AC"; break;
case 6: p = "language BC"; break;
case 7: p = "language AB"; break;
default: p = "undefined"; break;
}
CX18_INFO_DEV(sd, "Preferred audio mode: %s\n", p);
if ((audio_config & 0xf) == 0xf) {
switch ((afc0 >> 3) & 0x1) {
case 0: p = "system DK"; break;
case 1: p = "system L"; break;
}
CX18_INFO_DEV(sd, "Selected 65 MHz format: %s\n", p);
switch (afc0 & 0x7) {
case 0: p = "Chroma"; break;
case 1: p = "BTSC"; break;
case 2: p = "EIAJ"; break;
case 3: p = "A2-M"; break;
case 4: p = "autodetect"; break;
default: p = "undefined"; break;
}
CX18_INFO_DEV(sd, "Selected 45 MHz format: %s\n", p);
}
}
static int cx18_av_log_status(struct v4l2_subdev *sd)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
log_video_status(cx);
log_audio_status(cx);
return 0;
}
static inline int cx18_av_dbg_match(const struct v4l2_dbg_match *match)
{
return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 1;
}
static int cx18_av_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct cx18_av_state *state = to_cx18_av_state(sd);
if (cx18_av_dbg_match(&chip->match)) {
chip->ident = state->id;
chip->revision = state->rev;
}
return 0;
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int cx18_av_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
if (!cx18_av_dbg_match(&reg->match))
return -EINVAL;
if ((reg->reg & 0x3) != 0)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
reg->size = 4;
reg->val = cx18_av_read4(cx, reg->reg & 0x00000ffc);
return 0;
}
static int cx18_av_s_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct cx18 *cx = v4l2_get_subdevdata(sd);
if (!cx18_av_dbg_match(&reg->match))
return -EINVAL;
if ((reg->reg & 0x3) != 0)
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
cx18_av_write4(cx, reg->reg & 0x00000ffc, reg->val);
return 0;
}
#endif
static const struct v4l2_subdev_core_ops cx18_av_general_ops = {
.g_chip_ident = cx18_av_g_chip_ident,
.log_status = cx18_av_log_status,
.init = cx18_av_init,
.load_fw = cx18_av_load_fw,
.reset = cx18_av_reset,
.queryctrl = cx18_av_queryctrl,
.g_ctrl = cx18_av_g_ctrl,
.s_ctrl = cx18_av_s_ctrl,
.s_std = cx18_av_s_std,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = cx18_av_g_register,
.s_register = cx18_av_s_register,
#endif
};
static const struct v4l2_subdev_tuner_ops cx18_av_tuner_ops = {
.s_radio = cx18_av_s_radio,
.s_frequency = cx18_av_s_frequency,
.g_tuner = cx18_av_g_tuner,
.s_tuner = cx18_av_s_tuner,
};
static const struct v4l2_subdev_audio_ops cx18_av_audio_ops = {
.s_clock_freq = cx18_av_s_clock_freq,
.s_routing = cx18_av_s_audio_routing,
};
static const struct v4l2_subdev_video_ops cx18_av_video_ops = {
.s_routing = cx18_av_s_video_routing,
.decode_vbi_line = cx18_av_decode_vbi_line,
.s_stream = cx18_av_s_stream,
.g_fmt = cx18_av_g_fmt,
.s_fmt = cx18_av_s_fmt,
};
static const struct v4l2_subdev_ops cx18_av_ops = {
.core = &cx18_av_general_ops,
.tuner = &cx18_av_tuner_ops,
.audio = &cx18_av_audio_ops,
.video = &cx18_av_video_ops,
};
int cx18_av_probe(struct cx18 *cx)
{
struct cx18_av_state *state = &cx->av_state;
struct v4l2_subdev *sd;
state->rev = cx18_av_read4(cx, CXADEC_CHIP_CTRL) & 0xffff;
state->id = ((state->rev >> 4) == CXADEC_CHIP_TYPE_MAKO)
? V4L2_IDENT_CX23418_843 : V4L2_IDENT_UNKNOWN;
state->vid_input = CX18_AV_COMPOSITE7;
state->aud_input = CX18_AV_AUDIO8;
state->audclk_freq = 48000;
state->audmode = V4L2_TUNER_MODE_LANG1;
state->slicer_line_delay = 0;
state->slicer_line_offset = (10 + state->slicer_line_delay - 2);
sd = &state->sd;
v4l2_subdev_init(sd, &cx18_av_ops);
v4l2_set_subdevdata(sd, cx);
snprintf(sd->name, sizeof(sd->name),
"%s %03x", cx->v4l2_dev.name, (state->rev >> 4));
sd->grp_id = CX18_HW_418_AV;
return v4l2_device_register_subdev(&cx->v4l2_dev, sd);
}