mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-19 23:02:31 +00:00
394290cba9
Patch series "mm: split PTE/PMD PT table Kconfig cleanups+clarifications". This series is a follow up to the fixes: "[PATCH v1 0/2] mm/hugetlb: fix hugetlb vs. core-mm PT locking" When working on the fixes, I wondered why 8xx is fine (-> never uses split PT locks) and how PT locking even works properly with PMD page table sharing (-> always requires split PMD PT locks). Let's improve the split PT lock detection, make hugetlb properly depend on it and make 8xx bail out if it would ever get enabled by accident. As an alternative to patch #3 we could extend the Kconfig SPLIT_PTE_PTLOCKS option from patch #2 -- but enforcing it closer to the code that actually implements it feels a bit nicer for documentation purposes, and there is no need to actually disable it because it should always be disabled (!SMP). Did a bunch of cross-compilations to make sure that split PTE/PMD PT locks are still getting used where we would expect them. [1] https://lkml.kernel.org/r/20240725183955.2268884-1-david@redhat.com This patch (of 3): Let's clean that up a bit and prepare for depending on CONFIG_SPLIT_PMD_PTLOCKS in other Kconfig options. More cleanups would be reasonable (like the arch-specific "depends on" for CONFIG_SPLIT_PTE_PTLOCKS), but we'll leave that for another day. Link: https://lkml.kernel.org/r/20240726150728.3159964-1-david@redhat.com Link: https://lkml.kernel.org/r/20240726150728.3159964-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
273 lines
6.7 KiB
C
273 lines
6.7 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/arch/arm/mm/fault-armv.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Modifications for ARM processor (c) 1995-2002 Russell King
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/gfp.h>
|
|
|
|
#include <asm/bugs.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cachetype.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include "mm.h"
|
|
|
|
static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
|
|
|
|
#if __LINUX_ARM_ARCH__ < 6
|
|
/*
|
|
* We take the easy way out of this problem - we make the
|
|
* PTE uncacheable. However, we leave the write buffer on.
|
|
*
|
|
* Note that the pte lock held when calling update_mmu_cache must also
|
|
* guard the pte (somewhere else in the same mm) that we modify here.
|
|
* Therefore those configurations which might call adjust_pte (those
|
|
* without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
|
|
*/
|
|
static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long pfn, pte_t *ptep)
|
|
{
|
|
pte_t entry = *ptep;
|
|
int ret;
|
|
|
|
/*
|
|
* If this page is present, it's actually being shared.
|
|
*/
|
|
ret = pte_present(entry);
|
|
|
|
/*
|
|
* If this page isn't present, or is already setup to
|
|
* fault (ie, is old), we can safely ignore any issues.
|
|
*/
|
|
if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
|
|
flush_cache_page(vma, address, pfn);
|
|
outer_flush_range((pfn << PAGE_SHIFT),
|
|
(pfn << PAGE_SHIFT) + PAGE_SIZE);
|
|
pte_val(entry) &= ~L_PTE_MT_MASK;
|
|
pte_val(entry) |= shared_pte_mask;
|
|
set_pte_at(vma->vm_mm, address, ptep, entry);
|
|
flush_tlb_page(vma, address);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if defined(CONFIG_SPLIT_PTE_PTLOCKS)
|
|
/*
|
|
* If we are using split PTE locks, then we need to take the page
|
|
* lock here. Otherwise we are using shared mm->page_table_lock
|
|
* which is already locked, thus cannot take it.
|
|
*/
|
|
static inline void do_pte_lock(spinlock_t *ptl)
|
|
{
|
|
/*
|
|
* Use nested version here to indicate that we are already
|
|
* holding one similar spinlock.
|
|
*/
|
|
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
|
|
}
|
|
|
|
static inline void do_pte_unlock(spinlock_t *ptl)
|
|
{
|
|
spin_unlock(ptl);
|
|
}
|
|
#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
|
|
static inline void do_pte_lock(spinlock_t *ptl) {}
|
|
static inline void do_pte_unlock(spinlock_t *ptl) {}
|
|
#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
|
|
|
|
static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long pfn)
|
|
{
|
|
spinlock_t *ptl;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
int ret;
|
|
|
|
pgd = pgd_offset(vma->vm_mm, address);
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
return 0;
|
|
|
|
p4d = p4d_offset(pgd, address);
|
|
if (p4d_none_or_clear_bad(p4d))
|
|
return 0;
|
|
|
|
pud = pud_offset(p4d, address);
|
|
if (pud_none_or_clear_bad(pud))
|
|
return 0;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (pmd_none_or_clear_bad(pmd))
|
|
return 0;
|
|
|
|
/*
|
|
* This is called while another page table is mapped, so we
|
|
* must use the nested version. This also means we need to
|
|
* open-code the spin-locking.
|
|
*/
|
|
pte = pte_offset_map_nolock(vma->vm_mm, pmd, address, &ptl);
|
|
if (!pte)
|
|
return 0;
|
|
|
|
do_pte_lock(ptl);
|
|
|
|
ret = do_adjust_pte(vma, address, pfn, pte);
|
|
|
|
do_pte_unlock(ptl);
|
|
pte_unmap(pte);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep, unsigned long pfn)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct vm_area_struct *mpnt;
|
|
unsigned long offset;
|
|
pgoff_t pgoff;
|
|
int aliases = 0;
|
|
|
|
pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
|
|
|
|
/*
|
|
* If we have any shared mappings that are in the same mm
|
|
* space, then we need to handle them specially to maintain
|
|
* cache coherency.
|
|
*/
|
|
flush_dcache_mmap_lock(mapping);
|
|
vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
|
|
/*
|
|
* If this VMA is not in our MM, we can ignore it.
|
|
* Note that we intentionally mask out the VMA
|
|
* that we are fixing up.
|
|
*/
|
|
if (mpnt->vm_mm != mm || mpnt == vma)
|
|
continue;
|
|
if (!(mpnt->vm_flags & VM_MAYSHARE))
|
|
continue;
|
|
offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
|
|
aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
|
|
}
|
|
flush_dcache_mmap_unlock(mapping);
|
|
if (aliases)
|
|
do_adjust_pte(vma, addr, pfn, ptep);
|
|
}
|
|
|
|
/*
|
|
* Take care of architecture specific things when placing a new PTE into
|
|
* a page table, or changing an existing PTE. Basically, there are two
|
|
* things that we need to take care of:
|
|
*
|
|
* 1. If PG_dcache_clean is not set for the page, we need to ensure
|
|
* that any cache entries for the kernels virtual memory
|
|
* range are written back to the page.
|
|
* 2. If we have multiple shared mappings of the same space in
|
|
* an object, we need to deal with the cache aliasing issues.
|
|
*
|
|
* Note that the pte lock will be held.
|
|
*/
|
|
void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep, unsigned int nr)
|
|
{
|
|
unsigned long pfn = pte_pfn(*ptep);
|
|
struct address_space *mapping;
|
|
struct folio *folio;
|
|
|
|
if (!pfn_valid(pfn))
|
|
return;
|
|
|
|
/*
|
|
* The zero page is never written to, so never has any dirty
|
|
* cache lines, and therefore never needs to be flushed.
|
|
*/
|
|
if (is_zero_pfn(pfn))
|
|
return;
|
|
|
|
folio = page_folio(pfn_to_page(pfn));
|
|
mapping = folio_flush_mapping(folio);
|
|
if (!test_and_set_bit(PG_dcache_clean, &folio->flags))
|
|
__flush_dcache_folio(mapping, folio);
|
|
if (mapping) {
|
|
if (cache_is_vivt())
|
|
make_coherent(mapping, vma, addr, ptep, pfn);
|
|
else if (vma->vm_flags & VM_EXEC)
|
|
__flush_icache_all();
|
|
}
|
|
}
|
|
#endif /* __LINUX_ARM_ARCH__ < 6 */
|
|
|
|
/*
|
|
* Check whether the write buffer has physical address aliasing
|
|
* issues. If it has, we need to avoid them for the case where
|
|
* we have several shared mappings of the same object in user
|
|
* space.
|
|
*/
|
|
static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
|
|
{
|
|
register unsigned long zero = 0, one = 1, val;
|
|
|
|
local_irq_disable();
|
|
mb();
|
|
*p1 = one;
|
|
mb();
|
|
*p2 = zero;
|
|
mb();
|
|
val = *p1;
|
|
mb();
|
|
local_irq_enable();
|
|
return val != zero;
|
|
}
|
|
|
|
void __init check_writebuffer_bugs(void)
|
|
{
|
|
struct page *page;
|
|
const char *reason;
|
|
unsigned long v = 1;
|
|
|
|
pr_info("CPU: Testing write buffer coherency: ");
|
|
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (page) {
|
|
unsigned long *p1, *p2;
|
|
pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
|
|
L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
|
|
|
|
p1 = vmap(&page, 1, VM_IOREMAP, prot);
|
|
p2 = vmap(&page, 1, VM_IOREMAP, prot);
|
|
|
|
if (p1 && p2) {
|
|
v = check_writebuffer(p1, p2);
|
|
reason = "enabling work-around";
|
|
} else {
|
|
reason = "unable to map memory\n";
|
|
}
|
|
|
|
vunmap(p1);
|
|
vunmap(p2);
|
|
put_page(page);
|
|
} else {
|
|
reason = "unable to grab page\n";
|
|
}
|
|
|
|
if (v) {
|
|
pr_cont("failed, %s\n", reason);
|
|
shared_pte_mask = L_PTE_MT_UNCACHED;
|
|
} else {
|
|
pr_cont("ok\n");
|
|
}
|
|
}
|