linux-next/crypto/testmgr.c
Kees Cook 6da2ec5605 treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

        kmalloc(a * b, gfp)

with:
        kmalloc_array(a * b, gfp)

as well as handling cases of:

        kmalloc(a * b * c, gfp)

with:

        kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00

3712 lines
84 KiB
C

/*
* Algorithm testing framework and tests.
*
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
* Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org>
* Copyright (c) 2007 Nokia Siemens Networks
* Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
*
* Updated RFC4106 AES-GCM testing.
* Authors: Aidan O'Mahony (aidan.o.mahony@intel.com)
* Adrian Hoban <adrian.hoban@intel.com>
* Gabriele Paoloni <gabriele.paoloni@intel.com>
* Tadeusz Struk (tadeusz.struk@intel.com)
* Copyright (c) 2010, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/aead.h>
#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include <linux/err.h>
#include <linux/fips.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <crypto/rng.h>
#include <crypto/drbg.h>
#include <crypto/akcipher.h>
#include <crypto/kpp.h>
#include <crypto/acompress.h>
#include "internal.h"
static bool notests;
module_param(notests, bool, 0644);
MODULE_PARM_DESC(notests, "disable crypto self-tests");
#ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS
/* a perfect nop */
int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
{
return 0;
}
#else
#include "testmgr.h"
/*
* Need slab memory for testing (size in number of pages).
*/
#define XBUFSIZE 8
/*
* Indexes into the xbuf to simulate cross-page access.
*/
#define IDX1 32
#define IDX2 32400
#define IDX3 1511
#define IDX4 8193
#define IDX5 22222
#define IDX6 17101
#define IDX7 27333
#define IDX8 3000
/*
* Used by test_cipher()
*/
#define ENCRYPT 1
#define DECRYPT 0
struct aead_test_suite {
struct {
const struct aead_testvec *vecs;
unsigned int count;
} enc, dec;
};
struct cipher_test_suite {
const struct cipher_testvec *vecs;
unsigned int count;
};
struct comp_test_suite {
struct {
const struct comp_testvec *vecs;
unsigned int count;
} comp, decomp;
};
struct hash_test_suite {
const struct hash_testvec *vecs;
unsigned int count;
};
struct cprng_test_suite {
const struct cprng_testvec *vecs;
unsigned int count;
};
struct drbg_test_suite {
const struct drbg_testvec *vecs;
unsigned int count;
};
struct akcipher_test_suite {
const struct akcipher_testvec *vecs;
unsigned int count;
};
struct kpp_test_suite {
const struct kpp_testvec *vecs;
unsigned int count;
};
struct alg_test_desc {
const char *alg;
int (*test)(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask);
int fips_allowed; /* set if alg is allowed in fips mode */
union {
struct aead_test_suite aead;
struct cipher_test_suite cipher;
struct comp_test_suite comp;
struct hash_test_suite hash;
struct cprng_test_suite cprng;
struct drbg_test_suite drbg;
struct akcipher_test_suite akcipher;
struct kpp_test_suite kpp;
} suite;
};
static const unsigned int IDX[8] = {
IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 };
static void hexdump(unsigned char *buf, unsigned int len)
{
print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
16, 1,
buf, len, false);
}
static int testmgr_alloc_buf(char *buf[XBUFSIZE])
{
int i;
for (i = 0; i < XBUFSIZE; i++) {
buf[i] = (void *)__get_free_page(GFP_KERNEL);
if (!buf[i])
goto err_free_buf;
}
return 0;
err_free_buf:
while (i-- > 0)
free_page((unsigned long)buf[i]);
return -ENOMEM;
}
static void testmgr_free_buf(char *buf[XBUFSIZE])
{
int i;
for (i = 0; i < XBUFSIZE; i++)
free_page((unsigned long)buf[i]);
}
static int ahash_guard_result(char *result, char c, int size)
{
int i;
for (i = 0; i < size; i++) {
if (result[i] != c)
return -EINVAL;
}
return 0;
}
static int ahash_partial_update(struct ahash_request **preq,
struct crypto_ahash *tfm, const struct hash_testvec *template,
void *hash_buff, int k, int temp, struct scatterlist *sg,
const char *algo, char *result, struct crypto_wait *wait)
{
char *state;
struct ahash_request *req;
int statesize, ret = -EINVAL;
static const unsigned char guard[] = { 0x00, 0xba, 0xad, 0x00 };
int digestsize = crypto_ahash_digestsize(tfm);
req = *preq;
statesize = crypto_ahash_statesize(
crypto_ahash_reqtfm(req));
state = kmalloc(statesize + sizeof(guard), GFP_KERNEL);
if (!state) {
pr_err("alg: hash: Failed to alloc state for %s\n", algo);
goto out_nostate;
}
memcpy(state + statesize, guard, sizeof(guard));
memset(result, 1, digestsize);
ret = crypto_ahash_export(req, state);
WARN_ON(memcmp(state + statesize, guard, sizeof(guard)));
if (ret) {
pr_err("alg: hash: Failed to export() for %s\n", algo);
goto out;
}
ret = ahash_guard_result(result, 1, digestsize);
if (ret) {
pr_err("alg: hash: Failed, export used req->result for %s\n",
algo);
goto out;
}
ahash_request_free(req);
req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!req) {
pr_err("alg: hash: Failed to alloc request for %s\n", algo);
goto out_noreq;
}
ahash_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, wait);
memcpy(hash_buff, template->plaintext + temp,
template->tap[k]);
sg_init_one(&sg[0], hash_buff, template->tap[k]);
ahash_request_set_crypt(req, sg, result, template->tap[k]);
ret = crypto_ahash_import(req, state);
if (ret) {
pr_err("alg: hash: Failed to import() for %s\n", algo);
goto out;
}
ret = ahash_guard_result(result, 1, digestsize);
if (ret) {
pr_err("alg: hash: Failed, import used req->result for %s\n",
algo);
goto out;
}
ret = crypto_wait_req(crypto_ahash_update(req), wait);
if (ret)
goto out;
*preq = req;
ret = 0;
goto out_noreq;
out:
ahash_request_free(req);
out_noreq:
kfree(state);
out_nostate:
return ret;
}
static int __test_hash(struct crypto_ahash *tfm,
const struct hash_testvec *template, unsigned int tcount,
bool use_digest, const int align_offset)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
size_t digest_size = crypto_ahash_digestsize(tfm);
unsigned int i, j, k, temp;
struct scatterlist sg[8];
char *result;
char *key;
struct ahash_request *req;
struct crypto_wait wait;
void *hash_buff;
char *xbuf[XBUFSIZE];
int ret = -ENOMEM;
result = kmalloc(digest_size, GFP_KERNEL);
if (!result)
return ret;
key = kmalloc(MAX_KEYLEN, GFP_KERNEL);
if (!key)
goto out_nobuf;
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
crypto_init_wait(&wait);
req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!req) {
printk(KERN_ERR "alg: hash: Failed to allocate request for "
"%s\n", algo);
goto out_noreq;
}
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np)
continue;
ret = -EINVAL;
if (WARN_ON(align_offset + template[i].psize > PAGE_SIZE))
goto out;
j++;
memset(result, 0, digest_size);
hash_buff = xbuf[0];
hash_buff += align_offset;
memcpy(hash_buff, template[i].plaintext, template[i].psize);
sg_init_one(&sg[0], hash_buff, template[i].psize);
if (template[i].ksize) {
crypto_ahash_clear_flags(tfm, ~0);
if (template[i].ksize > MAX_KEYLEN) {
pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
j, algo, template[i].ksize, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].ksize);
ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
if (ret) {
printk(KERN_ERR "alg: hash: setkey failed on "
"test %d for %s: ret=%d\n", j, algo,
-ret);
goto out;
}
}
ahash_request_set_crypt(req, sg, result, template[i].psize);
if (use_digest) {
ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
if (ret) {
pr_err("alg: hash: digest failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
} else {
memset(result, 1, digest_size);
ret = crypto_wait_req(crypto_ahash_init(req), &wait);
if (ret) {
pr_err("alg: hash: init failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
ret = ahash_guard_result(result, 1, digest_size);
if (ret) {
pr_err("alg: hash: init failed on test %d "
"for %s: used req->result\n", j, algo);
goto out;
}
ret = crypto_wait_req(crypto_ahash_update(req), &wait);
if (ret) {
pr_err("alg: hash: update failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
ret = ahash_guard_result(result, 1, digest_size);
if (ret) {
pr_err("alg: hash: update failed on test %d "
"for %s: used req->result\n", j, algo);
goto out;
}
ret = crypto_wait_req(crypto_ahash_final(req), &wait);
if (ret) {
pr_err("alg: hash: final failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
}
if (memcmp(result, template[i].digest,
crypto_ahash_digestsize(tfm))) {
printk(KERN_ERR "alg: hash: Test %d failed for %s\n",
j, algo);
hexdump(result, crypto_ahash_digestsize(tfm));
ret = -EINVAL;
goto out;
}
}
j = 0;
for (i = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (!template[i].np)
continue;
j++;
memset(result, 0, digest_size);
temp = 0;
sg_init_table(sg, template[i].np);
ret = -EINVAL;
for (k = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
sg_set_buf(&sg[k],
memcpy(xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].plaintext + temp,
template[i].tap[k]),
template[i].tap[k]);
temp += template[i].tap[k];
}
if (template[i].ksize) {
if (template[i].ksize > MAX_KEYLEN) {
pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
j, algo, template[i].ksize, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
crypto_ahash_clear_flags(tfm, ~0);
memcpy(key, template[i].key, template[i].ksize);
ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
if (ret) {
printk(KERN_ERR "alg: hash: setkey "
"failed on chunking test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
}
ahash_request_set_crypt(req, sg, result, template[i].psize);
ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
if (ret) {
pr_err("alg: hash: digest failed on chunking test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
if (memcmp(result, template[i].digest,
crypto_ahash_digestsize(tfm))) {
printk(KERN_ERR "alg: hash: Chunking test %d "
"failed for %s\n", j, algo);
hexdump(result, crypto_ahash_digestsize(tfm));
ret = -EINVAL;
goto out;
}
}
/* partial update exercise */
j = 0;
for (i = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (template[i].np < 2)
continue;
j++;
memset(result, 0, digest_size);
ret = -EINVAL;
hash_buff = xbuf[0];
memcpy(hash_buff, template[i].plaintext,
template[i].tap[0]);
sg_init_one(&sg[0], hash_buff, template[i].tap[0]);
if (template[i].ksize) {
crypto_ahash_clear_flags(tfm, ~0);
if (template[i].ksize > MAX_KEYLEN) {
pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
j, algo, template[i].ksize, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].ksize);
ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
if (ret) {
pr_err("alg: hash: setkey failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
}
ahash_request_set_crypt(req, sg, result, template[i].tap[0]);
ret = crypto_wait_req(crypto_ahash_init(req), &wait);
if (ret) {
pr_err("alg: hash: init failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
ret = crypto_wait_req(crypto_ahash_update(req), &wait);
if (ret) {
pr_err("alg: hash: update failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
temp = template[i].tap[0];
for (k = 1; k < template[i].np; k++) {
ret = ahash_partial_update(&req, tfm, &template[i],
hash_buff, k, temp, &sg[0], algo, result,
&wait);
if (ret) {
pr_err("alg: hash: partial update failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out_noreq;
}
temp += template[i].tap[k];
}
ret = crypto_wait_req(crypto_ahash_final(req), &wait);
if (ret) {
pr_err("alg: hash: final failed on test %d for %s: ret=%d\n",
j, algo, -ret);
goto out;
}
if (memcmp(result, template[i].digest,
crypto_ahash_digestsize(tfm))) {
pr_err("alg: hash: Partial Test %d failed for %s\n",
j, algo);
hexdump(result, crypto_ahash_digestsize(tfm));
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
ahash_request_free(req);
out_noreq:
testmgr_free_buf(xbuf);
out_nobuf:
kfree(key);
kfree(result);
return ret;
}
static int test_hash(struct crypto_ahash *tfm,
const struct hash_testvec *template,
unsigned int tcount, bool use_digest)
{
unsigned int alignmask;
int ret;
ret = __test_hash(tfm, template, tcount, use_digest, 0);
if (ret)
return ret;
/* test unaligned buffers, check with one byte offset */
ret = __test_hash(tfm, template, tcount, use_digest, 1);
if (ret)
return ret;
alignmask = crypto_tfm_alg_alignmask(&tfm->base);
if (alignmask) {
/* Check if alignment mask for tfm is correctly set. */
ret = __test_hash(tfm, template, tcount, use_digest,
alignmask + 1);
if (ret)
return ret;
}
return 0;
}
static int __test_aead(struct crypto_aead *tfm, int enc,
const struct aead_testvec *template, unsigned int tcount,
const bool diff_dst, const int align_offset)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
unsigned int i, j, k, n, temp;
int ret = -ENOMEM;
char *q;
char *key;
struct aead_request *req;
struct scatterlist *sg;
struct scatterlist *sgout;
const char *e, *d;
struct crypto_wait wait;
unsigned int authsize, iv_len;
void *input;
void *output;
void *assoc;
char *iv;
char *xbuf[XBUFSIZE];
char *xoutbuf[XBUFSIZE];
char *axbuf[XBUFSIZE];
iv = kzalloc(MAX_IVLEN, GFP_KERNEL);
if (!iv)
return ret;
key = kmalloc(MAX_KEYLEN, GFP_KERNEL);
if (!key)
goto out_noxbuf;
if (testmgr_alloc_buf(xbuf))
goto out_noxbuf;
if (testmgr_alloc_buf(axbuf))
goto out_noaxbuf;
if (diff_dst && testmgr_alloc_buf(xoutbuf))
goto out_nooutbuf;
/* avoid "the frame size is larger than 1024 bytes" compiler warning */
sg = kmalloc(array3_size(sizeof(*sg), 8, (diff_dst ? 4 : 2)),
GFP_KERNEL);
if (!sg)
goto out_nosg;
sgout = &sg[16];
if (diff_dst)
d = "-ddst";
else
d = "";
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
crypto_init_wait(&wait);
req = aead_request_alloc(tfm, GFP_KERNEL);
if (!req) {
pr_err("alg: aead%s: Failed to allocate request for %s\n",
d, algo);
goto out;
}
aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
iv_len = crypto_aead_ivsize(tfm);
for (i = 0, j = 0; i < tcount; i++) {
if (template[i].np)
continue;
j++;
/* some templates have no input data but they will
* touch input
*/
input = xbuf[0];
input += align_offset;
assoc = axbuf[0];
ret = -EINVAL;
if (WARN_ON(align_offset + template[i].ilen >
PAGE_SIZE || template[i].alen > PAGE_SIZE))
goto out;
memcpy(input, template[i].input, template[i].ilen);
memcpy(assoc, template[i].assoc, template[i].alen);
if (template[i].iv)
memcpy(iv, template[i].iv, iv_len);
else
memset(iv, 0, iv_len);
crypto_aead_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
if (template[i].klen > MAX_KEYLEN) {
pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n",
d, j, algo, template[i].klen,
MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].klen);
ret = crypto_aead_setkey(tfm, key, template[i].klen);
if (template[i].fail == !ret) {
pr_err("alg: aead%s: setkey failed on test %d for %s: flags=%x\n",
d, j, algo, crypto_aead_get_flags(tfm));
goto out;
} else if (ret)
continue;
authsize = abs(template[i].rlen - template[i].ilen);
ret = crypto_aead_setauthsize(tfm, authsize);
if (ret) {
pr_err("alg: aead%s: Failed to set authsize to %u on test %d for %s\n",
d, authsize, j, algo);
goto out;
}
k = !!template[i].alen;
sg_init_table(sg, k + 1);
sg_set_buf(&sg[0], assoc, template[i].alen);
sg_set_buf(&sg[k], input,
template[i].ilen + (enc ? authsize : 0));
output = input;
if (diff_dst) {
sg_init_table(sgout, k + 1);
sg_set_buf(&sgout[0], assoc, template[i].alen);
output = xoutbuf[0];
output += align_offset;
sg_set_buf(&sgout[k], output,
template[i].rlen + (enc ? 0 : authsize));
}
aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].ilen, iv);
aead_request_set_ad(req, template[i].alen);
ret = crypto_wait_req(enc ? crypto_aead_encrypt(req)
: crypto_aead_decrypt(req), &wait);
switch (ret) {
case 0:
if (template[i].novrfy) {
/* verification was supposed to fail */
pr_err("alg: aead%s: %s failed on test %d for %s: ret was 0, expected -EBADMSG\n",
d, e, j, algo);
/* so really, we got a bad message */
ret = -EBADMSG;
goto out;
}
break;
case -EBADMSG:
if (template[i].novrfy)
/* verification failure was expected */
continue;
/* fall through */
default:
pr_err("alg: aead%s: %s failed on test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
q = output;
if (memcmp(q, template[i].result, template[i].rlen)) {
pr_err("alg: aead%s: Test %d failed on %s for %s\n",
d, j, e, algo);
hexdump(q, template[i].rlen);
ret = -EINVAL;
goto out;
}
}
for (i = 0, j = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (!template[i].np)
continue;
j++;
if (template[i].iv)
memcpy(iv, template[i].iv, iv_len);
else
memset(iv, 0, MAX_IVLEN);
crypto_aead_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
if (template[i].klen > MAX_KEYLEN) {
pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n",
d, j, algo, template[i].klen, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].klen);
ret = crypto_aead_setkey(tfm, key, template[i].klen);
if (template[i].fail == !ret) {
pr_err("alg: aead%s: setkey failed on chunk test %d for %s: flags=%x\n",
d, j, algo, crypto_aead_get_flags(tfm));
goto out;
} else if (ret)
continue;
authsize = abs(template[i].rlen - template[i].ilen);
ret = -EINVAL;
sg_init_table(sg, template[i].anp + template[i].np);
if (diff_dst)
sg_init_table(sgout, template[i].anp + template[i].np);
ret = -EINVAL;
for (k = 0, temp = 0; k < template[i].anp; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].atap[k] > PAGE_SIZE))
goto out;
sg_set_buf(&sg[k],
memcpy(axbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].assoc + temp,
template[i].atap[k]),
template[i].atap[k]);
if (diff_dst)
sg_set_buf(&sgout[k],
axbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].atap[k]);
temp += template[i].atap[k];
}
for (k = 0, temp = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]);
memcpy(q, template[i].input + temp, template[i].tap[k]);
sg_set_buf(&sg[template[i].anp + k],
q, template[i].tap[k]);
if (diff_dst) {
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
memset(q, 0, template[i].tap[k]);
sg_set_buf(&sgout[template[i].anp + k],
q, template[i].tap[k]);
}
n = template[i].tap[k];
if (k == template[i].np - 1 && enc)
n += authsize;
if (offset_in_page(q) + n < PAGE_SIZE)
q[n] = 0;
temp += template[i].tap[k];
}
ret = crypto_aead_setauthsize(tfm, authsize);
if (ret) {
pr_err("alg: aead%s: Failed to set authsize to %u on chunk test %d for %s\n",
d, authsize, j, algo);
goto out;
}
if (enc) {
if (WARN_ON(sg[template[i].anp + k - 1].offset +
sg[template[i].anp + k - 1].length +
authsize > PAGE_SIZE)) {
ret = -EINVAL;
goto out;
}
if (diff_dst)
sgout[template[i].anp + k - 1].length +=
authsize;
sg[template[i].anp + k - 1].length += authsize;
}
aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].ilen,
iv);
aead_request_set_ad(req, template[i].alen);
ret = crypto_wait_req(enc ? crypto_aead_encrypt(req)
: crypto_aead_decrypt(req), &wait);
switch (ret) {
case 0:
if (template[i].novrfy) {
/* verification was supposed to fail */
pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret was 0, expected -EBADMSG\n",
d, e, j, algo);
/* so really, we got a bad message */
ret = -EBADMSG;
goto out;
}
break;
case -EBADMSG:
if (template[i].novrfy)
/* verification failure was expected */
continue;
/* fall through */
default:
pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
ret = -EINVAL;
for (k = 0, temp = 0; k < template[i].np; k++) {
if (diff_dst)
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
else
q = xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
n = template[i].tap[k];
if (k == template[i].np - 1)
n += enc ? authsize : -authsize;
if (memcmp(q, template[i].result + temp, n)) {
pr_err("alg: aead%s: Chunk test %d failed on %s at page %u for %s\n",
d, j, e, k, algo);
hexdump(q, n);
goto out;
}
q += n;
if (k == template[i].np - 1 && !enc) {
if (!diff_dst &&
memcmp(q, template[i].input +
temp + n, authsize))
n = authsize;
else
n = 0;
} else {
for (n = 0; offset_in_page(q + n) && q[n]; n++)
;
}
if (n) {
pr_err("alg: aead%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n",
d, j, e, k, algo, n);
hexdump(q, n);
goto out;
}
temp += template[i].tap[k];
}
}
ret = 0;
out:
aead_request_free(req);
kfree(sg);
out_nosg:
if (diff_dst)
testmgr_free_buf(xoutbuf);
out_nooutbuf:
testmgr_free_buf(axbuf);
out_noaxbuf:
testmgr_free_buf(xbuf);
out_noxbuf:
kfree(key);
kfree(iv);
return ret;
}
static int test_aead(struct crypto_aead *tfm, int enc,
const struct aead_testvec *template, unsigned int tcount)
{
unsigned int alignmask;
int ret;
/* test 'dst == src' case */
ret = __test_aead(tfm, enc, template, tcount, false, 0);
if (ret)
return ret;
/* test 'dst != src' case */
ret = __test_aead(tfm, enc, template, tcount, true, 0);
if (ret)
return ret;
/* test unaligned buffers, check with one byte offset */
ret = __test_aead(tfm, enc, template, tcount, true, 1);
if (ret)
return ret;
alignmask = crypto_tfm_alg_alignmask(&tfm->base);
if (alignmask) {
/* Check if alignment mask for tfm is correctly set. */
ret = __test_aead(tfm, enc, template, tcount, true,
alignmask + 1);
if (ret)
return ret;
}
return 0;
}
static int test_cipher(struct crypto_cipher *tfm, int enc,
const struct cipher_testvec *template,
unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm));
unsigned int i, j, k;
char *q;
const char *e;
const char *input, *result;
void *data;
char *xbuf[XBUFSIZE];
int ret = -ENOMEM;
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np)
continue;
if (fips_enabled && template[i].fips_skip)
continue;
input = enc ? template[i].ptext : template[i].ctext;
result = enc ? template[i].ctext : template[i].ptext;
j++;
ret = -EINVAL;
if (WARN_ON(template[i].len > PAGE_SIZE))
goto out;
data = xbuf[0];
memcpy(data, input, template[i].len);
crypto_cipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_cipher_setkey(tfm, template[i].key,
template[i].klen);
if (template[i].fail == !ret) {
printk(KERN_ERR "alg: cipher: setkey failed "
"on test %d for %s: flags=%x\n", j,
algo, crypto_cipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
for (k = 0; k < template[i].len;
k += crypto_cipher_blocksize(tfm)) {
if (enc)
crypto_cipher_encrypt_one(tfm, data + k,
data + k);
else
crypto_cipher_decrypt_one(tfm, data + k,
data + k);
}
q = data;
if (memcmp(q, result, template[i].len)) {
printk(KERN_ERR "alg: cipher: Test %d failed "
"on %s for %s\n", j, e, algo);
hexdump(q, template[i].len);
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
testmgr_free_buf(xbuf);
out_nobuf:
return ret;
}
static int __test_skcipher(struct crypto_skcipher *tfm, int enc,
const struct cipher_testvec *template,
unsigned int tcount,
const bool diff_dst, const int align_offset)
{
const char *algo =
crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
unsigned int i, j, k, n, temp;
char *q;
struct skcipher_request *req;
struct scatterlist sg[8];
struct scatterlist sgout[8];
const char *e, *d;
struct crypto_wait wait;
const char *input, *result;
void *data;
char iv[MAX_IVLEN];
char *xbuf[XBUFSIZE];
char *xoutbuf[XBUFSIZE];
int ret = -ENOMEM;
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
if (diff_dst && testmgr_alloc_buf(xoutbuf))
goto out_nooutbuf;
if (diff_dst)
d = "-ddst";
else
d = "";
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
crypto_init_wait(&wait);
req = skcipher_request_alloc(tfm, GFP_KERNEL);
if (!req) {
pr_err("alg: skcipher%s: Failed to allocate request for %s\n",
d, algo);
goto out;
}
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np && !template[i].also_non_np)
continue;
if (fips_enabled && template[i].fips_skip)
continue;
if (template[i].iv && !(template[i].generates_iv && enc))
memcpy(iv, template[i].iv, ivsize);
else
memset(iv, 0, MAX_IVLEN);
input = enc ? template[i].ptext : template[i].ctext;
result = enc ? template[i].ctext : template[i].ptext;
j++;
ret = -EINVAL;
if (WARN_ON(align_offset + template[i].len > PAGE_SIZE))
goto out;
data = xbuf[0];
data += align_offset;
memcpy(data, input, template[i].len);
crypto_skcipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_skcipher_set_flags(tfm,
CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_skcipher_setkey(tfm, template[i].key,
template[i].klen);
if (template[i].fail == !ret) {
pr_err("alg: skcipher%s: setkey failed on test %d for %s: flags=%x\n",
d, j, algo, crypto_skcipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
sg_init_one(&sg[0], data, template[i].len);
if (diff_dst) {
data = xoutbuf[0];
data += align_offset;
sg_init_one(&sgout[0], data, template[i].len);
}
skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].len, iv);
ret = crypto_wait_req(enc ? crypto_skcipher_encrypt(req) :
crypto_skcipher_decrypt(req), &wait);
if (ret) {
pr_err("alg: skcipher%s: %s failed on test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
q = data;
if (memcmp(q, result, template[i].len)) {
pr_err("alg: skcipher%s: Test %d failed (invalid result) on %s for %s\n",
d, j, e, algo);
hexdump(q, template[i].len);
ret = -EINVAL;
goto out;
}
if (template[i].generates_iv && enc &&
memcmp(iv, template[i].iv, crypto_skcipher_ivsize(tfm))) {
pr_err("alg: skcipher%s: Test %d failed (invalid output IV) on %s for %s\n",
d, j, e, algo);
hexdump(iv, crypto_skcipher_ivsize(tfm));
ret = -EINVAL;
goto out;
}
}
j = 0;
for (i = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (!template[i].np)
continue;
if (fips_enabled && template[i].fips_skip)
continue;
if (template[i].iv && !(template[i].generates_iv && enc))
memcpy(iv, template[i].iv, ivsize);
else
memset(iv, 0, MAX_IVLEN);
input = enc ? template[i].ptext : template[i].ctext;
result = enc ? template[i].ctext : template[i].ptext;
j++;
crypto_skcipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_skcipher_set_flags(tfm,
CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_skcipher_setkey(tfm, template[i].key,
template[i].klen);
if (template[i].fail == !ret) {
pr_err("alg: skcipher%s: setkey failed on chunk test %d for %s: flags=%x\n",
d, j, algo, crypto_skcipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
temp = 0;
ret = -EINVAL;
sg_init_table(sg, template[i].np);
if (diff_dst)
sg_init_table(sgout, template[i].np);
for (k = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]);
memcpy(q, input + temp, template[i].tap[k]);
if (offset_in_page(q) + template[i].tap[k] < PAGE_SIZE)
q[template[i].tap[k]] = 0;
sg_set_buf(&sg[k], q, template[i].tap[k]);
if (diff_dst) {
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
sg_set_buf(&sgout[k], q, template[i].tap[k]);
memset(q, 0, template[i].tap[k]);
if (offset_in_page(q) +
template[i].tap[k] < PAGE_SIZE)
q[template[i].tap[k]] = 0;
}
temp += template[i].tap[k];
}
skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].len, iv);
ret = crypto_wait_req(enc ? crypto_skcipher_encrypt(req) :
crypto_skcipher_decrypt(req), &wait);
if (ret) {
pr_err("alg: skcipher%s: %s failed on chunk test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
temp = 0;
ret = -EINVAL;
for (k = 0; k < template[i].np; k++) {
if (diff_dst)
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
else
q = xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
if (memcmp(q, result + temp, template[i].tap[k])) {
pr_err("alg: skcipher%s: Chunk test %d failed on %s at page %u for %s\n",
d, j, e, k, algo);
hexdump(q, template[i].tap[k]);
goto out;
}
q += template[i].tap[k];
for (n = 0; offset_in_page(q + n) && q[n]; n++)
;
if (n) {
pr_err("alg: skcipher%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n",
d, j, e, k, algo, n);
hexdump(q, n);
goto out;
}
temp += template[i].tap[k];
}
}
ret = 0;
out:
skcipher_request_free(req);
if (diff_dst)
testmgr_free_buf(xoutbuf);
out_nooutbuf:
testmgr_free_buf(xbuf);
out_nobuf:
return ret;
}
static int test_skcipher(struct crypto_skcipher *tfm, int enc,
const struct cipher_testvec *template,
unsigned int tcount)
{
unsigned int alignmask;
int ret;
/* test 'dst == src' case */
ret = __test_skcipher(tfm, enc, template, tcount, false, 0);
if (ret)
return ret;
/* test 'dst != src' case */
ret = __test_skcipher(tfm, enc, template, tcount, true, 0);
if (ret)
return ret;
/* test unaligned buffers, check with one byte offset */
ret = __test_skcipher(tfm, enc, template, tcount, true, 1);
if (ret)
return ret;
alignmask = crypto_tfm_alg_alignmask(&tfm->base);
if (alignmask) {
/* Check if alignment mask for tfm is correctly set. */
ret = __test_skcipher(tfm, enc, template, tcount, true,
alignmask + 1);
if (ret)
return ret;
}
return 0;
}
static int test_comp(struct crypto_comp *tfm,
const struct comp_testvec *ctemplate,
const struct comp_testvec *dtemplate,
int ctcount, int dtcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm));
char *output, *decomp_output;
unsigned int i;
int ret;
output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
if (!output)
return -ENOMEM;
decomp_output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
if (!decomp_output) {
kfree(output);
return -ENOMEM;
}
for (i = 0; i < ctcount; i++) {
int ilen;
unsigned int dlen = COMP_BUF_SIZE;
memset(output, 0, sizeof(COMP_BUF_SIZE));
memset(decomp_output, 0, sizeof(COMP_BUF_SIZE));
ilen = ctemplate[i].inlen;
ret = crypto_comp_compress(tfm, ctemplate[i].input,
ilen, output, &dlen);
if (ret) {
printk(KERN_ERR "alg: comp: compression failed "
"on test %d for %s: ret=%d\n", i + 1, algo,
-ret);
goto out;
}
ilen = dlen;
dlen = COMP_BUF_SIZE;
ret = crypto_comp_decompress(tfm, output,
ilen, decomp_output, &dlen);
if (ret) {
pr_err("alg: comp: compression failed: decompress: on test %d for %s failed: ret=%d\n",
i + 1, algo, -ret);
goto out;
}
if (dlen != ctemplate[i].inlen) {
printk(KERN_ERR "alg: comp: Compression test %d "
"failed for %s: output len = %d\n", i + 1, algo,
dlen);
ret = -EINVAL;
goto out;
}
if (memcmp(decomp_output, ctemplate[i].input,
ctemplate[i].inlen)) {
pr_err("alg: comp: compression failed: output differs: on test %d for %s\n",
i + 1, algo);
hexdump(decomp_output, dlen);
ret = -EINVAL;
goto out;
}
}
for (i = 0; i < dtcount; i++) {
int ilen;
unsigned int dlen = COMP_BUF_SIZE;
memset(decomp_output, 0, sizeof(COMP_BUF_SIZE));
ilen = dtemplate[i].inlen;
ret = crypto_comp_decompress(tfm, dtemplate[i].input,
ilen, decomp_output, &dlen);
if (ret) {
printk(KERN_ERR "alg: comp: decompression failed "
"on test %d for %s: ret=%d\n", i + 1, algo,
-ret);
goto out;
}
if (dlen != dtemplate[i].outlen) {
printk(KERN_ERR "alg: comp: Decompression test %d "
"failed for %s: output len = %d\n", i + 1, algo,
dlen);
ret = -EINVAL;
goto out;
}
if (memcmp(decomp_output, dtemplate[i].output, dlen)) {
printk(KERN_ERR "alg: comp: Decompression test %d "
"failed for %s\n", i + 1, algo);
hexdump(decomp_output, dlen);
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
kfree(decomp_output);
kfree(output);
return ret;
}
static int test_acomp(struct crypto_acomp *tfm,
const struct comp_testvec *ctemplate,
const struct comp_testvec *dtemplate,
int ctcount, int dtcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_acomp_tfm(tfm));
unsigned int i;
char *output, *decomp_out;
int ret;
struct scatterlist src, dst;
struct acomp_req *req;
struct crypto_wait wait;
output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
if (!output)
return -ENOMEM;
decomp_out = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
if (!decomp_out) {
kfree(output);
return -ENOMEM;
}
for (i = 0; i < ctcount; i++) {
unsigned int dlen = COMP_BUF_SIZE;
int ilen = ctemplate[i].inlen;
void *input_vec;
input_vec = kmemdup(ctemplate[i].input, ilen, GFP_KERNEL);
if (!input_vec) {
ret = -ENOMEM;
goto out;
}
memset(output, 0, dlen);
crypto_init_wait(&wait);
sg_init_one(&src, input_vec, ilen);
sg_init_one(&dst, output, dlen);
req = acomp_request_alloc(tfm);
if (!req) {
pr_err("alg: acomp: request alloc failed for %s\n",
algo);
kfree(input_vec);
ret = -ENOMEM;
goto out;
}
acomp_request_set_params(req, &src, &dst, ilen, dlen);
acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
ret = crypto_wait_req(crypto_acomp_compress(req), &wait);
if (ret) {
pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n",
i + 1, algo, -ret);
kfree(input_vec);
acomp_request_free(req);
goto out;
}
ilen = req->dlen;
dlen = COMP_BUF_SIZE;
sg_init_one(&src, output, ilen);
sg_init_one(&dst, decomp_out, dlen);
crypto_init_wait(&wait);
acomp_request_set_params(req, &src, &dst, ilen, dlen);
ret = crypto_wait_req(crypto_acomp_decompress(req), &wait);
if (ret) {
pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n",
i + 1, algo, -ret);
kfree(input_vec);
acomp_request_free(req);
goto out;
}
if (req->dlen != ctemplate[i].inlen) {
pr_err("alg: acomp: Compression test %d failed for %s: output len = %d\n",
i + 1, algo, req->dlen);
ret = -EINVAL;
kfree(input_vec);
acomp_request_free(req);
goto out;
}
if (memcmp(input_vec, decomp_out, req->dlen)) {
pr_err("alg: acomp: Compression test %d failed for %s\n",
i + 1, algo);
hexdump(output, req->dlen);
ret = -EINVAL;
kfree(input_vec);
acomp_request_free(req);
goto out;
}
kfree(input_vec);
acomp_request_free(req);
}
for (i = 0; i < dtcount; i++) {
unsigned int dlen = COMP_BUF_SIZE;
int ilen = dtemplate[i].inlen;
void *input_vec;
input_vec = kmemdup(dtemplate[i].input, ilen, GFP_KERNEL);
if (!input_vec) {
ret = -ENOMEM;
goto out;
}
memset(output, 0, dlen);
crypto_init_wait(&wait);
sg_init_one(&src, input_vec, ilen);
sg_init_one(&dst, output, dlen);
req = acomp_request_alloc(tfm);
if (!req) {
pr_err("alg: acomp: request alloc failed for %s\n",
algo);
kfree(input_vec);
ret = -ENOMEM;
goto out;
}
acomp_request_set_params(req, &src, &dst, ilen, dlen);
acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
ret = crypto_wait_req(crypto_acomp_decompress(req), &wait);
if (ret) {
pr_err("alg: acomp: decompression failed on test %d for %s: ret=%d\n",
i + 1, algo, -ret);
kfree(input_vec);
acomp_request_free(req);
goto out;
}
if (req->dlen != dtemplate[i].outlen) {
pr_err("alg: acomp: Decompression test %d failed for %s: output len = %d\n",
i + 1, algo, req->dlen);
ret = -EINVAL;
kfree(input_vec);
acomp_request_free(req);
goto out;
}
if (memcmp(output, dtemplate[i].output, req->dlen)) {
pr_err("alg: acomp: Decompression test %d failed for %s\n",
i + 1, algo);
hexdump(output, req->dlen);
ret = -EINVAL;
kfree(input_vec);
acomp_request_free(req);
goto out;
}
kfree(input_vec);
acomp_request_free(req);
}
ret = 0;
out:
kfree(decomp_out);
kfree(output);
return ret;
}
static int test_cprng(struct crypto_rng *tfm,
const struct cprng_testvec *template,
unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm));
int err = 0, i, j, seedsize;
u8 *seed;
char result[32];
seedsize = crypto_rng_seedsize(tfm);
seed = kmalloc(seedsize, GFP_KERNEL);
if (!seed) {
printk(KERN_ERR "alg: cprng: Failed to allocate seed space "
"for %s\n", algo);
return -ENOMEM;
}
for (i = 0; i < tcount; i++) {
memset(result, 0, 32);
memcpy(seed, template[i].v, template[i].vlen);
memcpy(seed + template[i].vlen, template[i].key,
template[i].klen);
memcpy(seed + template[i].vlen + template[i].klen,
template[i].dt, template[i].dtlen);
err = crypto_rng_reset(tfm, seed, seedsize);
if (err) {
printk(KERN_ERR "alg: cprng: Failed to reset rng "
"for %s\n", algo);
goto out;
}
for (j = 0; j < template[i].loops; j++) {
err = crypto_rng_get_bytes(tfm, result,
template[i].rlen);
if (err < 0) {
printk(KERN_ERR "alg: cprng: Failed to obtain "
"the correct amount of random data for "
"%s (requested %d)\n", algo,
template[i].rlen);
goto out;
}
}
err = memcmp(result, template[i].result,
template[i].rlen);
if (err) {
printk(KERN_ERR "alg: cprng: Test %d failed for %s\n",
i, algo);
hexdump(result, template[i].rlen);
err = -EINVAL;
goto out;
}
}
out:
kfree(seed);
return err;
}
static int alg_test_aead(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_aead *tfm;
int err = 0;
tfm = crypto_alloc_aead(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: aead: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.aead.enc.vecs) {
err = test_aead(tfm, ENCRYPT, desc->suite.aead.enc.vecs,
desc->suite.aead.enc.count);
if (err)
goto out;
}
if (!err && desc->suite.aead.dec.vecs)
err = test_aead(tfm, DECRYPT, desc->suite.aead.dec.vecs,
desc->suite.aead.dec.count);
out:
crypto_free_aead(tfm);
return err;
}
static int alg_test_cipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
const struct cipher_test_suite *suite = &desc->suite.cipher;
struct crypto_cipher *tfm;
int err;
tfm = crypto_alloc_cipher(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: cipher: Failed to load transform for "
"%s: %ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_cipher(tfm, ENCRYPT, suite->vecs, suite->count);
if (!err)
err = test_cipher(tfm, DECRYPT, suite->vecs, suite->count);
crypto_free_cipher(tfm);
return err;
}
static int alg_test_skcipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
const struct cipher_test_suite *suite = &desc->suite.cipher;
struct crypto_skcipher *tfm;
int err;
tfm = crypto_alloc_skcipher(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: skcipher: Failed to load transform for "
"%s: %ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_skcipher(tfm, ENCRYPT, suite->vecs, suite->count);
if (!err)
err = test_skcipher(tfm, DECRYPT, suite->vecs, suite->count);
crypto_free_skcipher(tfm);
return err;
}
static int alg_test_comp(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_comp *comp;
struct crypto_acomp *acomp;
int err;
u32 algo_type = type & CRYPTO_ALG_TYPE_ACOMPRESS_MASK;
if (algo_type == CRYPTO_ALG_TYPE_ACOMPRESS) {
acomp = crypto_alloc_acomp(driver, type, mask);
if (IS_ERR(acomp)) {
pr_err("alg: acomp: Failed to load transform for %s: %ld\n",
driver, PTR_ERR(acomp));
return PTR_ERR(acomp);
}
err = test_acomp(acomp, desc->suite.comp.comp.vecs,
desc->suite.comp.decomp.vecs,
desc->suite.comp.comp.count,
desc->suite.comp.decomp.count);
crypto_free_acomp(acomp);
} else {
comp = crypto_alloc_comp(driver, type, mask);
if (IS_ERR(comp)) {
pr_err("alg: comp: Failed to load transform for %s: %ld\n",
driver, PTR_ERR(comp));
return PTR_ERR(comp);
}
err = test_comp(comp, desc->suite.comp.comp.vecs,
desc->suite.comp.decomp.vecs,
desc->suite.comp.comp.count,
desc->suite.comp.decomp.count);
crypto_free_comp(comp);
}
return err;
}
static int __alg_test_hash(const struct hash_testvec *template,
unsigned int tcount, const char *driver,
u32 type, u32 mask)
{
struct crypto_ahash *tfm;
int err;
tfm = crypto_alloc_ahash(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: hash: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_hash(tfm, template, tcount, true);
if (!err)
err = test_hash(tfm, template, tcount, false);
crypto_free_ahash(tfm);
return err;
}
static int alg_test_hash(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
const struct hash_testvec *template = desc->suite.hash.vecs;
unsigned int tcount = desc->suite.hash.count;
unsigned int nr_unkeyed, nr_keyed;
int err;
/*
* For OPTIONAL_KEY algorithms, we have to do all the unkeyed tests
* first, before setting a key on the tfm. To make this easier, we
* require that the unkeyed test vectors (if any) are listed first.
*/
for (nr_unkeyed = 0; nr_unkeyed < tcount; nr_unkeyed++) {
if (template[nr_unkeyed].ksize)
break;
}
for (nr_keyed = 0; nr_unkeyed + nr_keyed < tcount; nr_keyed++) {
if (!template[nr_unkeyed + nr_keyed].ksize) {
pr_err("alg: hash: test vectors for %s out of order, "
"unkeyed ones must come first\n", desc->alg);
return -EINVAL;
}
}
err = 0;
if (nr_unkeyed) {
err = __alg_test_hash(template, nr_unkeyed, driver, type, mask);
template += nr_unkeyed;
}
if (!err && nr_keyed)
err = __alg_test_hash(template, nr_keyed, driver, type, mask);
return err;
}
static int alg_test_crc32c(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_shash *tfm;
u32 val;
int err;
err = alg_test_hash(desc, driver, type, mask);
if (err)
goto out;
tfm = crypto_alloc_shash(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
err = PTR_ERR(tfm);
goto out;
}
do {
SHASH_DESC_ON_STACK(shash, tfm);
u32 *ctx = (u32 *)shash_desc_ctx(shash);
shash->tfm = tfm;
shash->flags = 0;
*ctx = le32_to_cpu(420553207);
err = crypto_shash_final(shash, (u8 *)&val);
if (err) {
printk(KERN_ERR "alg: crc32c: Operation failed for "
"%s: %d\n", driver, err);
break;
}
if (val != ~420553207) {
printk(KERN_ERR "alg: crc32c: Test failed for %s: "
"%d\n", driver, val);
err = -EINVAL;
}
} while (0);
crypto_free_shash(tfm);
out:
return err;
}
static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_rng *rng;
int err;
rng = crypto_alloc_rng(driver, type, mask);
if (IS_ERR(rng)) {
printk(KERN_ERR "alg: cprng: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(rng));
return PTR_ERR(rng);
}
err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count);
crypto_free_rng(rng);
return err;
}
static int drbg_cavs_test(const struct drbg_testvec *test, int pr,
const char *driver, u32 type, u32 mask)
{
int ret = -EAGAIN;
struct crypto_rng *drng;
struct drbg_test_data test_data;
struct drbg_string addtl, pers, testentropy;
unsigned char *buf = kzalloc(test->expectedlen, GFP_KERNEL);
if (!buf)
return -ENOMEM;
drng = crypto_alloc_rng(driver, type, mask);
if (IS_ERR(drng)) {
printk(KERN_ERR "alg: drbg: could not allocate DRNG handle for "
"%s\n", driver);
kzfree(buf);
return -ENOMEM;
}
test_data.testentropy = &testentropy;
drbg_string_fill(&testentropy, test->entropy, test->entropylen);
drbg_string_fill(&pers, test->pers, test->perslen);
ret = crypto_drbg_reset_test(drng, &pers, &test_data);
if (ret) {
printk(KERN_ERR "alg: drbg: Failed to reset rng\n");
goto outbuf;
}
drbg_string_fill(&addtl, test->addtla, test->addtllen);
if (pr) {
drbg_string_fill(&testentropy, test->entpra, test->entprlen);
ret = crypto_drbg_get_bytes_addtl_test(drng,
buf, test->expectedlen, &addtl, &test_data);
} else {
ret = crypto_drbg_get_bytes_addtl(drng,
buf, test->expectedlen, &addtl);
}
if (ret < 0) {
printk(KERN_ERR "alg: drbg: could not obtain random data for "
"driver %s\n", driver);
goto outbuf;
}
drbg_string_fill(&addtl, test->addtlb, test->addtllen);
if (pr) {
drbg_string_fill(&testentropy, test->entprb, test->entprlen);
ret = crypto_drbg_get_bytes_addtl_test(drng,
buf, test->expectedlen, &addtl, &test_data);
} else {
ret = crypto_drbg_get_bytes_addtl(drng,
buf, test->expectedlen, &addtl);
}
if (ret < 0) {
printk(KERN_ERR "alg: drbg: could not obtain random data for "
"driver %s\n", driver);
goto outbuf;
}
ret = memcmp(test->expected, buf, test->expectedlen);
outbuf:
crypto_free_rng(drng);
kzfree(buf);
return ret;
}
static int alg_test_drbg(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
int err = 0;
int pr = 0;
int i = 0;
const struct drbg_testvec *template = desc->suite.drbg.vecs;
unsigned int tcount = desc->suite.drbg.count;
if (0 == memcmp(driver, "drbg_pr_", 8))
pr = 1;
for (i = 0; i < tcount; i++) {
err = drbg_cavs_test(&template[i], pr, driver, type, mask);
if (err) {
printk(KERN_ERR "alg: drbg: Test %d failed for %s\n",
i, driver);
err = -EINVAL;
break;
}
}
return err;
}
static int do_test_kpp(struct crypto_kpp *tfm, const struct kpp_testvec *vec,
const char *alg)
{
struct kpp_request *req;
void *input_buf = NULL;
void *output_buf = NULL;
void *a_public = NULL;
void *a_ss = NULL;
void *shared_secret = NULL;
struct crypto_wait wait;
unsigned int out_len_max;
int err = -ENOMEM;
struct scatterlist src, dst;
req = kpp_request_alloc(tfm, GFP_KERNEL);
if (!req)
return err;
crypto_init_wait(&wait);
err = crypto_kpp_set_secret(tfm, vec->secret, vec->secret_size);
if (err < 0)
goto free_req;
out_len_max = crypto_kpp_maxsize(tfm);
output_buf = kzalloc(out_len_max, GFP_KERNEL);
if (!output_buf) {
err = -ENOMEM;
goto free_req;
}
/* Use appropriate parameter as base */
kpp_request_set_input(req, NULL, 0);
sg_init_one(&dst, output_buf, out_len_max);
kpp_request_set_output(req, &dst, out_len_max);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
/* Compute party A's public key */
err = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait);
if (err) {
pr_err("alg: %s: Party A: generate public key test failed. err %d\n",
alg, err);
goto free_output;
}
if (vec->genkey) {
/* Save party A's public key */
a_public = kzalloc(out_len_max, GFP_KERNEL);
if (!a_public) {
err = -ENOMEM;
goto free_output;
}
memcpy(a_public, sg_virt(req->dst), out_len_max);
} else {
/* Verify calculated public key */
if (memcmp(vec->expected_a_public, sg_virt(req->dst),
vec->expected_a_public_size)) {
pr_err("alg: %s: Party A: generate public key test failed. Invalid output\n",
alg);
err = -EINVAL;
goto free_output;
}
}
/* Calculate shared secret key by using counter part (b) public key. */
input_buf = kzalloc(vec->b_public_size, GFP_KERNEL);
if (!input_buf) {
err = -ENOMEM;
goto free_output;
}
memcpy(input_buf, vec->b_public, vec->b_public_size);
sg_init_one(&src, input_buf, vec->b_public_size);
sg_init_one(&dst, output_buf, out_len_max);
kpp_request_set_input(req, &src, vec->b_public_size);
kpp_request_set_output(req, &dst, out_len_max);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait);
if (err) {
pr_err("alg: %s: Party A: compute shared secret test failed. err %d\n",
alg, err);
goto free_all;
}
if (vec->genkey) {
/* Save the shared secret obtained by party A */
a_ss = kzalloc(vec->expected_ss_size, GFP_KERNEL);
if (!a_ss) {
err = -ENOMEM;
goto free_all;
}
memcpy(a_ss, sg_virt(req->dst), vec->expected_ss_size);
/*
* Calculate party B's shared secret by using party A's
* public key.
*/
err = crypto_kpp_set_secret(tfm, vec->b_secret,
vec->b_secret_size);
if (err < 0)
goto free_all;
sg_init_one(&src, a_public, vec->expected_a_public_size);
sg_init_one(&dst, output_buf, out_len_max);
kpp_request_set_input(req, &src, vec->expected_a_public_size);
kpp_request_set_output(req, &dst, out_len_max);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
err = crypto_wait_req(crypto_kpp_compute_shared_secret(req),
&wait);
if (err) {
pr_err("alg: %s: Party B: compute shared secret failed. err %d\n",
alg, err);
goto free_all;
}
shared_secret = a_ss;
} else {
shared_secret = (void *)vec->expected_ss;
}
/*
* verify shared secret from which the user will derive
* secret key by executing whatever hash it has chosen
*/
if (memcmp(shared_secret, sg_virt(req->dst),
vec->expected_ss_size)) {
pr_err("alg: %s: compute shared secret test failed. Invalid output\n",
alg);
err = -EINVAL;
}
free_all:
kfree(a_ss);
kfree(input_buf);
free_output:
kfree(a_public);
kfree(output_buf);
free_req:
kpp_request_free(req);
return err;
}
static int test_kpp(struct crypto_kpp *tfm, const char *alg,
const struct kpp_testvec *vecs, unsigned int tcount)
{
int ret, i;
for (i = 0; i < tcount; i++) {
ret = do_test_kpp(tfm, vecs++, alg);
if (ret) {
pr_err("alg: %s: test failed on vector %d, err=%d\n",
alg, i + 1, ret);
return ret;
}
}
return 0;
}
static int alg_test_kpp(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_kpp *tfm;
int err = 0;
tfm = crypto_alloc_kpp(driver, type, mask);
if (IS_ERR(tfm)) {
pr_err("alg: kpp: Failed to load tfm for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.kpp.vecs)
err = test_kpp(tfm, desc->alg, desc->suite.kpp.vecs,
desc->suite.kpp.count);
crypto_free_kpp(tfm);
return err;
}
static int test_akcipher_one(struct crypto_akcipher *tfm,
const struct akcipher_testvec *vecs)
{
char *xbuf[XBUFSIZE];
struct akcipher_request *req;
void *outbuf_enc = NULL;
void *outbuf_dec = NULL;
struct crypto_wait wait;
unsigned int out_len_max, out_len = 0;
int err = -ENOMEM;
struct scatterlist src, dst, src_tab[2];
if (testmgr_alloc_buf(xbuf))
return err;
req = akcipher_request_alloc(tfm, GFP_KERNEL);
if (!req)
goto free_xbuf;
crypto_init_wait(&wait);
if (vecs->public_key_vec)
err = crypto_akcipher_set_pub_key(tfm, vecs->key,
vecs->key_len);
else
err = crypto_akcipher_set_priv_key(tfm, vecs->key,
vecs->key_len);
if (err)
goto free_req;
err = -ENOMEM;
out_len_max = crypto_akcipher_maxsize(tfm);
outbuf_enc = kzalloc(out_len_max, GFP_KERNEL);
if (!outbuf_enc)
goto free_req;
if (WARN_ON(vecs->m_size > PAGE_SIZE))
goto free_all;
memcpy(xbuf[0], vecs->m, vecs->m_size);
sg_init_table(src_tab, 2);
sg_set_buf(&src_tab[0], xbuf[0], 8);
sg_set_buf(&src_tab[1], xbuf[0] + 8, vecs->m_size - 8);
sg_init_one(&dst, outbuf_enc, out_len_max);
akcipher_request_set_crypt(req, src_tab, &dst, vecs->m_size,
out_len_max);
akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
err = crypto_wait_req(vecs->siggen_sigver_test ?
/* Run asymmetric signature generation */
crypto_akcipher_sign(req) :
/* Run asymmetric encrypt */
crypto_akcipher_encrypt(req), &wait);
if (err) {
pr_err("alg: akcipher: encrypt test failed. err %d\n", err);
goto free_all;
}
if (req->dst_len != vecs->c_size) {
pr_err("alg: akcipher: encrypt test failed. Invalid output len\n");
err = -EINVAL;
goto free_all;
}
/* verify that encrypted message is equal to expected */
if (memcmp(vecs->c, outbuf_enc, vecs->c_size)) {
pr_err("alg: akcipher: encrypt test failed. Invalid output\n");
hexdump(outbuf_enc, vecs->c_size);
err = -EINVAL;
goto free_all;
}
/* Don't invoke decrypt for vectors with public key */
if (vecs->public_key_vec) {
err = 0;
goto free_all;
}
outbuf_dec = kzalloc(out_len_max, GFP_KERNEL);
if (!outbuf_dec) {
err = -ENOMEM;
goto free_all;
}
if (WARN_ON(vecs->c_size > PAGE_SIZE))
goto free_all;
memcpy(xbuf[0], vecs->c, vecs->c_size);
sg_init_one(&src, xbuf[0], vecs->c_size);
sg_init_one(&dst, outbuf_dec, out_len_max);
crypto_init_wait(&wait);
akcipher_request_set_crypt(req, &src, &dst, vecs->c_size, out_len_max);
err = crypto_wait_req(vecs->siggen_sigver_test ?
/* Run asymmetric signature verification */
crypto_akcipher_verify(req) :
/* Run asymmetric decrypt */
crypto_akcipher_decrypt(req), &wait);
if (err) {
pr_err("alg: akcipher: decrypt test failed. err %d\n", err);
goto free_all;
}
out_len = req->dst_len;
if (out_len < vecs->m_size) {
pr_err("alg: akcipher: decrypt test failed. "
"Invalid output len %u\n", out_len);
err = -EINVAL;
goto free_all;
}
/* verify that decrypted message is equal to the original msg */
if (memchr_inv(outbuf_dec, 0, out_len - vecs->m_size) ||
memcmp(vecs->m, outbuf_dec + out_len - vecs->m_size,
vecs->m_size)) {
pr_err("alg: akcipher: decrypt test failed. Invalid output\n");
hexdump(outbuf_dec, out_len);
err = -EINVAL;
}
free_all:
kfree(outbuf_dec);
kfree(outbuf_enc);
free_req:
akcipher_request_free(req);
free_xbuf:
testmgr_free_buf(xbuf);
return err;
}
static int test_akcipher(struct crypto_akcipher *tfm, const char *alg,
const struct akcipher_testvec *vecs,
unsigned int tcount)
{
const char *algo =
crypto_tfm_alg_driver_name(crypto_akcipher_tfm(tfm));
int ret, i;
for (i = 0; i < tcount; i++) {
ret = test_akcipher_one(tfm, vecs++);
if (!ret)
continue;
pr_err("alg: akcipher: test %d failed for %s, err=%d\n",
i + 1, algo, ret);
return ret;
}
return 0;
}
static int alg_test_akcipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_akcipher *tfm;
int err = 0;
tfm = crypto_alloc_akcipher(driver, type, mask);
if (IS_ERR(tfm)) {
pr_err("alg: akcipher: Failed to load tfm for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.akcipher.vecs)
err = test_akcipher(tfm, desc->alg, desc->suite.akcipher.vecs,
desc->suite.akcipher.count);
crypto_free_akcipher(tfm);
return err;
}
static int alg_test_null(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
return 0;
}
#define __VECS(tv) { .vecs = tv, .count = ARRAY_SIZE(tv) }
/* Please keep this list sorted by algorithm name. */
static const struct alg_test_desc alg_test_descs[] = {
{
.alg = "aegis128",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(aegis128_enc_tv_template),
.dec = __VECS(aegis128_dec_tv_template),
}
}
}, {
.alg = "aegis128l",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(aegis128l_enc_tv_template),
.dec = __VECS(aegis128l_dec_tv_template),
}
}
}, {
.alg = "aegis256",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(aegis256_enc_tv_template),
.dec = __VECS(aegis256_dec_tv_template),
}
}
}, {
.alg = "ansi_cprng",
.test = alg_test_cprng,
.suite = {
.cprng = __VECS(ansi_cprng_aes_tv_template)
}
}, {
.alg = "authenc(hmac(md5),ecb(cipher_null))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_md5_ecb_cipher_null_enc_tv_template),
.dec = __VECS(hmac_md5_ecb_cipher_null_dec_tv_template)
}
}
}, {
.alg = "authenc(hmac(sha1),cbc(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha1_aes_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha1),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha1_des_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha1),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha1_des3_ede_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha1),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha1),ecb(cipher_null))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha1_ecb_cipher_null_enc_tv_temp),
.dec = __VECS(hmac_sha1_ecb_cipher_null_dec_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha224),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha224_des_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha224),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha224_des3_ede_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha256),cbc(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha256_aes_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha256),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha256_des_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha256),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha256_des3_ede_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha256),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha384),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha384_des_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha384),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha384_des3_ede_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha384),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha384),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha512),cbc(aes))",
.fips_allowed = 1,
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha512_aes_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha512),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(hmac_sha512_des_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha512),cbc(des3_ede))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(hmac_sha512_des3_ede_cbc_enc_tv_temp)
}
}
}, {
.alg = "authenc(hmac(sha512),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha512),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "cbc(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_cbc_tv_template)
},
}, {
.alg = "cbc(anubis)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(anubis_cbc_tv_template)
},
}, {
.alg = "cbc(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(bf_cbc_tv_template)
},
}, {
.alg = "cbc(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_cbc_tv_template)
},
}, {
.alg = "cbc(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast5_cbc_tv_template)
},
}, {
.alg = "cbc(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_cbc_tv_template)
},
}, {
.alg = "cbc(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(des_cbc_tv_template)
},
}, {
.alg = "cbc(des3_ede)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(des3_ede_cbc_tv_template)
},
}, {
/* Same as cbc(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "cbc(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "cbc(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_cbc_tv_template)
},
}, {
.alg = "cbc(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_cbc_tv_template)
},
}, {
.alg = "cbcmac(aes)",
.fips_allowed = 1,
.test = alg_test_hash,
.suite = {
.hash = __VECS(aes_cbcmac_tv_template)
}
}, {
.alg = "ccm(aes)",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(aes_ccm_enc_tv_template),
.dec = __VECS(aes_ccm_dec_tv_template)
}
}
}, {
.alg = "chacha20",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(chacha20_tv_template)
},
}, {
.alg = "cmac(aes)",
.fips_allowed = 1,
.test = alg_test_hash,
.suite = {
.hash = __VECS(aes_cmac128_tv_template)
}
}, {
.alg = "cmac(des3_ede)",
.fips_allowed = 1,
.test = alg_test_hash,
.suite = {
.hash = __VECS(des3_ede_cmac64_tv_template)
}
}, {
.alg = "compress_null",
.test = alg_test_null,
}, {
.alg = "crc32",
.test = alg_test_hash,
.suite = {
.hash = __VECS(crc32_tv_template)
}
}, {
.alg = "crc32c",
.test = alg_test_crc32c,
.fips_allowed = 1,
.suite = {
.hash = __VECS(crc32c_tv_template)
}
}, {
.alg = "crct10dif",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(crct10dif_tv_template)
}
}, {
.alg = "ctr(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_ctr_tv_template)
}
}, {
.alg = "ctr(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(bf_ctr_tv_template)
}
}, {
.alg = "ctr(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_ctr_tv_template)
}
}, {
.alg = "ctr(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast5_ctr_tv_template)
}
}, {
.alg = "ctr(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_ctr_tv_template)
}
}, {
.alg = "ctr(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(des_ctr_tv_template)
}
}, {
.alg = "ctr(des3_ede)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(des3_ede_ctr_tv_template)
}
}, {
/* Same as ctr(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "ctr(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "ctr(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_ctr_tv_template)
}
}, {
.alg = "ctr(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_ctr_tv_template)
}
}, {
.alg = "cts(cbc(aes))",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cts_mode_tv_template)
}
}, {
.alg = "deflate",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(deflate_comp_tv_template),
.decomp = __VECS(deflate_decomp_tv_template)
}
}
}, {
.alg = "dh",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = __VECS(dh_tv_template)
}
}, {
.alg = "digest_null",
.test = alg_test_null,
}, {
.alg = "drbg_nopr_ctr_aes128",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_ctr_aes128_tv_template)
}
}, {
.alg = "drbg_nopr_ctr_aes192",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_ctr_aes192_tv_template)
}
}, {
.alg = "drbg_nopr_ctr_aes256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_ctr_aes256_tv_template)
}
}, {
/*
* There is no need to specifically test the DRBG with every
* backend cipher -- covered by drbg_nopr_hmac_sha256 test
*/
.alg = "drbg_nopr_hmac_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_hmac_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_hmac_sha256_tv_template)
}
}, {
/* covered by drbg_nopr_hmac_sha256 test */
.alg = "drbg_nopr_hmac_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_hmac_sha512",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "drbg_nopr_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_sha256_tv_template)
}
}, {
/* covered by drbg_nopr_sha256 test */
.alg = "drbg_nopr_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_sha512",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_ctr_aes128",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_pr_ctr_aes128_tv_template)
}
}, {
/* covered by drbg_pr_ctr_aes128 test */
.alg = "drbg_pr_ctr_aes192",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_ctr_aes256",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_pr_hmac_sha256_tv_template)
}
}, {
/* covered by drbg_pr_hmac_sha256 test */
.alg = "drbg_pr_hmac_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha512",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "drbg_pr_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_pr_sha256_tv_template)
}
}, {
/* covered by drbg_pr_sha256 test */
.alg = "drbg_pr_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_sha512",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "ecb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_tv_template)
}
}, {
.alg = "ecb(anubis)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(anubis_tv_template)
}
}, {
.alg = "ecb(arc4)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(arc4_tv_template)
}
}, {
.alg = "ecb(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(bf_tv_template)
}
}, {
.alg = "ecb(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_tv_template)
}
}, {
.alg = "ecb(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast5_tv_template)
}
}, {
.alg = "ecb(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_tv_template)
}
}, {
.alg = "ecb(cipher_null)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "ecb(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(des_tv_template)
}
}, {
.alg = "ecb(des3_ede)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(des3_ede_tv_template)
}
}, {
.alg = "ecb(fcrypt)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.vecs = fcrypt_pcbc_tv_template,
.count = 1
}
}
}, {
.alg = "ecb(khazad)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(khazad_tv_template)
}
}, {
/* Same as ecb(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "ecb(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "ecb(seed)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(seed_tv_template)
}
}, {
.alg = "ecb(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_tv_template)
}
}, {
.alg = "ecb(sm4)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(sm4_tv_template)
}
}, {
.alg = "ecb(speck128)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(speck128_tv_template)
}
}, {
.alg = "ecb(speck64)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(speck64_tv_template)
}
}, {
.alg = "ecb(tea)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tea_tv_template)
}
}, {
.alg = "ecb(tnepres)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tnepres_tv_template)
}
}, {
.alg = "ecb(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_tv_template)
}
}, {
.alg = "ecb(xeta)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(xeta_tv_template)
}
}, {
.alg = "ecb(xtea)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(xtea_tv_template)
}
}, {
.alg = "ecdh",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = __VECS(ecdh_tv_template)
}
}, {
.alg = "gcm(aes)",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(aes_gcm_enc_tv_template),
.dec = __VECS(aes_gcm_dec_tv_template)
}
}
}, {
.alg = "ghash",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(ghash_tv_template)
}
}, {
.alg = "hmac(md5)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(hmac_md5_tv_template)
}
}, {
.alg = "hmac(rmd128)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(hmac_rmd128_tv_template)
}
}, {
.alg = "hmac(rmd160)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(hmac_rmd160_tv_template)
}
}, {
.alg = "hmac(sha1)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha1_tv_template)
}
}, {
.alg = "hmac(sha224)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha224_tv_template)
}
}, {
.alg = "hmac(sha256)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha256_tv_template)
}
}, {
.alg = "hmac(sha3-224)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha3_224_tv_template)
}
}, {
.alg = "hmac(sha3-256)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha3_256_tv_template)
}
}, {
.alg = "hmac(sha3-384)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha3_384_tv_template)
}
}, {
.alg = "hmac(sha3-512)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha3_512_tv_template)
}
}, {
.alg = "hmac(sha384)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha384_tv_template)
}
}, {
.alg = "hmac(sha512)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha512_tv_template)
}
}, {
.alg = "jitterentropy_rng",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "kw(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_kw_tv_template)
}
}, {
.alg = "lrw(aes)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(aes_lrw_tv_template)
}
}, {
.alg = "lrw(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_lrw_tv_template)
}
}, {
.alg = "lrw(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_lrw_tv_template)
}
}, {
.alg = "lrw(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_lrw_tv_template)
}
}, {
.alg = "lrw(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_lrw_tv_template)
}
}, {
.alg = "lz4",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(lz4_comp_tv_template),
.decomp = __VECS(lz4_decomp_tv_template)
}
}
}, {
.alg = "lz4hc",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(lz4hc_comp_tv_template),
.decomp = __VECS(lz4hc_decomp_tv_template)
}
}
}, {
.alg = "lzo",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(lzo_comp_tv_template),
.decomp = __VECS(lzo_decomp_tv_template)
}
}
}, {
.alg = "md4",
.test = alg_test_hash,
.suite = {
.hash = __VECS(md4_tv_template)
}
}, {
.alg = "md5",
.test = alg_test_hash,
.suite = {
.hash = __VECS(md5_tv_template)
}
}, {
.alg = "michael_mic",
.test = alg_test_hash,
.suite = {
.hash = __VECS(michael_mic_tv_template)
}
}, {
.alg = "morus1280",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(morus1280_enc_tv_template),
.dec = __VECS(morus1280_dec_tv_template),
}
}
}, {
.alg = "morus640",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(morus640_enc_tv_template),
.dec = __VECS(morus640_dec_tv_template),
}
}
}, {
.alg = "ofb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_ofb_tv_template)
}
}, {
/* Same as ofb(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "ofb(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "pcbc(fcrypt)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(fcrypt_pcbc_tv_template)
}
}, {
.alg = "pkcs1pad(rsa,sha224)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "pkcs1pad(rsa,sha256)",
.test = alg_test_akcipher,
.fips_allowed = 1,
.suite = {
.akcipher = __VECS(pkcs1pad_rsa_tv_template)
}
}, {
.alg = "pkcs1pad(rsa,sha384)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "pkcs1pad(rsa,sha512)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "poly1305",
.test = alg_test_hash,
.suite = {
.hash = __VECS(poly1305_tv_template)
}
}, {
.alg = "rfc3686(ctr(aes))",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_ctr_rfc3686_tv_template)
}
}, {
.alg = "rfc4106(gcm(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(aes_gcm_rfc4106_enc_tv_template),
.dec = __VECS(aes_gcm_rfc4106_dec_tv_template)
}
}
}, {
.alg = "rfc4309(ccm(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = __VECS(aes_ccm_rfc4309_enc_tv_template),
.dec = __VECS(aes_ccm_rfc4309_dec_tv_template)
}
}
}, {
.alg = "rfc4543(gcm(aes))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(aes_gcm_rfc4543_enc_tv_template),
.dec = __VECS(aes_gcm_rfc4543_dec_tv_template),
}
}
}, {
.alg = "rfc7539(chacha20,poly1305)",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(rfc7539_enc_tv_template),
.dec = __VECS(rfc7539_dec_tv_template),
}
}
}, {
.alg = "rfc7539esp(chacha20,poly1305)",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = __VECS(rfc7539esp_enc_tv_template),
.dec = __VECS(rfc7539esp_dec_tv_template),
}
}
}, {
.alg = "rmd128",
.test = alg_test_hash,
.suite = {
.hash = __VECS(rmd128_tv_template)
}
}, {
.alg = "rmd160",
.test = alg_test_hash,
.suite = {
.hash = __VECS(rmd160_tv_template)
}
}, {
.alg = "rmd256",
.test = alg_test_hash,
.suite = {
.hash = __VECS(rmd256_tv_template)
}
}, {
.alg = "rmd320",
.test = alg_test_hash,
.suite = {
.hash = __VECS(rmd320_tv_template)
}
}, {
.alg = "rsa",
.test = alg_test_akcipher,
.fips_allowed = 1,
.suite = {
.akcipher = __VECS(rsa_tv_template)
}
}, {
.alg = "salsa20",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(salsa20_stream_tv_template)
}
}, {
.alg = "sha1",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha1_tv_template)
}
}, {
.alg = "sha224",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha224_tv_template)
}
}, {
.alg = "sha256",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha256_tv_template)
}
}, {
.alg = "sha3-224",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha3_224_tv_template)
}
}, {
.alg = "sha3-256",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha3_256_tv_template)
}
}, {
.alg = "sha3-384",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha3_384_tv_template)
}
}, {
.alg = "sha3-512",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha3_512_tv_template)
}
}, {
.alg = "sha384",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha384_tv_template)
}
}, {
.alg = "sha512",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha512_tv_template)
}
}, {
.alg = "sm3",
.test = alg_test_hash,
.suite = {
.hash = __VECS(sm3_tv_template)
}
}, {
.alg = "tgr128",
.test = alg_test_hash,
.suite = {
.hash = __VECS(tgr128_tv_template)
}
}, {
.alg = "tgr160",
.test = alg_test_hash,
.suite = {
.hash = __VECS(tgr160_tv_template)
}
}, {
.alg = "tgr192",
.test = alg_test_hash,
.suite = {
.hash = __VECS(tgr192_tv_template)
}
}, {
.alg = "vmac(aes)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(aes_vmac128_tv_template)
}
}, {
.alg = "wp256",
.test = alg_test_hash,
.suite = {
.hash = __VECS(wp256_tv_template)
}
}, {
.alg = "wp384",
.test = alg_test_hash,
.suite = {
.hash = __VECS(wp384_tv_template)
}
}, {
.alg = "wp512",
.test = alg_test_hash,
.suite = {
.hash = __VECS(wp512_tv_template)
}
}, {
.alg = "xcbc(aes)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(aes_xcbc128_tv_template)
}
}, {
.alg = "xts(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_xts_tv_template)
}
}, {
.alg = "xts(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_xts_tv_template)
}
}, {
.alg = "xts(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_xts_tv_template)
}
}, {
/* Same as xts(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "xts(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "xts(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_xts_tv_template)
}
}, {
.alg = "xts(speck128)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(speck128_xts_tv_template)
}
}, {
.alg = "xts(speck64)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(speck64_xts_tv_template)
}
}, {
.alg = "xts(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_xts_tv_template)
}
}, {
.alg = "xts4096(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "xts512(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "zlib-deflate",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(zlib_deflate_comp_tv_template),
.decomp = __VECS(zlib_deflate_decomp_tv_template)
}
}
}, {
.alg = "zstd",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(zstd_comp_tv_template),
.decomp = __VECS(zstd_decomp_tv_template)
}
}
}
};
static bool alg_test_descs_checked;
static void alg_test_descs_check_order(void)
{
int i;
/* only check once */
if (alg_test_descs_checked)
return;
alg_test_descs_checked = true;
for (i = 1; i < ARRAY_SIZE(alg_test_descs); i++) {
int diff = strcmp(alg_test_descs[i - 1].alg,
alg_test_descs[i].alg);
if (WARN_ON(diff > 0)) {
pr_warn("testmgr: alg_test_descs entries in wrong order: '%s' before '%s'\n",
alg_test_descs[i - 1].alg,
alg_test_descs[i].alg);
}
if (WARN_ON(diff == 0)) {
pr_warn("testmgr: duplicate alg_test_descs entry: '%s'\n",
alg_test_descs[i].alg);
}
}
}
static int alg_find_test(const char *alg)
{
int start = 0;
int end = ARRAY_SIZE(alg_test_descs);
while (start < end) {
int i = (start + end) / 2;
int diff = strcmp(alg_test_descs[i].alg, alg);
if (diff > 0) {
end = i;
continue;
}
if (diff < 0) {
start = i + 1;
continue;
}
return i;
}
return -1;
}
int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
{
int i;
int j;
int rc;
if (!fips_enabled && notests) {
printk_once(KERN_INFO "alg: self-tests disabled\n");
return 0;
}
alg_test_descs_check_order();
if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) {
char nalg[CRYPTO_MAX_ALG_NAME];
if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >=
sizeof(nalg))
return -ENAMETOOLONG;
i = alg_find_test(nalg);
if (i < 0)
goto notest;
if (fips_enabled && !alg_test_descs[i].fips_allowed)
goto non_fips_alg;
rc = alg_test_cipher(alg_test_descs + i, driver, type, mask);
goto test_done;
}
i = alg_find_test(alg);
j = alg_find_test(driver);
if (i < 0 && j < 0)
goto notest;
if (fips_enabled && ((i >= 0 && !alg_test_descs[i].fips_allowed) ||
(j >= 0 && !alg_test_descs[j].fips_allowed)))
goto non_fips_alg;
rc = 0;
if (i >= 0)
rc |= alg_test_descs[i].test(alg_test_descs + i, driver,
type, mask);
if (j >= 0 && j != i)
rc |= alg_test_descs[j].test(alg_test_descs + j, driver,
type, mask);
test_done:
if (fips_enabled && rc)
panic("%s: %s alg self test failed in fips mode!\n", driver, alg);
if (fips_enabled && !rc)
pr_info("alg: self-tests for %s (%s) passed\n", driver, alg);
return rc;
notest:
printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver);
return 0;
non_fips_alg:
return -EINVAL;
}
#endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */
EXPORT_SYMBOL_GPL(alg_test);