linux-next/drivers/iio/adc/exynos_adc.c
Abhilash Kesavan c1b501564c iio: adc: exynos_adc: Add support for exynos7
The ADC on exynos7 is quite similar to ADCv2. The differences are as
follows:
	- exynos7-adc has 8 input channels (as against 10 in ADCv2).
	- exynos7 does not include an ADC PHY control register.
	- Some ADC_CON2 register bits being used in ADCv2 are listed as
	  reserved in exynos7-adc. This results in a different init_hw
	  function for exynos7.

Signed-off-by: Abhilash Kesavan <a.kesavan@samsung.com>
Reviewed-by: Chanwoo Choi <cw00.choi@samsung.com>
Signed-off-by: Jonathan Cameron <jic23@kernel.org>
2014-11-05 15:38:25 +00:00

780 lines
19 KiB
C

/*
* exynos_adc.c - Support for ADC in EXYNOS SoCs
*
* 8 ~ 10 channel, 10/12-bit ADC
*
* Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/regulator/consumer.h>
#include <linux/of_platform.h>
#include <linux/err.h>
#include <linux/iio/iio.h>
#include <linux/iio/machine.h>
#include <linux/iio/driver.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
/* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */
#define ADC_V1_CON(x) ((x) + 0x00)
#define ADC_V1_DLY(x) ((x) + 0x08)
#define ADC_V1_DATX(x) ((x) + 0x0C)
#define ADC_V1_INTCLR(x) ((x) + 0x18)
#define ADC_V1_MUX(x) ((x) + 0x1c)
/* S3C2410 ADC registers definitions */
#define ADC_S3C2410_MUX(x) ((x) + 0x18)
/* Future ADC_V2 registers definitions */
#define ADC_V2_CON1(x) ((x) + 0x00)
#define ADC_V2_CON2(x) ((x) + 0x04)
#define ADC_V2_STAT(x) ((x) + 0x08)
#define ADC_V2_INT_EN(x) ((x) + 0x10)
#define ADC_V2_INT_ST(x) ((x) + 0x14)
#define ADC_V2_VER(x) ((x) + 0x20)
/* Bit definitions for ADC_V1 */
#define ADC_V1_CON_RES (1u << 16)
#define ADC_V1_CON_PRSCEN (1u << 14)
#define ADC_V1_CON_PRSCLV(x) (((x) & 0xFF) << 6)
#define ADC_V1_CON_STANDBY (1u << 2)
/* Bit definitions for S3C2410 ADC */
#define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3)
#define ADC_S3C2410_DATX_MASK 0x3FF
#define ADC_S3C2416_CON_RES_SEL (1u << 3)
/* Bit definitions for ADC_V2 */
#define ADC_V2_CON1_SOFT_RESET (1u << 2)
#define ADC_V2_CON2_OSEL (1u << 10)
#define ADC_V2_CON2_ESEL (1u << 9)
#define ADC_V2_CON2_HIGHF (1u << 8)
#define ADC_V2_CON2_C_TIME(x) (((x) & 7) << 4)
#define ADC_V2_CON2_ACH_SEL(x) (((x) & 0xF) << 0)
#define ADC_V2_CON2_ACH_MASK 0xF
#define MAX_ADC_V2_CHANNELS 10
#define MAX_ADC_V1_CHANNELS 8
#define MAX_EXYNOS3250_ADC_CHANNELS 2
/* Bit definitions common for ADC_V1 and ADC_V2 */
#define ADC_CON_EN_START (1u << 0)
#define ADC_CON_EN_START_MASK (0x3 << 0)
#define ADC_DATX_MASK 0xFFF
#define EXYNOS_ADC_TIMEOUT (msecs_to_jiffies(100))
#define EXYNOS_ADCV1_PHY_OFFSET 0x0718
#define EXYNOS_ADCV2_PHY_OFFSET 0x0720
struct exynos_adc {
struct exynos_adc_data *data;
struct device *dev;
void __iomem *regs;
struct regmap *pmu_map;
struct clk *clk;
struct clk *sclk;
unsigned int irq;
struct regulator *vdd;
struct completion completion;
u32 value;
unsigned int version;
};
struct exynos_adc_data {
int num_channels;
bool needs_sclk;
bool needs_adc_phy;
int phy_offset;
u32 mask;
void (*init_hw)(struct exynos_adc *info);
void (*exit_hw)(struct exynos_adc *info);
void (*clear_irq)(struct exynos_adc *info);
void (*start_conv)(struct exynos_adc *info, unsigned long addr);
};
static void exynos_adc_unprepare_clk(struct exynos_adc *info)
{
if (info->data->needs_sclk)
clk_unprepare(info->sclk);
clk_unprepare(info->clk);
}
static int exynos_adc_prepare_clk(struct exynos_adc *info)
{
int ret;
ret = clk_prepare(info->clk);
if (ret) {
dev_err(info->dev, "failed preparing adc clock: %d\n", ret);
return ret;
}
if (info->data->needs_sclk) {
ret = clk_prepare(info->sclk);
if (ret) {
clk_unprepare(info->clk);
dev_err(info->dev,
"failed preparing sclk_adc clock: %d\n", ret);
return ret;
}
}
return 0;
}
static void exynos_adc_disable_clk(struct exynos_adc *info)
{
if (info->data->needs_sclk)
clk_disable(info->sclk);
clk_disable(info->clk);
}
static int exynos_adc_enable_clk(struct exynos_adc *info)
{
int ret;
ret = clk_enable(info->clk);
if (ret) {
dev_err(info->dev, "failed enabling adc clock: %d\n", ret);
return ret;
}
if (info->data->needs_sclk) {
ret = clk_enable(info->sclk);
if (ret) {
clk_disable(info->clk);
dev_err(info->dev,
"failed enabling sclk_adc clock: %d\n", ret);
return ret;
}
}
return 0;
}
static void exynos_adc_v1_init_hw(struct exynos_adc *info)
{
u32 con1;
if (info->data->needs_adc_phy)
regmap_write(info->pmu_map, info->data->phy_offset, 1);
/* set default prescaler values and Enable prescaler */
con1 = ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN;
/* Enable 12-bit ADC resolution */
con1 |= ADC_V1_CON_RES;
writel(con1, ADC_V1_CON(info->regs));
}
static void exynos_adc_v1_exit_hw(struct exynos_adc *info)
{
u32 con;
if (info->data->needs_adc_phy)
regmap_write(info->pmu_map, info->data->phy_offset, 0);
con = readl(ADC_V1_CON(info->regs));
con |= ADC_V1_CON_STANDBY;
writel(con, ADC_V1_CON(info->regs));
}
static void exynos_adc_v1_clear_irq(struct exynos_adc *info)
{
writel(1, ADC_V1_INTCLR(info->regs));
}
static void exynos_adc_v1_start_conv(struct exynos_adc *info,
unsigned long addr)
{
u32 con1;
writel(addr, ADC_V1_MUX(info->regs));
con1 = readl(ADC_V1_CON(info->regs));
writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
}
static const struct exynos_adc_data exynos_adc_v1_data = {
.num_channels = MAX_ADC_V1_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.needs_adc_phy = true,
.phy_offset = EXYNOS_ADCV1_PHY_OFFSET,
.init_hw = exynos_adc_v1_init_hw,
.exit_hw = exynos_adc_v1_exit_hw,
.clear_irq = exynos_adc_v1_clear_irq,
.start_conv = exynos_adc_v1_start_conv,
};
static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info,
unsigned long addr)
{
u32 con1;
/* Enable 12 bit ADC resolution */
con1 = readl(ADC_V1_CON(info->regs));
con1 |= ADC_S3C2416_CON_RES_SEL;
writel(con1, ADC_V1_CON(info->regs));
/* Select channel for S3C2416 */
writel(addr, ADC_S3C2410_MUX(info->regs));
con1 = readl(ADC_V1_CON(info->regs));
writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
}
static struct exynos_adc_data const exynos_adc_s3c2416_data = {
.num_channels = MAX_ADC_V1_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.init_hw = exynos_adc_v1_init_hw,
.exit_hw = exynos_adc_v1_exit_hw,
.start_conv = exynos_adc_s3c2416_start_conv,
};
static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info,
unsigned long addr)
{
u32 con1;
/* Select channel for S3C2433 */
writel(addr, ADC_S3C2410_MUX(info->regs));
con1 = readl(ADC_V1_CON(info->regs));
writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
}
static struct exynos_adc_data const exynos_adc_s3c2443_data = {
.num_channels = MAX_ADC_V1_CHANNELS,
.mask = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
.init_hw = exynos_adc_v1_init_hw,
.exit_hw = exynos_adc_v1_exit_hw,
.start_conv = exynos_adc_s3c2443_start_conv,
};
static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info,
unsigned long addr)
{
u32 con1;
con1 = readl(ADC_V1_CON(info->regs));
con1 &= ~ADC_S3C2410_CON_SELMUX(0x7);
con1 |= ADC_S3C2410_CON_SELMUX(addr);
writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
}
static struct exynos_adc_data const exynos_adc_s3c24xx_data = {
.num_channels = MAX_ADC_V1_CHANNELS,
.mask = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
.init_hw = exynos_adc_v1_init_hw,
.exit_hw = exynos_adc_v1_exit_hw,
.start_conv = exynos_adc_s3c64xx_start_conv,
};
static struct exynos_adc_data const exynos_adc_s3c64xx_data = {
.num_channels = MAX_ADC_V1_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.init_hw = exynos_adc_v1_init_hw,
.exit_hw = exynos_adc_v1_exit_hw,
.clear_irq = exynos_adc_v1_clear_irq,
.start_conv = exynos_adc_s3c64xx_start_conv,
};
static void exynos_adc_v2_init_hw(struct exynos_adc *info)
{
u32 con1, con2;
if (info->data->needs_adc_phy)
regmap_write(info->pmu_map, info->data->phy_offset, 1);
con1 = ADC_V2_CON1_SOFT_RESET;
writel(con1, ADC_V2_CON1(info->regs));
con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL |
ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0);
writel(con2, ADC_V2_CON2(info->regs));
/* Enable interrupts */
writel(1, ADC_V2_INT_EN(info->regs));
}
static void exynos_adc_v2_exit_hw(struct exynos_adc *info)
{
u32 con;
if (info->data->needs_adc_phy)
regmap_write(info->pmu_map, info->data->phy_offset, 0);
con = readl(ADC_V2_CON1(info->regs));
con &= ~ADC_CON_EN_START;
writel(con, ADC_V2_CON1(info->regs));
}
static void exynos_adc_v2_clear_irq(struct exynos_adc *info)
{
writel(1, ADC_V2_INT_ST(info->regs));
}
static void exynos_adc_v2_start_conv(struct exynos_adc *info,
unsigned long addr)
{
u32 con1, con2;
con2 = readl(ADC_V2_CON2(info->regs));
con2 &= ~ADC_V2_CON2_ACH_MASK;
con2 |= ADC_V2_CON2_ACH_SEL(addr);
writel(con2, ADC_V2_CON2(info->regs));
con1 = readl(ADC_V2_CON1(info->regs));
writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs));
}
static const struct exynos_adc_data exynos_adc_v2_data = {
.num_channels = MAX_ADC_V2_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.needs_adc_phy = true,
.phy_offset = EXYNOS_ADCV2_PHY_OFFSET,
.init_hw = exynos_adc_v2_init_hw,
.exit_hw = exynos_adc_v2_exit_hw,
.clear_irq = exynos_adc_v2_clear_irq,
.start_conv = exynos_adc_v2_start_conv,
};
static const struct exynos_adc_data exynos3250_adc_data = {
.num_channels = MAX_EXYNOS3250_ADC_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.needs_sclk = true,
.needs_adc_phy = true,
.phy_offset = EXYNOS_ADCV1_PHY_OFFSET,
.init_hw = exynos_adc_v2_init_hw,
.exit_hw = exynos_adc_v2_exit_hw,
.clear_irq = exynos_adc_v2_clear_irq,
.start_conv = exynos_adc_v2_start_conv,
};
static void exynos_adc_exynos7_init_hw(struct exynos_adc *info)
{
u32 con1, con2;
if (info->data->needs_adc_phy)
regmap_write(info->pmu_map, info->data->phy_offset, 1);
con1 = ADC_V2_CON1_SOFT_RESET;
writel(con1, ADC_V2_CON1(info->regs));
con2 = readl(ADC_V2_CON2(info->regs));
con2 &= ~ADC_V2_CON2_C_TIME(7);
con2 |= ADC_V2_CON2_C_TIME(0);
writel(con2, ADC_V2_CON2(info->regs));
/* Enable interrupts */
writel(1, ADC_V2_INT_EN(info->regs));
}
static const struct exynos_adc_data exynos7_adc_data = {
.num_channels = MAX_ADC_V1_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.init_hw = exynos_adc_exynos7_init_hw,
.exit_hw = exynos_adc_v2_exit_hw,
.clear_irq = exynos_adc_v2_clear_irq,
.start_conv = exynos_adc_v2_start_conv,
};
static const struct of_device_id exynos_adc_match[] = {
{
.compatible = "samsung,s3c2410-adc",
.data = &exynos_adc_s3c24xx_data,
}, {
.compatible = "samsung,s3c2416-adc",
.data = &exynos_adc_s3c2416_data,
}, {
.compatible = "samsung,s3c2440-adc",
.data = &exynos_adc_s3c24xx_data,
}, {
.compatible = "samsung,s3c2443-adc",
.data = &exynos_adc_s3c2443_data,
}, {
.compatible = "samsung,s3c6410-adc",
.data = &exynos_adc_s3c64xx_data,
}, {
.compatible = "samsung,exynos-adc-v1",
.data = &exynos_adc_v1_data,
}, {
.compatible = "samsung,exynos-adc-v2",
.data = &exynos_adc_v2_data,
}, {
.compatible = "samsung,exynos3250-adc",
.data = &exynos3250_adc_data,
}, {
.compatible = "samsung,exynos7-adc",
.data = &exynos7_adc_data,
},
{},
};
MODULE_DEVICE_TABLE(of, exynos_adc_match);
static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev)
{
const struct of_device_id *match;
match = of_match_node(exynos_adc_match, pdev->dev.of_node);
return (struct exynos_adc_data *)match->data;
}
static int exynos_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask)
{
struct exynos_adc *info = iio_priv(indio_dev);
unsigned long timeout;
int ret;
if (mask != IIO_CHAN_INFO_RAW)
return -EINVAL;
mutex_lock(&indio_dev->mlock);
reinit_completion(&info->completion);
/* Select the channel to be used and Trigger conversion */
if (info->data->start_conv)
info->data->start_conv(info, chan->address);
timeout = wait_for_completion_timeout
(&info->completion, EXYNOS_ADC_TIMEOUT);
if (timeout == 0) {
dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
if (info->data->init_hw)
info->data->init_hw(info);
ret = -ETIMEDOUT;
} else {
*val = info->value;
*val2 = 0;
ret = IIO_VAL_INT;
}
mutex_unlock(&indio_dev->mlock);
return ret;
}
static irqreturn_t exynos_adc_isr(int irq, void *dev_id)
{
struct exynos_adc *info = (struct exynos_adc *)dev_id;
u32 mask = info->data->mask;
/* Read value */
info->value = readl(ADC_V1_DATX(info->regs)) & mask;
/* clear irq */
if (info->data->clear_irq)
info->data->clear_irq(info);
complete(&info->completion);
return IRQ_HANDLED;
}
static int exynos_adc_reg_access(struct iio_dev *indio_dev,
unsigned reg, unsigned writeval,
unsigned *readval)
{
struct exynos_adc *info = iio_priv(indio_dev);
if (readval == NULL)
return -EINVAL;
*readval = readl(info->regs + reg);
return 0;
}
static const struct iio_info exynos_adc_iio_info = {
.read_raw = &exynos_read_raw,
.debugfs_reg_access = &exynos_adc_reg_access,
.driver_module = THIS_MODULE,
};
#define ADC_CHANNEL(_index, _id) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = _index, \
.address = _index, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.datasheet_name = _id, \
}
static const struct iio_chan_spec exynos_adc_iio_channels[] = {
ADC_CHANNEL(0, "adc0"),
ADC_CHANNEL(1, "adc1"),
ADC_CHANNEL(2, "adc2"),
ADC_CHANNEL(3, "adc3"),
ADC_CHANNEL(4, "adc4"),
ADC_CHANNEL(5, "adc5"),
ADC_CHANNEL(6, "adc6"),
ADC_CHANNEL(7, "adc7"),
ADC_CHANNEL(8, "adc8"),
ADC_CHANNEL(9, "adc9"),
};
static int exynos_adc_remove_devices(struct device *dev, void *c)
{
struct platform_device *pdev = to_platform_device(dev);
platform_device_unregister(pdev);
return 0;
}
static int exynos_adc_probe(struct platform_device *pdev)
{
struct exynos_adc *info = NULL;
struct device_node *np = pdev->dev.of_node;
struct iio_dev *indio_dev = NULL;
struct resource *mem;
int ret = -ENODEV;
int irq;
if (!np)
return ret;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
if (!indio_dev) {
dev_err(&pdev->dev, "failed allocating iio device\n");
return -ENOMEM;
}
info = iio_priv(indio_dev);
info->data = exynos_adc_get_data(pdev);
if (!info->data) {
dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
return -EINVAL;
}
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
info->regs = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(info->regs))
return PTR_ERR(info->regs);
if (info->data->needs_adc_phy) {
info->pmu_map = syscon_regmap_lookup_by_phandle(
pdev->dev.of_node,
"samsung,syscon-phandle");
if (IS_ERR(info->pmu_map)) {
dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
return PTR_ERR(info->pmu_map);
}
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no irq resource?\n");
return irq;
}
info->irq = irq;
info->dev = &pdev->dev;
init_completion(&info->completion);
info->clk = devm_clk_get(&pdev->dev, "adc");
if (IS_ERR(info->clk)) {
dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
PTR_ERR(info->clk));
return PTR_ERR(info->clk);
}
if (info->data->needs_sclk) {
info->sclk = devm_clk_get(&pdev->dev, "sclk");
if (IS_ERR(info->sclk)) {
dev_err(&pdev->dev,
"failed getting sclk clock, err = %ld\n",
PTR_ERR(info->sclk));
return PTR_ERR(info->sclk);
}
}
info->vdd = devm_regulator_get(&pdev->dev, "vdd");
if (IS_ERR(info->vdd)) {
dev_err(&pdev->dev, "failed getting regulator, err = %ld\n",
PTR_ERR(info->vdd));
return PTR_ERR(info->vdd);
}
ret = regulator_enable(info->vdd);
if (ret)
return ret;
ret = exynos_adc_prepare_clk(info);
if (ret)
goto err_disable_reg;
ret = exynos_adc_enable_clk(info);
if (ret)
goto err_unprepare_clk;
platform_set_drvdata(pdev, indio_dev);
indio_dev->name = dev_name(&pdev->dev);
indio_dev->dev.parent = &pdev->dev;
indio_dev->dev.of_node = pdev->dev.of_node;
indio_dev->info = &exynos_adc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = exynos_adc_iio_channels;
indio_dev->num_channels = info->data->num_channels;
ret = request_irq(info->irq, exynos_adc_isr,
0, dev_name(&pdev->dev), info);
if (ret < 0) {
dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
info->irq);
goto err_disable_clk;
}
ret = iio_device_register(indio_dev);
if (ret)
goto err_irq;
if (info->data->init_hw)
info->data->init_hw(info);
ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed adding child nodes\n");
goto err_of_populate;
}
return 0;
err_of_populate:
device_for_each_child(&indio_dev->dev, NULL,
exynos_adc_remove_devices);
iio_device_unregister(indio_dev);
err_irq:
free_irq(info->irq, info);
err_disable_clk:
if (info->data->exit_hw)
info->data->exit_hw(info);
exynos_adc_disable_clk(info);
err_unprepare_clk:
exynos_adc_unprepare_clk(info);
err_disable_reg:
regulator_disable(info->vdd);
return ret;
}
static int exynos_adc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct exynos_adc *info = iio_priv(indio_dev);
device_for_each_child(&indio_dev->dev, NULL,
exynos_adc_remove_devices);
iio_device_unregister(indio_dev);
free_irq(info->irq, info);
if (info->data->exit_hw)
info->data->exit_hw(info);
exynos_adc_disable_clk(info);
exynos_adc_unprepare_clk(info);
regulator_disable(info->vdd);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int exynos_adc_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct exynos_adc *info = iio_priv(indio_dev);
if (info->data->exit_hw)
info->data->exit_hw(info);
exynos_adc_disable_clk(info);
regulator_disable(info->vdd);
return 0;
}
static int exynos_adc_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct exynos_adc *info = iio_priv(indio_dev);
int ret;
ret = regulator_enable(info->vdd);
if (ret)
return ret;
ret = exynos_adc_enable_clk(info);
if (ret)
return ret;
if (info->data->init_hw)
info->data->init_hw(info);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops,
exynos_adc_suspend,
exynos_adc_resume);
static struct platform_driver exynos_adc_driver = {
.probe = exynos_adc_probe,
.remove = exynos_adc_remove,
.driver = {
.name = "exynos-adc",
.of_match_table = exynos_adc_match,
.pm = &exynos_adc_pm_ops,
},
};
module_platform_driver(exynos_adc_driver);
MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver");
MODULE_LICENSE("GPL v2");