linux-next/include/asm-generic/bitops/lock.h
Mark Rutland cf3ee3c8c2 locking/atomic: add generic arch_*() bitops
Now that all architectures provide arch_atomic_long_*(), we can
implement the generic bitops atop these rather than atop
atomic_long_*(), and provide arch_*() forms of the bitops that are safe
to use in noinstr code.

Now that all architectures provide arch_atomic_long_*(), we can
build the generic arch_*() bitops atop these, which can be safely used
in noinstr code. The regular bitop wrappers are built atop these.

As the generic non-atomic bitops use plain accesses, these will be
implicitly instrumented unless they are inlined into noinstr functions
(which is similar to arch_atomic*_read() when based on READ_ONCE()).
The wrappers are modified so that where the underlying arch_*() function
uses a plain access, no explicit instrumentation is added, as this is
redundant and could result in confusing reports.

Since function prototypes get excessively long with both an `arch_`
prefix and `__always_inline` attribute, the return type and function
attributes have been split onto a separate line, matching the style of
the generated atomic headers.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210713105253.7615-6-mark.rutland@arm.com
2021-07-16 18:46:45 +02:00

95 lines
2.6 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_GENERIC_BITOPS_LOCK_H_
#define _ASM_GENERIC_BITOPS_LOCK_H_
#include <linux/atomic.h>
#include <linux/compiler.h>
#include <asm/barrier.h>
/**
* arch_test_and_set_bit_lock - Set a bit and return its old value, for lock
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and provides acquire barrier semantics if
* the returned value is 0.
* It can be used to implement bit locks.
*/
static __always_inline int
arch_test_and_set_bit_lock(unsigned int nr, volatile unsigned long *p)
{
long old;
unsigned long mask = BIT_MASK(nr);
p += BIT_WORD(nr);
if (READ_ONCE(*p) & mask)
return 1;
old = arch_atomic_long_fetch_or_acquire(mask, (atomic_long_t *)p);
return !!(old & mask);
}
/**
* arch_clear_bit_unlock - Clear a bit in memory, for unlock
* @nr: the bit to set
* @addr: the address to start counting from
*
* This operation is atomic and provides release barrier semantics.
*/
static __always_inline void
arch_clear_bit_unlock(unsigned int nr, volatile unsigned long *p)
{
p += BIT_WORD(nr);
arch_atomic_long_fetch_andnot_release(BIT_MASK(nr), (atomic_long_t *)p);
}
/**
* arch___clear_bit_unlock - Clear a bit in memory, for unlock
* @nr: the bit to set
* @addr: the address to start counting from
*
* A weaker form of clear_bit_unlock() as used by __bit_lock_unlock(). If all
* the bits in the word are protected by this lock some archs can use weaker
* ops to safely unlock.
*
* See for example x86's implementation.
*/
static inline void
arch___clear_bit_unlock(unsigned int nr, volatile unsigned long *p)
{
unsigned long old;
p += BIT_WORD(nr);
old = READ_ONCE(*p);
old &= ~BIT_MASK(nr);
arch_atomic_long_set_release((atomic_long_t *)p, old);
}
/**
* arch_clear_bit_unlock_is_negative_byte - Clear a bit in memory and test if bottom
* byte is negative, for unlock.
* @nr: the bit to clear
* @addr: the address to start counting from
*
* This is a bit of a one-trick-pony for the filemap code, which clears
* PG_locked and tests PG_waiters,
*/
#ifndef arch_clear_bit_unlock_is_negative_byte
static inline bool arch_clear_bit_unlock_is_negative_byte(unsigned int nr,
volatile unsigned long *p)
{
long old;
unsigned long mask = BIT_MASK(nr);
p += BIT_WORD(nr);
old = arch_atomic_long_fetch_andnot_release(mask, (atomic_long_t *)p);
return !!(old & BIT(7));
}
#define arch_clear_bit_unlock_is_negative_byte arch_clear_bit_unlock_is_negative_byte
#endif
#include <asm-generic/bitops/instrumented-lock.h>
#endif /* _ASM_GENERIC_BITOPS_LOCK_H_ */