linux-next/drivers/cpufreq/powernow-k8.c
Liao Chang 03997da042 cpufreq: powernow-k8: Use related_cpus instead of cpus in driver.exit()
Since the 'cpus' field of policy structure will become empty in the
cpufreq core API, it is better to use 'related_cpus' in the exit()
callback of driver.

Fixes: c3274763bf ("cpufreq: powernow-k8: Initialize per-cpu data-structures properly")
Signed-off-by: Liao Chang <liaochang1@huawei.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
2023-08-28 12:27:30 +05:30

1222 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* (c) 2003-2012 Advanced Micro Devices, Inc.
*
* Maintainer:
* Andreas Herrmann <herrmann.der.user@googlemail.com>
*
* Based on the powernow-k7.c module written by Dave Jones.
* (C) 2003 Dave Jones on behalf of SuSE Labs
* (C) 2004 Dominik Brodowski <linux@brodo.de>
* (C) 2004 Pavel Machek <pavel@ucw.cz>
* Based upon datasheets & sample CPUs kindly provided by AMD.
*
* Valuable input gratefully received from Dave Jones, Pavel Machek,
* Dominik Brodowski, Jacob Shin, and others.
* Originally developed by Paul Devriendt.
*
* Processor information obtained from Chapter 9 (Power and Thermal
* Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
* the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
* Power Management" in BKDGs for newer AMD CPU families.
*
* Tables for specific CPUs can be inferred from AMD's processor
* power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/cpumask.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
#include <linux/acpi.h>
#include <linux/mutex.h>
#include <acpi/processor.h>
#define VERSION "version 2.20.00"
#include "powernow-k8.h"
/* serialize freq changes */
static DEFINE_MUTEX(fidvid_mutex);
static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
static struct cpufreq_driver cpufreq_amd64_driver;
/* Return a frequency in MHz, given an input fid */
static u32 find_freq_from_fid(u32 fid)
{
return 800 + (fid * 100);
}
/* Return a frequency in KHz, given an input fid */
static u32 find_khz_freq_from_fid(u32 fid)
{
return 1000 * find_freq_from_fid(fid);
}
/* Return the vco fid for an input fid
*
* Each "low" fid has corresponding "high" fid, and you can get to "low" fids
* only from corresponding high fids. This returns "high" fid corresponding to
* "low" one.
*/
static u32 convert_fid_to_vco_fid(u32 fid)
{
if (fid < HI_FID_TABLE_BOTTOM)
return 8 + (2 * fid);
else
return fid;
}
/*
* Return 1 if the pending bit is set. Unless we just instructed the processor
* to transition to a new state, seeing this bit set is really bad news.
*/
static int pending_bit_stuck(void)
{
u32 lo, hi __always_unused;
rdmsr(MSR_FIDVID_STATUS, lo, hi);
return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
}
/*
* Update the global current fid / vid values from the status msr.
* Returns 1 on error.
*/
static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
{
u32 lo, hi;
u32 i = 0;
do {
if (i++ > 10000) {
pr_debug("detected change pending stuck\n");
return 1;
}
rdmsr(MSR_FIDVID_STATUS, lo, hi);
} while (lo & MSR_S_LO_CHANGE_PENDING);
data->currvid = hi & MSR_S_HI_CURRENT_VID;
data->currfid = lo & MSR_S_LO_CURRENT_FID;
return 0;
}
/* the isochronous relief time */
static void count_off_irt(struct powernow_k8_data *data)
{
udelay((1 << data->irt) * 10);
}
/* the voltage stabilization time */
static void count_off_vst(struct powernow_k8_data *data)
{
udelay(data->vstable * VST_UNITS_20US);
}
/* need to init the control msr to a safe value (for each cpu) */
static void fidvid_msr_init(void)
{
u32 lo, hi;
u8 fid, vid;
rdmsr(MSR_FIDVID_STATUS, lo, hi);
vid = hi & MSR_S_HI_CURRENT_VID;
fid = lo & MSR_S_LO_CURRENT_FID;
lo = fid | (vid << MSR_C_LO_VID_SHIFT);
hi = MSR_C_HI_STP_GNT_BENIGN;
pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
wrmsr(MSR_FIDVID_CTL, lo, hi);
}
/* write the new fid value along with the other control fields to the msr */
static int write_new_fid(struct powernow_k8_data *data, u32 fid)
{
u32 lo;
u32 savevid = data->currvid;
u32 i = 0;
if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
pr_err("internal error - overflow on fid write\n");
return 1;
}
lo = fid;
lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
lo |= MSR_C_LO_INIT_FID_VID;
pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
fid, lo, data->plllock * PLL_LOCK_CONVERSION);
do {
wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
if (i++ > 100) {
pr_err("Hardware error - pending bit very stuck - no further pstate changes possible\n");
return 1;
}
} while (query_current_values_with_pending_wait(data));
count_off_irt(data);
if (savevid != data->currvid) {
pr_err("vid change on fid trans, old 0x%x, new 0x%x\n",
savevid, data->currvid);
return 1;
}
if (fid != data->currfid) {
pr_err("fid trans failed, fid 0x%x, curr 0x%x\n", fid,
data->currfid);
return 1;
}
return 0;
}
/* Write a new vid to the hardware */
static int write_new_vid(struct powernow_k8_data *data, u32 vid)
{
u32 lo;
u32 savefid = data->currfid;
int i = 0;
if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
pr_err("internal error - overflow on vid write\n");
return 1;
}
lo = data->currfid;
lo |= (vid << MSR_C_LO_VID_SHIFT);
lo |= MSR_C_LO_INIT_FID_VID;
pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
vid, lo, STOP_GRANT_5NS);
do {
wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
if (i++ > 100) {
pr_err("internal error - pending bit very stuck - no further pstate changes possible\n");
return 1;
}
} while (query_current_values_with_pending_wait(data));
if (savefid != data->currfid) {
pr_err("fid changed on vid trans, old 0x%x new 0x%x\n",
savefid, data->currfid);
return 1;
}
if (vid != data->currvid) {
pr_err("vid trans failed, vid 0x%x, curr 0x%x\n",
vid, data->currvid);
return 1;
}
return 0;
}
/*
* Reduce the vid by the max of step or reqvid.
* Decreasing vid codes represent increasing voltages:
* vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
*/
static int decrease_vid_code_by_step(struct powernow_k8_data *data,
u32 reqvid, u32 step)
{
if ((data->currvid - reqvid) > step)
reqvid = data->currvid - step;
if (write_new_vid(data, reqvid))
return 1;
count_off_vst(data);
return 0;
}
/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
static int transition_fid_vid(struct powernow_k8_data *data,
u32 reqfid, u32 reqvid)
{
if (core_voltage_pre_transition(data, reqvid, reqfid))
return 1;
if (core_frequency_transition(data, reqfid))
return 1;
if (core_voltage_post_transition(data, reqvid))
return 1;
if (query_current_values_with_pending_wait(data))
return 1;
if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
pr_err("failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
smp_processor_id(),
reqfid, reqvid, data->currfid, data->currvid);
return 1;
}
pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
smp_processor_id(), data->currfid, data->currvid);
return 0;
}
/* Phase 1 - core voltage transition ... setup voltage */
static int core_voltage_pre_transition(struct powernow_k8_data *data,
u32 reqvid, u32 reqfid)
{
u32 rvosteps = data->rvo;
u32 savefid = data->currfid;
u32 maxvid, lo __always_unused, rvomult = 1;
pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
smp_processor_id(),
data->currfid, data->currvid, reqvid, data->rvo);
if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
rvomult = 2;
rvosteps *= rvomult;
rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
maxvid = 0x1f & (maxvid >> 16);
pr_debug("ph1 maxvid=0x%x\n", maxvid);
if (reqvid < maxvid) /* lower numbers are higher voltages */
reqvid = maxvid;
while (data->currvid > reqvid) {
pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
data->currvid, reqvid);
if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
return 1;
}
while ((rvosteps > 0) &&
((rvomult * data->rvo + data->currvid) > reqvid)) {
if (data->currvid == maxvid) {
rvosteps = 0;
} else {
pr_debug("ph1: changing vid for rvo, req 0x%x\n",
data->currvid - 1);
if (decrease_vid_code_by_step(data, data->currvid-1, 1))
return 1;
rvosteps--;
}
}
if (query_current_values_with_pending_wait(data))
return 1;
if (savefid != data->currfid) {
pr_err("ph1 err, currfid changed 0x%x\n", data->currfid);
return 1;
}
pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
data->currfid, data->currvid);
return 0;
}
/* Phase 2 - core frequency transition */
static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
{
u32 vcoreqfid, vcocurrfid, vcofiddiff;
u32 fid_interval, savevid = data->currvid;
if (data->currfid == reqfid) {
pr_err("ph2 null fid transition 0x%x\n", data->currfid);
return 0;
}
pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
smp_processor_id(),
data->currfid, data->currvid, reqfid);
vcoreqfid = convert_fid_to_vco_fid(reqfid);
vcocurrfid = convert_fid_to_vco_fid(data->currfid);
vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
: vcoreqfid - vcocurrfid;
if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
vcofiddiff = 0;
while (vcofiddiff > 2) {
(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
if (reqfid > data->currfid) {
if (data->currfid > LO_FID_TABLE_TOP) {
if (write_new_fid(data,
data->currfid + fid_interval))
return 1;
} else {
if (write_new_fid
(data,
2 + convert_fid_to_vco_fid(data->currfid)))
return 1;
}
} else {
if (write_new_fid(data, data->currfid - fid_interval))
return 1;
}
vcocurrfid = convert_fid_to_vco_fid(data->currfid);
vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
: vcoreqfid - vcocurrfid;
}
if (write_new_fid(data, reqfid))
return 1;
if (query_current_values_with_pending_wait(data))
return 1;
if (data->currfid != reqfid) {
pr_err("ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
data->currfid, reqfid);
return 1;
}
if (savevid != data->currvid) {
pr_err("ph2: vid changed, save 0x%x, curr 0x%x\n",
savevid, data->currvid);
return 1;
}
pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
data->currfid, data->currvid);
return 0;
}
/* Phase 3 - core voltage transition flow ... jump to the final vid. */
static int core_voltage_post_transition(struct powernow_k8_data *data,
u32 reqvid)
{
u32 savefid = data->currfid;
u32 savereqvid = reqvid;
pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
smp_processor_id(),
data->currfid, data->currvid);
if (reqvid != data->currvid) {
if (write_new_vid(data, reqvid))
return 1;
if (savefid != data->currfid) {
pr_err("ph3: bad fid change, save 0x%x, curr 0x%x\n",
savefid, data->currfid);
return 1;
}
if (data->currvid != reqvid) {
pr_err("ph3: failed vid transition\n, req 0x%x, curr 0x%x",
reqvid, data->currvid);
return 1;
}
}
if (query_current_values_with_pending_wait(data))
return 1;
if (savereqvid != data->currvid) {
pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
return 1;
}
if (savefid != data->currfid) {
pr_debug("ph3 failed, currfid changed 0x%x\n",
data->currfid);
return 1;
}
pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
data->currfid, data->currvid);
return 0;
}
static const struct x86_cpu_id powernow_k8_ids[] = {
/* IO based frequency switching */
X86_MATCH_VENDOR_FAM(AMD, 0xf, NULL),
{}
};
MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
static void check_supported_cpu(void *_rc)
{
u32 eax, ebx, ecx, edx;
int *rc = _rc;
*rc = -ENODEV;
eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
pr_info("Processor cpuid %x not supported\n", eax);
return;
}
eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
pr_info("No frequency change capabilities detected\n");
return;
}
cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
if ((edx & P_STATE_TRANSITION_CAPABLE)
!= P_STATE_TRANSITION_CAPABLE) {
pr_info("Power state transitions not supported\n");
return;
}
*rc = 0;
}
}
static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
u8 maxvid)
{
unsigned int j;
u8 lastfid = 0xff;
for (j = 0; j < data->numps; j++) {
if (pst[j].vid > LEAST_VID) {
pr_err(FW_BUG "vid %d invalid : 0x%x\n", j,
pst[j].vid);
return -EINVAL;
}
if (pst[j].vid < data->rvo) {
/* vid + rvo >= 0 */
pr_err(FW_BUG "0 vid exceeded with pstate %d\n", j);
return -ENODEV;
}
if (pst[j].vid < maxvid + data->rvo) {
/* vid + rvo >= maxvid */
pr_err(FW_BUG "maxvid exceeded with pstate %d\n", j);
return -ENODEV;
}
if (pst[j].fid > MAX_FID) {
pr_err(FW_BUG "maxfid exceeded with pstate %d\n", j);
return -ENODEV;
}
if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
/* Only first fid is allowed to be in "low" range */
pr_err(FW_BUG "two low fids - %d : 0x%x\n", j,
pst[j].fid);
return -EINVAL;
}
if (pst[j].fid < lastfid)
lastfid = pst[j].fid;
}
if (lastfid & 1) {
pr_err(FW_BUG "lastfid invalid\n");
return -EINVAL;
}
if (lastfid > LO_FID_TABLE_TOP)
pr_info(FW_BUG "first fid not from lo freq table\n");
return 0;
}
static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
unsigned int entry)
{
powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
}
static void print_basics(struct powernow_k8_data *data)
{
int j;
for (j = 0; j < data->numps; j++) {
if (data->powernow_table[j].frequency !=
CPUFREQ_ENTRY_INVALID) {
pr_info("fid 0x%x (%d MHz), vid 0x%x\n",
data->powernow_table[j].driver_data & 0xff,
data->powernow_table[j].frequency/1000,
data->powernow_table[j].driver_data >> 8);
}
}
if (data->batps)
pr_info("Only %d pstates on battery\n", data->batps);
}
static int fill_powernow_table(struct powernow_k8_data *data,
struct pst_s *pst, u8 maxvid)
{
struct cpufreq_frequency_table *powernow_table;
unsigned int j;
if (data->batps) {
/* use ACPI support to get full speed on mains power */
pr_warn("Only %d pstates usable (use ACPI driver for full range\n",
data->batps);
data->numps = data->batps;
}
for (j = 1; j < data->numps; j++) {
if (pst[j-1].fid >= pst[j].fid) {
pr_err("PST out of sequence\n");
return -EINVAL;
}
}
if (data->numps < 2) {
pr_err("no p states to transition\n");
return -ENODEV;
}
if (check_pst_table(data, pst, maxvid))
return -EINVAL;
powernow_table = kzalloc((sizeof(*powernow_table)
* (data->numps + 1)), GFP_KERNEL);
if (!powernow_table)
return -ENOMEM;
for (j = 0; j < data->numps; j++) {
int freq;
powernow_table[j].driver_data = pst[j].fid; /* lower 8 bits */
powernow_table[j].driver_data |= (pst[j].vid << 8); /* upper 8 bits */
freq = find_khz_freq_from_fid(pst[j].fid);
powernow_table[j].frequency = freq;
}
powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
powernow_table[data->numps].driver_data = 0;
if (query_current_values_with_pending_wait(data)) {
kfree(powernow_table);
return -EIO;
}
pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
data->powernow_table = powernow_table;
if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu)
print_basics(data);
for (j = 0; j < data->numps; j++)
if ((pst[j].fid == data->currfid) &&
(pst[j].vid == data->currvid))
return 0;
pr_debug("currfid/vid do not match PST, ignoring\n");
return 0;
}
/* Find and validate the PSB/PST table in BIOS. */
static int find_psb_table(struct powernow_k8_data *data)
{
struct psb_s *psb;
unsigned int i;
u32 mvs;
u8 maxvid;
u32 cpst = 0;
u32 thiscpuid;
for (i = 0xc0000; i < 0xffff0; i += 0x10) {
/* Scan BIOS looking for the signature. */
/* It can not be at ffff0 - it is too big. */
psb = phys_to_virt(i);
if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
continue;
pr_debug("found PSB header at 0x%p\n", psb);
pr_debug("table vers: 0x%x\n", psb->tableversion);
if (psb->tableversion != PSB_VERSION_1_4) {
pr_err(FW_BUG "PSB table is not v1.4\n");
return -ENODEV;
}
pr_debug("flags: 0x%x\n", psb->flags1);
if (psb->flags1) {
pr_err(FW_BUG "unknown flags\n");
return -ENODEV;
}
data->vstable = psb->vstable;
pr_debug("voltage stabilization time: %d(*20us)\n",
data->vstable);
pr_debug("flags2: 0x%x\n", psb->flags2);
data->rvo = psb->flags2 & 3;
data->irt = ((psb->flags2) >> 2) & 3;
mvs = ((psb->flags2) >> 4) & 3;
data->vidmvs = 1 << mvs;
data->batps = ((psb->flags2) >> 6) & 3;
pr_debug("ramp voltage offset: %d\n", data->rvo);
pr_debug("isochronous relief time: %d\n", data->irt);
pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
pr_debug("numpst: 0x%x\n", psb->num_tables);
cpst = psb->num_tables;
if ((psb->cpuid == 0x00000fc0) ||
(psb->cpuid == 0x00000fe0)) {
thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
if ((thiscpuid == 0x00000fc0) ||
(thiscpuid == 0x00000fe0))
cpst = 1;
}
if (cpst != 1) {
pr_err(FW_BUG "numpst must be 1\n");
return -ENODEV;
}
data->plllock = psb->plllocktime;
pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
pr_debug("maxfid: 0x%x\n", psb->maxfid);
pr_debug("maxvid: 0x%x\n", psb->maxvid);
maxvid = psb->maxvid;
data->numps = psb->numps;
pr_debug("numpstates: 0x%x\n", data->numps);
return fill_powernow_table(data,
(struct pst_s *)(psb+1), maxvid);
}
/*
* If you see this message, complain to BIOS manufacturer. If
* he tells you "we do not support Linux" or some similar
* nonsense, remember that Windows 2000 uses the same legacy
* mechanism that the old Linux PSB driver uses. Tell them it
* is broken with Windows 2000.
*
* The reference to the AMD documentation is chapter 9 in the
* BIOS and Kernel Developer's Guide, which is available on
* www.amd.com
*/
pr_err(FW_BUG "No PSB or ACPI _PSS objects\n");
pr_err("Make sure that your BIOS is up to date and Cool'N'Quiet support is enabled in BIOS setup\n");
return -ENODEV;
}
static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
unsigned int index)
{
u64 control;
if (!data->acpi_data.state_count)
return;
control = data->acpi_data.states[index].control;
data->irt = (control >> IRT_SHIFT) & IRT_MASK;
data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
data->vstable = (control >> VST_SHIFT) & VST_MASK;
}
static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
{
struct cpufreq_frequency_table *powernow_table;
int ret_val = -ENODEV;
u64 control, status;
if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
pr_debug("register performance failed: bad ACPI data\n");
return -EIO;
}
/* verify the data contained in the ACPI structures */
if (data->acpi_data.state_count <= 1) {
pr_debug("No ACPI P-States\n");
goto err_out;
}
control = data->acpi_data.control_register.space_id;
status = data->acpi_data.status_register.space_id;
if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
(status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
pr_debug("Invalid control/status registers (%llx - %llx)\n",
control, status);
goto err_out;
}
/* fill in data->powernow_table */
powernow_table = kzalloc((sizeof(*powernow_table)
* (data->acpi_data.state_count + 1)), GFP_KERNEL);
if (!powernow_table)
goto err_out;
/* fill in data */
data->numps = data->acpi_data.state_count;
powernow_k8_acpi_pst_values(data, 0);
ret_val = fill_powernow_table_fidvid(data, powernow_table);
if (ret_val)
goto err_out_mem;
powernow_table[data->acpi_data.state_count].frequency =
CPUFREQ_TABLE_END;
data->powernow_table = powernow_table;
if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu)
print_basics(data);
/* notify BIOS that we exist */
acpi_processor_notify_smm(THIS_MODULE);
if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
pr_err("unable to alloc powernow_k8_data cpumask\n");
ret_val = -ENOMEM;
goto err_out_mem;
}
return 0;
err_out_mem:
kfree(powernow_table);
err_out:
acpi_processor_unregister_performance(data->cpu);
/* data->acpi_data.state_count informs us at ->exit()
* whether ACPI was used */
data->acpi_data.state_count = 0;
return ret_val;
}
static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
struct cpufreq_frequency_table *powernow_table)
{
int i;
for (i = 0; i < data->acpi_data.state_count; i++) {
u32 fid;
u32 vid;
u32 freq, index;
u64 status, control;
if (data->exttype) {
status = data->acpi_data.states[i].status;
fid = status & EXT_FID_MASK;
vid = (status >> VID_SHIFT) & EXT_VID_MASK;
} else {
control = data->acpi_data.states[i].control;
fid = control & FID_MASK;
vid = (control >> VID_SHIFT) & VID_MASK;
}
pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
index = fid | (vid<<8);
powernow_table[i].driver_data = index;
freq = find_khz_freq_from_fid(fid);
powernow_table[i].frequency = freq;
/* verify frequency is OK */
if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
pr_debug("invalid freq %u kHz, ignoring\n", freq);
invalidate_entry(powernow_table, i);
continue;
}
/* verify voltage is OK -
* BIOSs are using "off" to indicate invalid */
if (vid == VID_OFF) {
pr_debug("invalid vid %u, ignoring\n", vid);
invalidate_entry(powernow_table, i);
continue;
}
if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
pr_info("invalid freq entries %u kHz vs. %u kHz\n",
freq, (unsigned int)
(data->acpi_data.states[i].core_frequency
* 1000));
invalidate_entry(powernow_table, i);
continue;
}
}
return 0;
}
static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
{
if (data->acpi_data.state_count)
acpi_processor_unregister_performance(data->cpu);
free_cpumask_var(data->acpi_data.shared_cpu_map);
}
static int get_transition_latency(struct powernow_k8_data *data)
{
int max_latency = 0;
int i;
for (i = 0; i < data->acpi_data.state_count; i++) {
int cur_latency = data->acpi_data.states[i].transition_latency
+ data->acpi_data.states[i].bus_master_latency;
if (cur_latency > max_latency)
max_latency = cur_latency;
}
if (max_latency == 0) {
pr_err(FW_WARN "Invalid zero transition latency\n");
max_latency = 1;
}
/* value in usecs, needs to be in nanoseconds */
return 1000 * max_latency;
}
/* Take a frequency, and issue the fid/vid transition command */
static int transition_frequency_fidvid(struct powernow_k8_data *data,
unsigned int index,
struct cpufreq_policy *policy)
{
u32 fid = 0;
u32 vid = 0;
int res;
struct cpufreq_freqs freqs;
pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
/* fid/vid correctness check for k8 */
/* fid are the lower 8 bits of the index we stored into
* the cpufreq frequency table in find_psb_table, vid
* are the upper 8 bits.
*/
fid = data->powernow_table[index].driver_data & 0xFF;
vid = (data->powernow_table[index].driver_data & 0xFF00) >> 8;
pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
if (query_current_values_with_pending_wait(data))
return 1;
if ((data->currvid == vid) && (data->currfid == fid)) {
pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
fid, vid);
return 0;
}
pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
smp_processor_id(), fid, vid);
freqs.old = find_khz_freq_from_fid(data->currfid);
freqs.new = find_khz_freq_from_fid(fid);
cpufreq_freq_transition_begin(policy, &freqs);
res = transition_fid_vid(data, fid, vid);
cpufreq_freq_transition_end(policy, &freqs, res);
return res;
}
struct powernowk8_target_arg {
struct cpufreq_policy *pol;
unsigned newstate;
};
static long powernowk8_target_fn(void *arg)
{
struct powernowk8_target_arg *pta = arg;
struct cpufreq_policy *pol = pta->pol;
unsigned newstate = pta->newstate;
struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
u32 checkfid;
u32 checkvid;
int ret;
if (!data)
return -EINVAL;
checkfid = data->currfid;
checkvid = data->currvid;
if (pending_bit_stuck()) {
pr_err("failing targ, change pending bit set\n");
return -EIO;
}
pr_debug("targ: cpu %d, %d kHz, min %d, max %d\n",
pol->cpu, data->powernow_table[newstate].frequency, pol->min,
pol->max);
if (query_current_values_with_pending_wait(data))
return -EIO;
pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
data->currfid, data->currvid);
if ((checkvid != data->currvid) ||
(checkfid != data->currfid)) {
pr_info("error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
checkfid, data->currfid,
checkvid, data->currvid);
}
mutex_lock(&fidvid_mutex);
powernow_k8_acpi_pst_values(data, newstate);
ret = transition_frequency_fidvid(data, newstate, pol);
if (ret) {
pr_err("transition frequency failed\n");
mutex_unlock(&fidvid_mutex);
return 1;
}
mutex_unlock(&fidvid_mutex);
pol->cur = find_khz_freq_from_fid(data->currfid);
return 0;
}
/* Driver entry point to switch to the target frequency */
static int powernowk8_target(struct cpufreq_policy *pol, unsigned index)
{
struct powernowk8_target_arg pta = { .pol = pol, .newstate = index };
return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
}
struct init_on_cpu {
struct powernow_k8_data *data;
int rc;
};
static void powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
{
struct init_on_cpu *init_on_cpu = _init_on_cpu;
if (pending_bit_stuck()) {
pr_err("failing init, change pending bit set\n");
init_on_cpu->rc = -ENODEV;
return;
}
if (query_current_values_with_pending_wait(init_on_cpu->data)) {
init_on_cpu->rc = -ENODEV;
return;
}
fidvid_msr_init();
init_on_cpu->rc = 0;
}
#define MISSING_PSS_MSG \
FW_BUG "No compatible ACPI _PSS objects found.\n" \
FW_BUG "First, make sure Cool'N'Quiet is enabled in the BIOS.\n" \
FW_BUG "If that doesn't help, try upgrading your BIOS.\n"
/* per CPU init entry point to the driver */
static int powernowk8_cpu_init(struct cpufreq_policy *pol)
{
struct powernow_k8_data *data;
struct init_on_cpu init_on_cpu;
int rc, cpu;
smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
if (rc)
return -ENODEV;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->cpu = pol->cpu;
if (powernow_k8_cpu_init_acpi(data)) {
/*
* Use the PSB BIOS structure. This is only available on
* an UP version, and is deprecated by AMD.
*/
if (num_online_cpus() != 1) {
pr_err_once(MISSING_PSS_MSG);
goto err_out;
}
if (pol->cpu != 0) {
pr_err(FW_BUG "No ACPI _PSS objects for CPU other than CPU0. Complain to your BIOS vendor.\n");
goto err_out;
}
rc = find_psb_table(data);
if (rc)
goto err_out;
/* Take a crude guess here.
* That guess was in microseconds, so multiply with 1000 */
pol->cpuinfo.transition_latency = (
((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
((1 << data->irt) * 30)) * 1000;
} else /* ACPI _PSS objects available */
pol->cpuinfo.transition_latency = get_transition_latency(data);
/* only run on specific CPU from here on */
init_on_cpu.data = data;
smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
&init_on_cpu, 1);
rc = init_on_cpu.rc;
if (rc != 0)
goto err_out_exit_acpi;
cpumask_copy(pol->cpus, topology_core_cpumask(pol->cpu));
data->available_cores = pol->cpus;
pol->freq_table = data->powernow_table;
pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
data->currfid, data->currvid);
/* Point all the CPUs in this policy to the same data */
for_each_cpu(cpu, pol->cpus)
per_cpu(powernow_data, cpu) = data;
return 0;
err_out_exit_acpi:
powernow_k8_cpu_exit_acpi(data);
err_out:
kfree(data);
return -ENODEV;
}
static int powernowk8_cpu_exit(struct cpufreq_policy *pol)
{
struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
int cpu;
if (!data)
return -EINVAL;
powernow_k8_cpu_exit_acpi(data);
kfree(data->powernow_table);
kfree(data);
/* pol->cpus will be empty here, use related_cpus instead. */
for_each_cpu(cpu, pol->related_cpus)
per_cpu(powernow_data, cpu) = NULL;
return 0;
}
static void query_values_on_cpu(void *_err)
{
int *err = _err;
struct powernow_k8_data *data = __this_cpu_read(powernow_data);
*err = query_current_values_with_pending_wait(data);
}
static unsigned int powernowk8_get(unsigned int cpu)
{
struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
unsigned int khz = 0;
int err;
if (!data)
return 0;
smp_call_function_single(cpu, query_values_on_cpu, &err, true);
if (err)
goto out;
khz = find_khz_freq_from_fid(data->currfid);
out:
return khz;
}
static struct cpufreq_driver cpufreq_amd64_driver = {
.flags = CPUFREQ_ASYNC_NOTIFICATION,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = powernowk8_target,
.bios_limit = acpi_processor_get_bios_limit,
.init = powernowk8_cpu_init,
.exit = powernowk8_cpu_exit,
.get = powernowk8_get,
.name = "powernow-k8",
.attr = cpufreq_generic_attr,
};
static void __request_acpi_cpufreq(void)
{
const char drv[] = "acpi-cpufreq";
const char *cur_drv;
cur_drv = cpufreq_get_current_driver();
if (!cur_drv)
goto request;
if (strncmp(cur_drv, drv, min_t(size_t, strlen(cur_drv), strlen(drv))))
pr_warn("WTF driver: %s\n", cur_drv);
return;
request:
pr_warn("This CPU is not supported anymore, using acpi-cpufreq instead.\n");
request_module(drv);
}
/* driver entry point for init */
static int powernowk8_init(void)
{
unsigned int i, supported_cpus = 0;
int ret;
if (!x86_match_cpu(powernow_k8_ids))
return -ENODEV;
if (boot_cpu_has(X86_FEATURE_HW_PSTATE)) {
__request_acpi_cpufreq();
return -ENODEV;
}
cpus_read_lock();
for_each_online_cpu(i) {
smp_call_function_single(i, check_supported_cpu, &ret, 1);
if (!ret)
supported_cpus++;
}
if (supported_cpus != num_online_cpus()) {
cpus_read_unlock();
return -ENODEV;
}
cpus_read_unlock();
ret = cpufreq_register_driver(&cpufreq_amd64_driver);
if (ret)
return ret;
pr_info("Found %d %s (%d cpu cores) (" VERSION ")\n",
num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
return ret;
}
/* driver entry point for term */
static void __exit powernowk8_exit(void)
{
pr_debug("exit\n");
cpufreq_unregister_driver(&cpufreq_amd64_driver);
}
MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com>");
MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@amd.com>");
MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
MODULE_LICENSE("GPL");
late_initcall(powernowk8_init);
module_exit(powernowk8_exit);