linux-next/drivers/spi/spi-pxa2xx.c
Andy Shevchenko e17465f78e
spi: pxa2xx: Move PM runtime handling to the glue drivers
PCI and platform buses have different defaults for runtime PM.
In particular PCI probe is assumed to be called when PM runtime
is enabled by the PCI core. In this case if we try enable it again
the PM runtime complaints with

    pxa2xx_spi_pci 0000:00:07.0: Unbalanced pm_runtime_enable!

Fix this by moving PM runtime handling from the SPI PXA2xx core
to the glue drivers.

Fixes: cc160697a5 ("spi: pxa2xx: Convert PCI driver to use spi-pxa2xx code directly")
Fixes: 3d8f037fbc ("spi: pxa2xx: Move platform driver to a separate file")
Fixes: 20ade9b977 ("spi: pxa2xx: Extract pxa2xx_spi_platform_*() callbacks")
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://patch.msgid.link/20240822113408.750831-3-andriy.shevchenko@linux.intel.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2024-08-22 13:34:06 +01:00

1551 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
* Copyright (C) 2013, 2021 Intel Corporation
*/
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/math64.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/spi/spi.h>
#include "internals.h"
#include "spi-pxa2xx.h"
#define TIMOUT_DFLT 1000
/*
* For testing SSCR1 changes that require SSP restart, basically
* everything except the service and interrupt enables, the PXA270 developer
* manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
* list, but the PXA255 developer manual says all bits without really meaning
* the service and interrupt enables.
*/
#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
| QUARK_X1000_SSCR1_EFWR \
| QUARK_X1000_SSCR1_RFT \
| QUARK_X1000_SSCR1_TFT \
| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
struct chip_data {
u32 cr1;
u32 dds_rate;
u32 threshold;
u16 lpss_rx_threshold;
u16 lpss_tx_threshold;
};
#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
#define LPSS_CS_CONTROL_SW_MODE BIT(0)
#define LPSS_CS_CONTROL_CS_HIGH BIT(1)
#define LPSS_CAPS_CS_EN_SHIFT 9
#define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
#define LPSS_PRIV_CLOCK_GATE 0x38
#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
struct lpss_config {
/* LPSS offset from drv_data->ioaddr */
unsigned offset;
/* Register offsets from drv_data->lpss_base or -1 */
int reg_general;
int reg_ssp;
int reg_cs_ctrl;
int reg_capabilities;
/* FIFO thresholds */
u32 rx_threshold;
u32 tx_threshold_lo;
u32 tx_threshold_hi;
/* Chip select control */
unsigned cs_sel_shift;
unsigned cs_sel_mask;
/* Quirks */
unsigned cs_clk_stays_gated : 1;
};
/* Keep these sorted with enum pxa_ssp_type */
static const struct lpss_config lpss_platforms[] = {
{ /* LPSS_LPT_SSP */
.offset = 0x800,
.reg_general = 0x08,
.reg_ssp = 0x0c,
.reg_cs_ctrl = 0x18,
.reg_capabilities = -1,
.rx_threshold = 64,
.tx_threshold_lo = 160,
.tx_threshold_hi = 224,
},
{ /* LPSS_BYT_SSP */
.offset = 0x400,
.reg_general = 0x08,
.reg_ssp = 0x0c,
.reg_cs_ctrl = 0x18,
.reg_capabilities = -1,
.rx_threshold = 64,
.tx_threshold_lo = 160,
.tx_threshold_hi = 224,
},
{ /* LPSS_BSW_SSP */
.offset = 0x400,
.reg_general = 0x08,
.reg_ssp = 0x0c,
.reg_cs_ctrl = 0x18,
.reg_capabilities = -1,
.rx_threshold = 64,
.tx_threshold_lo = 160,
.tx_threshold_hi = 224,
.cs_sel_shift = 2,
.cs_sel_mask = 1 << 2,
},
{ /* LPSS_SPT_SSP */
.offset = 0x200,
.reg_general = -1,
.reg_ssp = 0x20,
.reg_cs_ctrl = 0x24,
.reg_capabilities = -1,
.rx_threshold = 1,
.tx_threshold_lo = 32,
.tx_threshold_hi = 56,
},
{ /* LPSS_BXT_SSP */
.offset = 0x200,
.reg_general = -1,
.reg_ssp = 0x20,
.reg_cs_ctrl = 0x24,
.reg_capabilities = 0xfc,
.rx_threshold = 1,
.tx_threshold_lo = 16,
.tx_threshold_hi = 48,
.cs_sel_shift = 8,
.cs_sel_mask = 3 << 8,
.cs_clk_stays_gated = true,
},
{ /* LPSS_CNL_SSP */
.offset = 0x200,
.reg_general = -1,
.reg_ssp = 0x20,
.reg_cs_ctrl = 0x24,
.reg_capabilities = 0xfc,
.rx_threshold = 1,
.tx_threshold_lo = 32,
.tx_threshold_hi = 56,
.cs_sel_shift = 8,
.cs_sel_mask = 3 << 8,
.cs_clk_stays_gated = true,
},
};
static inline const struct lpss_config
*lpss_get_config(const struct driver_data *drv_data)
{
return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
}
static bool is_lpss_ssp(const struct driver_data *drv_data)
{
switch (drv_data->ssp_type) {
case LPSS_LPT_SSP:
case LPSS_BYT_SSP:
case LPSS_BSW_SSP:
case LPSS_SPT_SSP:
case LPSS_BXT_SSP:
case LPSS_CNL_SSP:
return true;
default:
return false;
}
}
static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
{
return drv_data->ssp_type == QUARK_X1000_SSP;
}
static bool is_mmp2_ssp(const struct driver_data *drv_data)
{
return drv_data->ssp_type == MMP2_SSP;
}
static bool is_mrfld_ssp(const struct driver_data *drv_data)
{
return drv_data->ssp_type == MRFLD_SSP;
}
static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
{
if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
pxa2xx_spi_write(drv_data, reg, value & mask);
}
static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
{
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
return QUARK_X1000_SSCR1_CHANGE_MASK;
case CE4100_SSP:
return CE4100_SSCR1_CHANGE_MASK;
default:
return SSCR1_CHANGE_MASK;
}
}
static u32
pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
{
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
return RX_THRESH_QUARK_X1000_DFLT;
case CE4100_SSP:
return RX_THRESH_CE4100_DFLT;
default:
return RX_THRESH_DFLT;
}
}
static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
{
u32 mask;
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
mask = QUARK_X1000_SSSR_TFL_MASK;
break;
case CE4100_SSP:
mask = CE4100_SSSR_TFL_MASK;
break;
default:
mask = SSSR_TFL_MASK;
break;
}
return read_SSSR_bits(drv_data, mask) == mask;
}
static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
u32 *sccr1_reg)
{
u32 mask;
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
mask = QUARK_X1000_SSCR1_RFT;
break;
case CE4100_SSP:
mask = CE4100_SSCR1_RFT;
break;
default:
mask = SSCR1_RFT;
break;
}
*sccr1_reg &= ~mask;
}
static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
u32 *sccr1_reg, u32 threshold)
{
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
break;
case CE4100_SSP:
*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
break;
default:
*sccr1_reg |= SSCR1_RxTresh(threshold);
break;
}
}
static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
u32 clk_div, u8 bits)
{
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
return clk_div
| QUARK_X1000_SSCR0_Motorola
| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
default:
return clk_div
| SSCR0_Motorola
| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
| (bits > 16 ? SSCR0_EDSS : 0);
}
}
/*
* Read and write LPSS SSP private registers. Caller must first check that
* is_lpss_ssp() returns true before these can be called.
*/
static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
{
WARN_ON(!drv_data->lpss_base);
return readl(drv_data->lpss_base + offset);
}
static void __lpss_ssp_write_priv(struct driver_data *drv_data,
unsigned offset, u32 value)
{
WARN_ON(!drv_data->lpss_base);
writel(value, drv_data->lpss_base + offset);
}
/*
* lpss_ssp_setup - perform LPSS SSP specific setup
* @drv_data: pointer to the driver private data
*
* Perform LPSS SSP specific setup. This function must be called first if
* one is going to use LPSS SSP private registers.
*/
static void lpss_ssp_setup(struct driver_data *drv_data)
{
const struct lpss_config *config;
u32 value;
config = lpss_get_config(drv_data);
drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
/* Enable software chip select control */
value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
/* Enable multiblock DMA transfers */
if (drv_data->controller_info->enable_dma) {
__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
if (config->reg_general >= 0) {
value = __lpss_ssp_read_priv(drv_data,
config->reg_general);
value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
__lpss_ssp_write_priv(drv_data,
config->reg_general, value);
}
}
}
static void lpss_ssp_select_cs(struct spi_device *spi,
const struct lpss_config *config)
{
struct driver_data *drv_data =
spi_controller_get_devdata(spi->controller);
u32 value, cs;
if (!config->cs_sel_mask)
return;
value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
cs = spi_get_chipselect(spi, 0);
cs <<= config->cs_sel_shift;
if (cs != (value & config->cs_sel_mask)) {
/*
* When switching another chip select output active the
* output must be selected first and wait 2 ssp_clk cycles
* before changing state to active. Otherwise a short
* glitch will occur on the previous chip select since
* output select is latched but state control is not.
*/
value &= ~config->cs_sel_mask;
value |= cs;
__lpss_ssp_write_priv(drv_data,
config->reg_cs_ctrl, value);
ndelay(1000000000 /
(drv_data->controller->max_speed_hz / 2));
}
}
static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
{
struct driver_data *drv_data =
spi_controller_get_devdata(spi->controller);
const struct lpss_config *config;
u32 value;
config = lpss_get_config(drv_data);
if (enable)
lpss_ssp_select_cs(spi, config);
value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
if (enable)
value &= ~LPSS_CS_CONTROL_CS_HIGH;
else
value |= LPSS_CS_CONTROL_CS_HIGH;
__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
if (config->cs_clk_stays_gated) {
u32 clkgate;
/*
* Changing CS alone when dynamic clock gating is on won't
* actually flip CS at that time. This ruins SPI transfers
* that specify delays, or have no data. Toggle the clock mode
* to force on briefly to poke the CS pin to move.
*/
clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
}
}
static void cs_assert(struct spi_device *spi)
{
struct driver_data *drv_data =
spi_controller_get_devdata(spi->controller);
if (drv_data->ssp_type == CE4100_SSP) {
pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0));
return;
}
if (is_lpss_ssp(drv_data))
lpss_ssp_cs_control(spi, true);
}
static void cs_deassert(struct spi_device *spi)
{
struct driver_data *drv_data =
spi_controller_get_devdata(spi->controller);
unsigned long timeout;
if (drv_data->ssp_type == CE4100_SSP)
return;
/* Wait until SSP becomes idle before deasserting the CS */
timeout = jiffies + msecs_to_jiffies(10);
while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
!time_after(jiffies, timeout))
cpu_relax();
if (is_lpss_ssp(drv_data))
lpss_ssp_cs_control(spi, false);
}
static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
{
if (level)
cs_deassert(spi);
else
cs_assert(spi);
}
int pxa2xx_spi_flush(struct driver_data *drv_data)
{
unsigned long limit = loops_per_jiffy << 1;
do {
while (read_SSSR_bits(drv_data, SSSR_RNE))
pxa2xx_spi_read(drv_data, SSDR);
} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
write_SSSR_CS(drv_data, SSSR_ROR);
return limit;
}
static void pxa2xx_spi_off(struct driver_data *drv_data)
{
/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
if (is_mmp2_ssp(drv_data))
return;
pxa_ssp_disable(drv_data->ssp);
}
static int null_writer(struct driver_data *drv_data)
{
u8 n_bytes = drv_data->n_bytes;
if (pxa2xx_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
pxa2xx_spi_write(drv_data, SSDR, 0);
drv_data->tx += n_bytes;
return 1;
}
static int null_reader(struct driver_data *drv_data)
{
u8 n_bytes = drv_data->n_bytes;
while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
pxa2xx_spi_read(drv_data, SSDR);
drv_data->rx += n_bytes;
}
return drv_data->rx == drv_data->rx_end;
}
static int u8_writer(struct driver_data *drv_data)
{
if (pxa2xx_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
++drv_data->tx;
return 1;
}
static int u8_reader(struct driver_data *drv_data)
{
while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
++drv_data->rx;
}
return drv_data->rx == drv_data->rx_end;
}
static int u16_writer(struct driver_data *drv_data)
{
if (pxa2xx_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
drv_data->tx += 2;
return 1;
}
static int u16_reader(struct driver_data *drv_data)
{
while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
drv_data->rx += 2;
}
return drv_data->rx == drv_data->rx_end;
}
static int u32_writer(struct driver_data *drv_data)
{
if (pxa2xx_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
drv_data->tx += 4;
return 1;
}
static int u32_reader(struct driver_data *drv_data)
{
while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
drv_data->rx += 4;
}
return drv_data->rx == drv_data->rx_end;
}
static void reset_sccr1(struct driver_data *drv_data)
{
u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
struct chip_data *chip;
if (drv_data->controller->cur_msg) {
chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
threshold = chip->threshold;
} else {
threshold = 0;
}
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
mask |= QUARK_X1000_SSCR1_RFT;
break;
case CE4100_SSP:
mask |= CE4100_SSCR1_RFT;
break;
default:
mask |= SSCR1_RFT;
break;
}
pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
}
static void int_stop_and_reset(struct driver_data *drv_data)
{
/* Clear and disable interrupts */
write_SSSR_CS(drv_data, drv_data->clear_sr);
reset_sccr1(drv_data);
if (pxa25x_ssp_comp(drv_data))
return;
pxa2xx_spi_write(drv_data, SSTO, 0);
}
static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
{
int_stop_and_reset(drv_data);
pxa2xx_spi_flush(drv_data);
pxa2xx_spi_off(drv_data);
dev_err(drv_data->ssp->dev, "%s\n", msg);
drv_data->controller->cur_msg->status = err;
spi_finalize_current_transfer(drv_data->controller);
}
static void int_transfer_complete(struct driver_data *drv_data)
{
int_stop_and_reset(drv_data);
spi_finalize_current_transfer(drv_data->controller);
}
static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
{
u32 irq_status;
irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
irq_status &= ~SSSR_TFS;
if (irq_status & SSSR_ROR) {
int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
return IRQ_HANDLED;
}
if (irq_status & SSSR_TUR) {
int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
return IRQ_HANDLED;
}
if (irq_status & SSSR_TINT) {
pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
if (drv_data->read(drv_data)) {
int_transfer_complete(drv_data);
return IRQ_HANDLED;
}
}
/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
do {
if (drv_data->read(drv_data)) {
int_transfer_complete(drv_data);
return IRQ_HANDLED;
}
} while (drv_data->write(drv_data));
if (drv_data->read(drv_data)) {
int_transfer_complete(drv_data);
return IRQ_HANDLED;
}
if (drv_data->tx == drv_data->tx_end) {
u32 bytes_left;
u32 sccr1_reg;
sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
sccr1_reg &= ~SSCR1_TIE;
/*
* PXA25x_SSP has no timeout, set up Rx threshold for
* the remaining Rx bytes.
*/
if (pxa25x_ssp_comp(drv_data)) {
u32 rx_thre;
pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
bytes_left = drv_data->rx_end - drv_data->rx;
switch (drv_data->n_bytes) {
case 4:
bytes_left >>= 2;
break;
case 2:
bytes_left >>= 1;
break;
}
rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
if (rx_thre > bytes_left)
rx_thre = bytes_left;
pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
}
pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
}
/* We did something */
return IRQ_HANDLED;
}
static void handle_bad_msg(struct driver_data *drv_data)
{
int_stop_and_reset(drv_data);
pxa2xx_spi_off(drv_data);
dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
}
static irqreturn_t ssp_int(int irq, void *dev_id)
{
struct driver_data *drv_data = dev_id;
u32 sccr1_reg;
u32 mask = drv_data->mask_sr;
u32 status;
/*
* The IRQ might be shared with other peripherals so we must first
* check that are we RPM suspended or not. If we are we assume that
* the IRQ was not for us (we shouldn't be RPM suspended when the
* interrupt is enabled).
*/
if (pm_runtime_suspended(drv_data->ssp->dev))
return IRQ_NONE;
/*
* If the device is not yet in RPM suspended state and we get an
* interrupt that is meant for another device, check if status bits
* are all set to one. That means that the device is already
* powered off.
*/
status = pxa2xx_spi_read(drv_data, SSSR);
if (status == ~0)
return IRQ_NONE;
sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
/* Ignore possible writes if we don't need to write */
if (!(sccr1_reg & SSCR1_TIE))
mask &= ~SSSR_TFS;
/* Ignore RX timeout interrupt if it is disabled */
if (!(sccr1_reg & SSCR1_TINTE))
mask &= ~SSSR_TINT;
if (!(status & mask))
return IRQ_NONE;
pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
if (!drv_data->controller->cur_msg) {
handle_bad_msg(drv_data);
/* Never fail */
return IRQ_HANDLED;
}
return drv_data->transfer_handler(drv_data);
}
/*
* The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
* input frequency by fractions of 2^24. It also has a divider by 5.
*
* There are formulas to get baud rate value for given input frequency and
* divider parameters, such as DDS_CLK_RATE and SCR:
*
* Fsys = 200MHz
*
* Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
* Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
*
* DDS_CLK_RATE either 2^n or 2^n / 5.
* SCR is in range 0 .. 255
*
* Divisor = 5^i * 2^j * 2 * k
* i = [0, 1] i = 1 iff j = 0 or j > 3
* j = [0, 23] j = 0 iff i = 1
* k = [1, 256]
* Special case: j = 0, i = 1: Divisor = 2 / 5
*
* Accordingly to the specification the recommended values for DDS_CLK_RATE
* are:
* Case 1: 2^n, n = [0, 23]
* Case 2: 2^24 * 2 / 5 (0x666666)
* Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
*
* In all cases the lowest possible value is better.
*
* The function calculates parameters for all cases and chooses the one closest
* to the asked baud rate.
*/
static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
{
unsigned long xtal = 200000000;
unsigned long fref = xtal / 2; /* mandatory division by 2,
see (2) */
/* case 3 */
unsigned long fref1 = fref / 2; /* case 1 */
unsigned long fref2 = fref * 2 / 5; /* case 2 */
unsigned long scale;
unsigned long q, q1, q2;
long r, r1, r2;
u32 mul;
/* Case 1 */
/* Set initial value for DDS_CLK_RATE */
mul = (1 << 24) >> 1;
/* Calculate initial quot */
q1 = DIV_ROUND_UP(fref1, rate);
/* Scale q1 if it's too big */
if (q1 > 256) {
/* Scale q1 to range [1, 512] */
scale = fls_long(q1 - 1);
if (scale > 9) {
q1 >>= scale - 9;
mul >>= scale - 9;
}
/* Round the result if we have a remainder */
q1 += q1 & 1;
}
/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
scale = __ffs(q1);
q1 >>= scale;
mul >>= scale;
/* Get the remainder */
r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
/* Case 2 */
q2 = DIV_ROUND_UP(fref2, rate);
r2 = abs(fref2 / q2 - rate);
/*
* Choose the best between two: less remainder we have the better. We
* can't go case 2 if q2 is greater than 256 since SCR register can
* hold only values 0 .. 255.
*/
if (r2 >= r1 || q2 > 256) {
/* case 1 is better */
r = r1;
q = q1;
} else {
/* case 2 is better */
r = r2;
q = q2;
mul = (1 << 24) * 2 / 5;
}
/* Check case 3 only if the divisor is big enough */
if (fref / rate >= 80) {
u64 fssp;
u32 m;
/* Calculate initial quot */
q1 = DIV_ROUND_UP(fref, rate);
m = (1 << 24) / q1;
/* Get the remainder */
fssp = (u64)fref * m;
do_div(fssp, 1 << 24);
r1 = abs(fssp - rate);
/* Choose this one if it suits better */
if (r1 < r) {
/* case 3 is better */
q = 1;
mul = m;
}
}
*dds = mul;
return q - 1;
}
static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
{
unsigned long ssp_clk = drv_data->controller->max_speed_hz;
const struct ssp_device *ssp = drv_data->ssp;
rate = min_t(int, ssp_clk, rate);
/*
* Calculate the divisor for the SCR (Serial Clock Rate), avoiding
* that the SSP transmission rate can be greater than the device rate.
*/
if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
else
return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff;
}
static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
int rate)
{
struct chip_data *chip =
spi_get_ctldata(drv_data->controller->cur_msg->spi);
unsigned int clk_div;
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
break;
default:
clk_div = ssp_get_clk_div(drv_data, rate);
break;
}
return clk_div << 8;
}
static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct driver_data *drv_data = spi_controller_get_devdata(controller);
return drv_data->controller_info->enable_dma &&
xfer->len <= MAX_DMA_LEN &&
xfer->len >= drv_data->controller_info->dma_burst_size;
}
static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
struct spi_device *spi,
struct spi_transfer *transfer)
{
struct driver_data *drv_data = spi_controller_get_devdata(controller);
struct chip_data *chip = spi_get_ctldata(spi);
u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
u32 dma_thresh;
u32 clk_div;
u8 bits;
u32 speed;
u32 cr0;
u32 cr1;
int err;
int dma_mapped;
/* Check if we can DMA this transfer */
if (transfer->len > MAX_DMA_LEN && drv_data->controller_info->enable_dma) {
/* Warn ... we force this to PIO mode */
dev_warn_ratelimited(&spi->dev,
"DMA disabled for transfer length %u greater than %d\n",
transfer->len, MAX_DMA_LEN);
}
/* Setup the transfer state based on the type of transfer */
if (pxa2xx_spi_flush(drv_data) == 0) {
dev_err(&spi->dev, "Flush failed\n");
return -EIO;
}
drv_data->tx = (void *)transfer->tx_buf;
drv_data->tx_end = drv_data->tx + transfer->len;
drv_data->rx = transfer->rx_buf;
drv_data->rx_end = drv_data->rx + transfer->len;
/* Change speed and bit per word on a per transfer */
bits = transfer->bits_per_word;
speed = transfer->speed_hz;
clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
if (bits <= 8) {
drv_data->n_bytes = 1;
drv_data->read = drv_data->rx ? u8_reader : null_reader;
drv_data->write = drv_data->tx ? u8_writer : null_writer;
} else if (bits <= 16) {
drv_data->n_bytes = 2;
drv_data->read = drv_data->rx ? u16_reader : null_reader;
drv_data->write = drv_data->tx ? u16_writer : null_writer;
} else if (bits <= 32) {
drv_data->n_bytes = 4;
drv_data->read = drv_data->rx ? u32_reader : null_reader;
drv_data->write = drv_data->tx ? u32_writer : null_writer;
}
dma_thresh = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT);
dma_mapped = spi_xfer_is_dma_mapped(controller, spi, transfer);
if (dma_mapped) {
/* Ensure we have the correct interrupt handler */
drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
err = pxa2xx_spi_dma_prepare(drv_data, transfer);
if (err)
return err;
/* Clear status and start DMA engine */
cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
pxa2xx_spi_dma_start(drv_data);
} else {
/* Ensure we have the correct interrupt handler */
drv_data->transfer_handler = interrupt_transfer;
/* Clear status */
cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
write_SSSR_CS(drv_data, drv_data->clear_sr);
}
/* NOTE: PXA25x_SSP _could_ use external clocking ... */
cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
if (!pxa25x_ssp_comp(drv_data))
dev_dbg(&spi->dev, "%u Hz actual, %s\n",
controller->max_speed_hz
/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
dma_mapped ? "DMA" : "PIO");
else
dev_dbg(&spi->dev, "%u Hz actual, %s\n",
controller->max_speed_hz / 2
/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
dma_mapped ? "DMA" : "PIO");
if (is_lpss_ssp(drv_data)) {
pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
}
if (is_mrfld_ssp(drv_data)) {
u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
u32 thresh = 0;
thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
}
if (is_quark_x1000_ssp(drv_data))
pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
/* Stop the SSP */
if (!is_mmp2_ssp(drv_data))
pxa_ssp_disable(drv_data->ssp);
if (!pxa25x_ssp_comp(drv_data))
pxa2xx_spi_write(drv_data, SSTO, TIMOUT_DFLT);
/* First set CR1 without interrupt and service enables */
pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
/* See if we need to reload the configuration registers */
pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
/* Restart the SSP */
pxa_ssp_enable(drv_data->ssp);
if (is_mmp2_ssp(drv_data)) {
u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
if (tx_level) {
/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
if (tx_level > transfer->len)
tx_level = transfer->len;
drv_data->tx += tx_level;
}
}
if (spi_controller_is_target(controller)) {
while (drv_data->write(drv_data))
;
if (drv_data->gpiod_ready) {
gpiod_set_value(drv_data->gpiod_ready, 1);
udelay(1);
gpiod_set_value(drv_data->gpiod_ready, 0);
}
}
/*
* Release the data by enabling service requests and interrupts,
* without changing any mode bits.
*/
pxa2xx_spi_write(drv_data, SSCR1, cr1);
return 1;
}
static int pxa2xx_spi_target_abort(struct spi_controller *controller)
{
struct driver_data *drv_data = spi_controller_get_devdata(controller);
int_error_stop(drv_data, "transfer aborted", -EINTR);
return 0;
}
static void pxa2xx_spi_handle_err(struct spi_controller *controller,
struct spi_message *msg)
{
struct driver_data *drv_data = spi_controller_get_devdata(controller);
int_stop_and_reset(drv_data);
/* Disable the SSP */
pxa2xx_spi_off(drv_data);
/*
* Stop the DMA if running. Note DMA callback handler may have unset
* the dma_running already, which is fine as stopping is not needed
* then but we shouldn't rely this flag for anything else than
* stopping. For instance to differentiate between PIO and DMA
* transfers.
*/
if (atomic_read(&drv_data->dma_running))
pxa2xx_spi_dma_stop(drv_data);
}
static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
{
struct driver_data *drv_data = spi_controller_get_devdata(controller);
/* Disable the SSP now */
pxa2xx_spi_off(drv_data);
return 0;
}
static int setup(struct spi_device *spi)
{
struct chip_data *chip;
const struct lpss_config *config;
struct driver_data *drv_data =
spi_controller_get_devdata(spi->controller);
uint tx_thres, tx_hi_thres, rx_thres;
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
tx_thres = TX_THRESH_QUARK_X1000_DFLT;
tx_hi_thres = 0;
rx_thres = RX_THRESH_QUARK_X1000_DFLT;
break;
case MRFLD_SSP:
tx_thres = TX_THRESH_MRFLD_DFLT;
tx_hi_thres = 0;
rx_thres = RX_THRESH_MRFLD_DFLT;
break;
case CE4100_SSP:
tx_thres = TX_THRESH_CE4100_DFLT;
tx_hi_thres = 0;
rx_thres = RX_THRESH_CE4100_DFLT;
break;
case LPSS_LPT_SSP:
case LPSS_BYT_SSP:
case LPSS_BSW_SSP:
case LPSS_SPT_SSP:
case LPSS_BXT_SSP:
case LPSS_CNL_SSP:
config = lpss_get_config(drv_data);
tx_thres = config->tx_threshold_lo;
tx_hi_thres = config->tx_threshold_hi;
rx_thres = config->rx_threshold;
break;
default:
tx_hi_thres = 0;
if (spi_controller_is_target(drv_data->controller)) {
tx_thres = 1;
rx_thres = 2;
} else {
tx_thres = TX_THRESH_DFLT;
rx_thres = RX_THRESH_DFLT;
}
break;
}
if (drv_data->ssp_type == CE4100_SSP) {
if (spi_get_chipselect(spi, 0) > 4) {
dev_err(&spi->dev, "failed setup: cs number must not be > 4.\n");
return -EINVAL;
}
}
/* Only allocate on the first setup */
chip = spi_get_ctldata(spi);
if (!chip) {
chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
if (!chip)
return -ENOMEM;
}
chip->cr1 = 0;
if (spi_controller_is_target(drv_data->controller)) {
chip->cr1 |= SSCR1_SCFR;
chip->cr1 |= SSCR1_SCLKDIR;
chip->cr1 |= SSCR1_SFRMDIR;
chip->cr1 |= SSCR1_SPH;
}
if (is_lpss_ssp(drv_data)) {
chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
SSITF_TxHiThresh(tx_hi_thres);
}
if (is_mrfld_ssp(drv_data)) {
chip->lpss_rx_threshold = rx_thres;
chip->lpss_tx_threshold = tx_thres;
}
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
& QUARK_X1000_SSCR1_RFT)
| (QUARK_X1000_SSCR1_TxTresh(tx_thres)
& QUARK_X1000_SSCR1_TFT);
break;
case CE4100_SSP:
chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
break;
default:
chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
break;
}
chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
if (spi->mode & SPI_LOOP)
chip->cr1 |= SSCR1_LBM;
spi_set_ctldata(spi, chip);
return 0;
}
static void cleanup(struct spi_device *spi)
{
struct chip_data *chip = spi_get_ctldata(spi);
kfree(chip);
}
static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
unsigned int cs)
{
struct driver_data *drv_data = spi_controller_get_devdata(controller);
switch (drv_data->ssp_type) {
/*
* For some of Intel Atoms the ACPI DeviceSelection used by the Windows
* driver starts from 1 instead of 0 so translate it here to match what
* Linux expects.
*/
case LPSS_BYT_SSP:
case LPSS_BSW_SSP:
return cs - 1;
default:
return cs;
}
}
static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
{
return MAX_DMA_LEN;
}
int pxa2xx_spi_probe(struct device *dev, struct ssp_device *ssp,
struct pxa2xx_spi_controller *platform_info)
{
struct spi_controller *controller;
struct driver_data *drv_data;
const struct lpss_config *config;
int status;
u32 tmp;
if (platform_info->is_target)
controller = devm_spi_alloc_target(dev, sizeof(*drv_data));
else
controller = devm_spi_alloc_host(dev, sizeof(*drv_data));
if (!controller)
return dev_err_probe(dev, -ENOMEM, "cannot alloc spi_controller\n");
drv_data = spi_controller_get_devdata(controller);
drv_data->controller = controller;
drv_data->controller_info = platform_info;
drv_data->ssp = ssp;
device_set_node(&controller->dev, dev_fwnode(dev));
/* The spi->mode bits understood by this driver: */
controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
controller->bus_num = ssp->port_id;
controller->dma_alignment = DMA_ALIGNMENT;
controller->cleanup = cleanup;
controller->setup = setup;
controller->set_cs = pxa2xx_spi_set_cs;
controller->transfer_one = pxa2xx_spi_transfer_one;
controller->target_abort = pxa2xx_spi_target_abort;
controller->handle_err = pxa2xx_spi_handle_err;
controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
controller->auto_runtime_pm = true;
controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
drv_data->ssp_type = ssp->type;
if (pxa25x_ssp_comp(drv_data)) {
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
break;
default:
controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
break;
}
drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
drv_data->dma_cr1 = 0;
drv_data->clear_sr = SSSR_ROR;
drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
} else {
controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
drv_data->dma_cr1 = DEFAULT_DMA_CR1;
drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
| SSSR_ROR | SSSR_TUR;
}
status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
drv_data);
if (status < 0)
return dev_err_probe(dev, status, "cannot get IRQ %d\n", ssp->irq);
/* Setup DMA if requested */
if (platform_info->enable_dma) {
status = pxa2xx_spi_dma_setup(drv_data);
if (status) {
dev_warn(dev, "no DMA channels available, using PIO\n");
platform_info->enable_dma = false;
} else {
controller->can_dma = pxa2xx_spi_can_dma;
controller->max_dma_len = MAX_DMA_LEN;
controller->max_transfer_size =
pxa2xx_spi_max_dma_transfer_size;
dev_dbg(dev, "DMA burst size set to %u\n", platform_info->dma_burst_size);
}
}
/* Enable SOC clock */
status = clk_prepare_enable(ssp->clk);
if (status)
goto out_error_dma_irq_alloc;
controller->max_speed_hz = clk_get_rate(ssp->clk);
/*
* Set minimum speed for all other platforms than Intel Quark which is
* able do under 1 Hz transfers.
*/
if (!pxa25x_ssp_comp(drv_data))
controller->min_speed_hz =
DIV_ROUND_UP(controller->max_speed_hz, 4096);
else if (!is_quark_x1000_ssp(drv_data))
controller->min_speed_hz =
DIV_ROUND_UP(controller->max_speed_hz, 512);
pxa_ssp_disable(ssp);
/* Load default SSP configuration */
switch (drv_data->ssp_type) {
case QUARK_X1000_SSP:
tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
pxa2xx_spi_write(drv_data, SSCR1, tmp);
/* Using the Motorola SPI protocol and use 8 bit frame */
tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
pxa2xx_spi_write(drv_data, SSCR0, tmp);
break;
case CE4100_SSP:
tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
pxa2xx_spi_write(drv_data, SSCR1, tmp);
tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
pxa2xx_spi_write(drv_data, SSCR0, tmp);
break;
default:
if (spi_controller_is_target(controller)) {
tmp = SSCR1_SCFR |
SSCR1_SCLKDIR |
SSCR1_SFRMDIR |
SSCR1_RxTresh(2) |
SSCR1_TxTresh(1) |
SSCR1_SPH;
} else {
tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
SSCR1_TxTresh(TX_THRESH_DFLT);
}
pxa2xx_spi_write(drv_data, SSCR1, tmp);
tmp = SSCR0_Motorola | SSCR0_DataSize(8);
if (!spi_controller_is_target(controller))
tmp |= SSCR0_SCR(2);
pxa2xx_spi_write(drv_data, SSCR0, tmp);
break;
}
if (!pxa25x_ssp_comp(drv_data))
pxa2xx_spi_write(drv_data, SSTO, 0);
if (!is_quark_x1000_ssp(drv_data))
pxa2xx_spi_write(drv_data, SSPSP, 0);
if (is_lpss_ssp(drv_data)) {
lpss_ssp_setup(drv_data);
config = lpss_get_config(drv_data);
if (config->reg_capabilities >= 0) {
tmp = __lpss_ssp_read_priv(drv_data,
config->reg_capabilities);
tmp &= LPSS_CAPS_CS_EN_MASK;
tmp >>= LPSS_CAPS_CS_EN_SHIFT;
platform_info->num_chipselect = ffz(tmp);
}
}
controller->num_chipselect = platform_info->num_chipselect;
controller->use_gpio_descriptors = true;
if (platform_info->is_target) {
drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
"ready", GPIOD_OUT_LOW);
if (IS_ERR(drv_data->gpiod_ready)) {
status = PTR_ERR(drv_data->gpiod_ready);
goto out_error_clock_enabled;
}
}
/* Register with the SPI framework */
dev_set_drvdata(dev, drv_data);
status = spi_register_controller(controller);
if (status) {
dev_err_probe(dev, status, "problem registering SPI controller\n");
goto out_error_clock_enabled;
}
return status;
out_error_clock_enabled:
clk_disable_unprepare(ssp->clk);
out_error_dma_irq_alloc:
pxa2xx_spi_dma_release(drv_data);
free_irq(ssp->irq, drv_data);
return status;
}
EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_probe, SPI_PXA2xx);
void pxa2xx_spi_remove(struct device *dev)
{
struct driver_data *drv_data = dev_get_drvdata(dev);
struct ssp_device *ssp = drv_data->ssp;
spi_unregister_controller(drv_data->controller);
/* Disable the SSP at the peripheral and SOC level */
pxa_ssp_disable(ssp);
clk_disable_unprepare(ssp->clk);
/* Release DMA */
if (drv_data->controller_info->enable_dma)
pxa2xx_spi_dma_release(drv_data);
/* Release IRQ */
free_irq(ssp->irq, drv_data);
}
EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_remove, SPI_PXA2xx);
static int pxa2xx_spi_suspend(struct device *dev)
{
struct driver_data *drv_data = dev_get_drvdata(dev);
struct ssp_device *ssp = drv_data->ssp;
int status;
status = spi_controller_suspend(drv_data->controller);
if (status)
return status;
pxa_ssp_disable(ssp);
if (!pm_runtime_suspended(dev))
clk_disable_unprepare(ssp->clk);
return 0;
}
static int pxa2xx_spi_resume(struct device *dev)
{
struct driver_data *drv_data = dev_get_drvdata(dev);
struct ssp_device *ssp = drv_data->ssp;
int status;
/* Enable the SSP clock */
if (!pm_runtime_suspended(dev)) {
status = clk_prepare_enable(ssp->clk);
if (status)
return status;
}
/* Start the queue running */
return spi_controller_resume(drv_data->controller);
}
static int pxa2xx_spi_runtime_suspend(struct device *dev)
{
struct driver_data *drv_data = dev_get_drvdata(dev);
clk_disable_unprepare(drv_data->ssp->clk);
return 0;
}
static int pxa2xx_spi_runtime_resume(struct device *dev)
{
struct driver_data *drv_data = dev_get_drvdata(dev);
return clk_prepare_enable(drv_data->ssp->clk);
}
EXPORT_NS_GPL_DEV_PM_OPS(pxa2xx_spi_pm_ops, SPI_PXA2xx) = {
SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
};
MODULE_AUTHOR("Stephen Street");
MODULE_DESCRIPTION("PXA2xx SSP SPI Controller core driver");
MODULE_LICENSE("GPL");