mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-07 14:32:23 +00:00
bf9aa14fc5
- The final step to get rid of auto-rearming posix-timers posix-timers are currently auto-rearmed by the kernel when the signal of the timer is ignored so that the timer signal can be delivered once the corresponding signal is unignored. This requires to throttle the timer to prevent a DoS by small intervals and keeps the system pointlessly out of low power states for no value. This is a long standing non-trivial problem due to the lock order of posix-timer lock and the sighand lock along with life time issues as the timer and the sigqueue have different life time rules. Cure this by: * Embedding the sigqueue into the timer struct to have the same life time rules. Aside of that this also avoids the lookup of the timer in the signal delivery and rearm path as it's just a always valid container_of() now. * Queuing ignored timer signals onto a seperate ignored list. * Moving queued timer signals onto the ignored list when the signal is switched to SIG_IGN before it could be delivered. * Walking the ignored list when SIG_IGN is lifted and requeue the signals to the actual signal lists. This allows the signal delivery code to rearm the timer. This also required to consolidate the signal delivery rules so they are consistent across all situations. With that all self test scenarios finally succeed. - Core infrastructure for VFS multigrain timestamping This is required to allow the kernel to use coarse grained time stamps by default and switch to fine grained time stamps when inode attributes are actively observed via getattr(). These changes have been provided to the VFS tree as well, so that the VFS specific infrastructure could be built on top. - Cleanup and consolidation of the sleep() infrastructure * Move all sleep and timeout functions into one file * Rework udelay() and ndelay() into proper documented inline functions and replace the hardcoded magic numbers by proper defines. * Rework the fsleep() implementation to take the reality of the timer wheel granularity on different HZ values into account. Right now the boundaries are hard coded time ranges which fail to provide the requested accuracy on different HZ settings. * Update documentation for all sleep/timeout related functions and fix up stale documentation links all over the place * Fixup a few usage sites - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP clocks A system can have multiple PTP clocks which are participating in seperate and independent PTP clock domains. So far the kernel only considers the PTP clock which is based on CLOCK TAI relevant as that's the clock which drives the timekeeping adjustments via the various user space daemons through adjtimex(2). The non TAI based clock domains are accessible via the file descriptor based posix clocks, but their usability is very limited. They can't be accessed fast as they always go all the way out to the hardware and they cannot be utilized in the kernel itself. As Time Sensitive Networking (TSN) gains traction it is required to provide fast user and kernel space access to these clocks. The approach taken is to utilize the timekeeping and adjtimex(2) infrastructure to provide this access in a similar way how the kernel provides access to clock MONOTONIC, REALTIME etc. Instead of creating a duplicated infrastructure this rework converts timekeeping and adjtimex(2) into generic functionality which operates on pointers to data structures instead of using static variables. This allows to provide time accessors and adjtimex(2) functionality for the independent PTP clocks in a subsequent step. - Consolidate hrtimer initialization hrtimers are set up by initializing the data structure and then seperately setting the callback function for historical reasons. That's an extra unnecessary step and makes Rust support less straight forward than it should be. Provide a new set of hrtimer_setup*() functions and convert the core code and a few usage sites of the less frequently used interfaces over. The bulk of the htimer_init() to hrtimer_setup() conversion is already prepared and scheduled for the next merge window. - Drivers: * Ensure that the global timekeeping clocksource is utilizing the cluster 0 timer on MIPS multi-cluster systems. Otherwise CPUs on different clusters use their cluster specific clocksource which is not guaranteed to be synchronized with other clusters. * Mostly boring cleanups, fixes, improvements and code movement -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmc7kPITHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoZKkD/9OUL6fOJrDUmOYBa4QVeMyfTef4EaL tvwIMM/29XQFeiq3xxCIn+EMnHjXn2lvIhYGQ7GKsbKYwvJ7ZBDpQb+UMhZ2nKI9 6D6BP6WomZohKeH2fZbJQAdqOi3KRYdvQdIsVZUexkqiaVPphRvOH9wOr45gHtZM EyMRSotPlQTDqcrbUejDMEO94GyjDCYXRsyATLxjmTzL/N4xD4NRIiotjM2vL/a9 8MuCgIhrKUEyYlFoOxxeokBsF3kk3/ez2jlG9b/N8VLH3SYIc2zgL58FBgWxlmgG bY71nVG3nUgEjxBd2dcXAVVqvb+5widk8p6O7xxOAQKTLMcJ4H0tQDkMnzBtUzvB DGAJDHAmAr0g+ja9O35Pkhunkh4HYFIbq0Il4d1HMKObhJV0JumcKuQVxrXycdm3 UZfq3seqHsZJQbPgCAhlFU0/2WWScocbee9bNebGT33KVwSp5FoVv89C/6Vjb+vV Gusc3thqrQuMAZW5zV8g4UcBAA/xH4PB0I+vHib+9XPZ4UQ7/6xKl2jE0kd5hX7n AAUeZvFNFqIsY+B6vz+Jx/yzyM7u5cuXq87pof5EHVFzv56lyTp4ToGcOGYRgKH5 JXeYV1OxGziSDrd5vbf9CzdWMzqMvTefXrHbWrjkjhNOe8E1A8O88RZ5uRKZhmSw hZZ4hdM9+3T7cg== =2VC6 -----END PGP SIGNATURE----- Merge tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer updates from Thomas Gleixner: "A rather large update for timekeeping and timers: - The final step to get rid of auto-rearming posix-timers posix-timers are currently auto-rearmed by the kernel when the signal of the timer is ignored so that the timer signal can be delivered once the corresponding signal is unignored. This requires to throttle the timer to prevent a DoS by small intervals and keeps the system pointlessly out of low power states for no value. This is a long standing non-trivial problem due to the lock order of posix-timer lock and the sighand lock along with life time issues as the timer and the sigqueue have different life time rules. Cure this by: - Embedding the sigqueue into the timer struct to have the same life time rules. Aside of that this also avoids the lookup of the timer in the signal delivery and rearm path as it's just a always valid container_of() now. - Queuing ignored timer signals onto a seperate ignored list. - Moving queued timer signals onto the ignored list when the signal is switched to SIG_IGN before it could be delivered. - Walking the ignored list when SIG_IGN is lifted and requeue the signals to the actual signal lists. This allows the signal delivery code to rearm the timer. This also required to consolidate the signal delivery rules so they are consistent across all situations. With that all self test scenarios finally succeed. - Core infrastructure for VFS multigrain timestamping This is required to allow the kernel to use coarse grained time stamps by default and switch to fine grained time stamps when inode attributes are actively observed via getattr(). These changes have been provided to the VFS tree as well, so that the VFS specific infrastructure could be built on top. - Cleanup and consolidation of the sleep() infrastructure - Move all sleep and timeout functions into one file - Rework udelay() and ndelay() into proper documented inline functions and replace the hardcoded magic numbers by proper defines. - Rework the fsleep() implementation to take the reality of the timer wheel granularity on different HZ values into account. Right now the boundaries are hard coded time ranges which fail to provide the requested accuracy on different HZ settings. - Update documentation for all sleep/timeout related functions and fix up stale documentation links all over the place - Fixup a few usage sites - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP clocks A system can have multiple PTP clocks which are participating in seperate and independent PTP clock domains. So far the kernel only considers the PTP clock which is based on CLOCK TAI relevant as that's the clock which drives the timekeeping adjustments via the various user space daemons through adjtimex(2). The non TAI based clock domains are accessible via the file descriptor based posix clocks, but their usability is very limited. They can't be accessed fast as they always go all the way out to the hardware and they cannot be utilized in the kernel itself. As Time Sensitive Networking (TSN) gains traction it is required to provide fast user and kernel space access to these clocks. The approach taken is to utilize the timekeeping and adjtimex(2) infrastructure to provide this access in a similar way how the kernel provides access to clock MONOTONIC, REALTIME etc. Instead of creating a duplicated infrastructure this rework converts timekeeping and adjtimex(2) into generic functionality which operates on pointers to data structures instead of using static variables. This allows to provide time accessors and adjtimex(2) functionality for the independent PTP clocks in a subsequent step. - Consolidate hrtimer initialization hrtimers are set up by initializing the data structure and then seperately setting the callback function for historical reasons. That's an extra unnecessary step and makes Rust support less straight forward than it should be. Provide a new set of hrtimer_setup*() functions and convert the core code and a few usage sites of the less frequently used interfaces over. The bulk of the htimer_init() to hrtimer_setup() conversion is already prepared and scheduled for the next merge window. - Drivers: - Ensure that the global timekeeping clocksource is utilizing the cluster 0 timer on MIPS multi-cluster systems. Otherwise CPUs on different clusters use their cluster specific clocksource which is not guaranteed to be synchronized with other clusters. - Mostly boring cleanups, fixes, improvements and code movement" * tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (140 commits) posix-timers: Fix spurious warning on double enqueue versus do_exit() clocksource/drivers/arm_arch_timer: Use of_property_present() for non-boolean properties clocksource/drivers/gpx: Remove redundant casts clocksource/drivers/timer-ti-dm: Fix child node refcount handling dt-bindings: timer: actions,owl-timer: convert to YAML clocksource/drivers/ralink: Add Ralink System Tick Counter driver clocksource/drivers/mips-gic-timer: Always use cluster 0 counter as clocksource clocksource/drivers/timer-ti-dm: Don't fail probe if int not found clocksource/drivers:sp804: Make user selectable clocksource/drivers/dw_apb: Remove unused dw_apb_clockevent functions hrtimers: Delete hrtimer_init_on_stack() alarmtimer: Switch to use hrtimer_setup() and hrtimer_setup_on_stack() io_uring: Switch to use hrtimer_setup_on_stack() sched/idle: Switch to use hrtimer_setup_on_stack() hrtimers: Delete hrtimer_init_sleeper_on_stack() wait: Switch to use hrtimer_setup_sleeper_on_stack() timers: Switch to use hrtimer_setup_sleeper_on_stack() net: pktgen: Switch to use hrtimer_setup_sleeper_on_stack() futex: Switch to use hrtimer_setup_sleeper_on_stack() fs/aio: Switch to use hrtimer_setup_sleeper_on_stack() ...
1297 lines
33 KiB
C
1297 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/file.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fsnotify.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/nospec.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/io_uring/cmd.h>
|
|
#include <linux/indirect_call_wrapper.h>
|
|
|
|
#include <uapi/linux/io_uring.h>
|
|
|
|
#include "io_uring.h"
|
|
#include "opdef.h"
|
|
#include "kbuf.h"
|
|
#include "alloc_cache.h"
|
|
#include "rsrc.h"
|
|
#include "poll.h"
|
|
#include "rw.h"
|
|
|
|
struct io_rw {
|
|
/* NOTE: kiocb has the file as the first member, so don't do it here */
|
|
struct kiocb kiocb;
|
|
u64 addr;
|
|
u32 len;
|
|
rwf_t flags;
|
|
};
|
|
|
|
static bool io_file_supports_nowait(struct io_kiocb *req, __poll_t mask)
|
|
{
|
|
/* If FMODE_NOWAIT is set for a file, we're golden */
|
|
if (req->flags & REQ_F_SUPPORT_NOWAIT)
|
|
return true;
|
|
/* No FMODE_NOWAIT, if we can poll, check the status */
|
|
if (io_file_can_poll(req)) {
|
|
struct poll_table_struct pt = { ._key = mask };
|
|
|
|
return vfs_poll(req->file, &pt) & mask;
|
|
}
|
|
/* No FMODE_NOWAIT support, and file isn't pollable. Tough luck. */
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int io_iov_compat_buffer_select_prep(struct io_rw *rw)
|
|
{
|
|
struct compat_iovec __user *uiov;
|
|
compat_ssize_t clen;
|
|
|
|
uiov = u64_to_user_ptr(rw->addr);
|
|
if (!access_ok(uiov, sizeof(*uiov)))
|
|
return -EFAULT;
|
|
if (__get_user(clen, &uiov->iov_len))
|
|
return -EFAULT;
|
|
if (clen < 0)
|
|
return -EINVAL;
|
|
|
|
rw->len = clen;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int io_iov_buffer_select_prep(struct io_kiocb *req)
|
|
{
|
|
struct iovec __user *uiov;
|
|
struct iovec iov;
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
|
|
if (rw->len != 1)
|
|
return -EINVAL;
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
if (req->ctx->compat)
|
|
return io_iov_compat_buffer_select_prep(rw);
|
|
#endif
|
|
|
|
uiov = u64_to_user_ptr(rw->addr);
|
|
if (copy_from_user(&iov, uiov, sizeof(*uiov)))
|
|
return -EFAULT;
|
|
rw->len = iov.iov_len;
|
|
return 0;
|
|
}
|
|
|
|
static int __io_import_iovec(int ddir, struct io_kiocb *req,
|
|
struct io_async_rw *io,
|
|
unsigned int issue_flags)
|
|
{
|
|
const struct io_issue_def *def = &io_issue_defs[req->opcode];
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
struct iovec *iov;
|
|
void __user *buf;
|
|
int nr_segs, ret;
|
|
size_t sqe_len;
|
|
|
|
buf = u64_to_user_ptr(rw->addr);
|
|
sqe_len = rw->len;
|
|
|
|
if (!def->vectored || req->flags & REQ_F_BUFFER_SELECT) {
|
|
if (io_do_buffer_select(req)) {
|
|
buf = io_buffer_select(req, &sqe_len, issue_flags);
|
|
if (!buf)
|
|
return -ENOBUFS;
|
|
rw->addr = (unsigned long) buf;
|
|
rw->len = sqe_len;
|
|
}
|
|
|
|
return import_ubuf(ddir, buf, sqe_len, &io->iter);
|
|
}
|
|
|
|
if (io->free_iovec) {
|
|
nr_segs = io->free_iov_nr;
|
|
iov = io->free_iovec;
|
|
} else {
|
|
iov = &io->fast_iov;
|
|
nr_segs = 1;
|
|
}
|
|
ret = __import_iovec(ddir, buf, sqe_len, nr_segs, &iov, &io->iter,
|
|
req->ctx->compat);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
if (iov) {
|
|
req->flags |= REQ_F_NEED_CLEANUP;
|
|
io->free_iov_nr = io->iter.nr_segs;
|
|
kfree(io->free_iovec);
|
|
io->free_iovec = iov;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int io_import_iovec(int rw, struct io_kiocb *req,
|
|
struct io_async_rw *io,
|
|
unsigned int issue_flags)
|
|
{
|
|
int ret;
|
|
|
|
ret = __io_import_iovec(rw, req, io, issue_flags);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
|
|
iov_iter_save_state(&io->iter, &io->iter_state);
|
|
return 0;
|
|
}
|
|
|
|
static void io_rw_iovec_free(struct io_async_rw *rw)
|
|
{
|
|
if (rw->free_iovec) {
|
|
kfree(rw->free_iovec);
|
|
rw->free_iov_nr = 0;
|
|
rw->free_iovec = NULL;
|
|
}
|
|
}
|
|
|
|
static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags)
|
|
{
|
|
struct io_async_rw *rw = req->async_data;
|
|
struct iovec *iov;
|
|
|
|
if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) {
|
|
io_rw_iovec_free(rw);
|
|
return;
|
|
}
|
|
iov = rw->free_iovec;
|
|
if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) {
|
|
if (iov)
|
|
kasan_mempool_poison_object(iov);
|
|
req->async_data = NULL;
|
|
req->flags &= ~REQ_F_ASYNC_DATA;
|
|
}
|
|
}
|
|
|
|
static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags)
|
|
{
|
|
/*
|
|
* Disable quick recycling for anything that's gone through io-wq.
|
|
* In theory, this should be fine to cleanup. However, some read or
|
|
* write iter handling touches the iovec AFTER having called into the
|
|
* handler, eg to reexpand or revert. This means we can have:
|
|
*
|
|
* task io-wq
|
|
* issue
|
|
* punt to io-wq
|
|
* issue
|
|
* blkdev_write_iter()
|
|
* ->ki_complete()
|
|
* io_complete_rw()
|
|
* queue tw complete
|
|
* run tw
|
|
* req_rw_cleanup
|
|
* iov_iter_count() <- look at iov_iter again
|
|
*
|
|
* which can lead to a UAF. This is only possible for io-wq offload
|
|
* as the cleanup can run in parallel. As io-wq is not the fast path,
|
|
* just leave cleanup to the end.
|
|
*
|
|
* This is really a bug in the core code that does this, any issue
|
|
* path should assume that a successful (or -EIOCBQUEUED) return can
|
|
* mean that the underlying data can be gone at any time. But that
|
|
* should be fixed seperately, and then this check could be killed.
|
|
*/
|
|
if (!(req->flags & REQ_F_REFCOUNT)) {
|
|
req->flags &= ~REQ_F_NEED_CLEANUP;
|
|
io_rw_recycle(req, issue_flags);
|
|
}
|
|
}
|
|
|
|
static int io_rw_alloc_async(struct io_kiocb *req)
|
|
{
|
|
struct io_ring_ctx *ctx = req->ctx;
|
|
struct io_async_rw *rw;
|
|
|
|
rw = io_alloc_cache_get(&ctx->rw_cache);
|
|
if (rw) {
|
|
if (rw->free_iovec) {
|
|
kasan_mempool_unpoison_object(rw->free_iovec,
|
|
rw->free_iov_nr * sizeof(struct iovec));
|
|
req->flags |= REQ_F_NEED_CLEANUP;
|
|
}
|
|
req->flags |= REQ_F_ASYNC_DATA;
|
|
req->async_data = rw;
|
|
goto done;
|
|
}
|
|
|
|
if (!io_alloc_async_data(req)) {
|
|
rw = req->async_data;
|
|
rw->free_iovec = NULL;
|
|
rw->free_iov_nr = 0;
|
|
done:
|
|
rw->bytes_done = 0;
|
|
return 0;
|
|
}
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int io_prep_rw_setup(struct io_kiocb *req, int ddir, bool do_import)
|
|
{
|
|
struct io_async_rw *rw;
|
|
int ret;
|
|
|
|
if (io_rw_alloc_async(req))
|
|
return -ENOMEM;
|
|
|
|
if (!do_import || io_do_buffer_select(req))
|
|
return 0;
|
|
|
|
rw = req->async_data;
|
|
ret = io_import_iovec(ddir, req, rw, 0);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
|
|
iov_iter_save_state(&rw->iter, &rw->iter_state);
|
|
return 0;
|
|
}
|
|
|
|
static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
|
|
int ddir, bool do_import)
|
|
{
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
unsigned ioprio;
|
|
int ret;
|
|
|
|
rw->kiocb.ki_pos = READ_ONCE(sqe->off);
|
|
/* used for fixed read/write too - just read unconditionally */
|
|
req->buf_index = READ_ONCE(sqe->buf_index);
|
|
|
|
ioprio = READ_ONCE(sqe->ioprio);
|
|
if (ioprio) {
|
|
ret = ioprio_check_cap(ioprio);
|
|
if (ret)
|
|
return ret;
|
|
|
|
rw->kiocb.ki_ioprio = ioprio;
|
|
} else {
|
|
rw->kiocb.ki_ioprio = get_current_ioprio();
|
|
}
|
|
rw->kiocb.dio_complete = NULL;
|
|
|
|
rw->addr = READ_ONCE(sqe->addr);
|
|
rw->len = READ_ONCE(sqe->len);
|
|
rw->flags = READ_ONCE(sqe->rw_flags);
|
|
return io_prep_rw_setup(req, ddir, do_import);
|
|
}
|
|
|
|
int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe)
|
|
{
|
|
return io_prep_rw(req, sqe, ITER_DEST, true);
|
|
}
|
|
|
|
int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe)
|
|
{
|
|
return io_prep_rw(req, sqe, ITER_SOURCE, true);
|
|
}
|
|
|
|
static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe,
|
|
int ddir)
|
|
{
|
|
const bool do_import = !(req->flags & REQ_F_BUFFER_SELECT);
|
|
int ret;
|
|
|
|
ret = io_prep_rw(req, sqe, ddir, do_import);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
if (do_import)
|
|
return 0;
|
|
|
|
/*
|
|
* Have to do this validation here, as this is in io_read() rw->len
|
|
* might have chanaged due to buffer selection
|
|
*/
|
|
return io_iov_buffer_select_prep(req);
|
|
}
|
|
|
|
int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe)
|
|
{
|
|
return io_prep_rwv(req, sqe, ITER_DEST);
|
|
}
|
|
|
|
int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe)
|
|
{
|
|
return io_prep_rwv(req, sqe, ITER_SOURCE);
|
|
}
|
|
|
|
static int io_prep_rw_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe,
|
|
int ddir)
|
|
{
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
struct io_ring_ctx *ctx = req->ctx;
|
|
struct io_rsrc_node *node;
|
|
struct io_async_rw *io;
|
|
int ret;
|
|
|
|
ret = io_prep_rw(req, sqe, ddir, false);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
node = io_rsrc_node_lookup(&ctx->buf_table, req->buf_index);
|
|
if (!node)
|
|
return -EFAULT;
|
|
io_req_assign_buf_node(req, node);
|
|
|
|
io = req->async_data;
|
|
ret = io_import_fixed(ddir, &io->iter, node->buf, rw->addr, rw->len);
|
|
iov_iter_save_state(&io->iter, &io->iter_state);
|
|
return ret;
|
|
}
|
|
|
|
int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
|
|
{
|
|
return io_prep_rw_fixed(req, sqe, ITER_DEST);
|
|
}
|
|
|
|
int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe)
|
|
{
|
|
return io_prep_rw_fixed(req, sqe, ITER_SOURCE);
|
|
}
|
|
|
|
/*
|
|
* Multishot read is prepared just like a normal read/write request, only
|
|
* difference is that we set the MULTISHOT flag.
|
|
*/
|
|
int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
|
|
{
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
int ret;
|
|
|
|
/* must be used with provided buffers */
|
|
if (!(req->flags & REQ_F_BUFFER_SELECT))
|
|
return -EINVAL;
|
|
|
|
ret = io_prep_rw(req, sqe, ITER_DEST, false);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
if (rw->addr || rw->len)
|
|
return -EINVAL;
|
|
|
|
req->flags |= REQ_F_APOLL_MULTISHOT;
|
|
return 0;
|
|
}
|
|
|
|
void io_readv_writev_cleanup(struct io_kiocb *req)
|
|
{
|
|
io_rw_iovec_free(req->async_data);
|
|
}
|
|
|
|
static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req)
|
|
{
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
|
|
if (rw->kiocb.ki_pos != -1)
|
|
return &rw->kiocb.ki_pos;
|
|
|
|
if (!(req->file->f_mode & FMODE_STREAM)) {
|
|
req->flags |= REQ_F_CUR_POS;
|
|
rw->kiocb.ki_pos = req->file->f_pos;
|
|
return &rw->kiocb.ki_pos;
|
|
}
|
|
|
|
rw->kiocb.ki_pos = 0;
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
static void io_resubmit_prep(struct io_kiocb *req)
|
|
{
|
|
struct io_async_rw *io = req->async_data;
|
|
|
|
iov_iter_restore(&io->iter, &io->iter_state);
|
|
}
|
|
|
|
static bool io_rw_should_reissue(struct io_kiocb *req)
|
|
{
|
|
umode_t mode = file_inode(req->file)->i_mode;
|
|
struct io_ring_ctx *ctx = req->ctx;
|
|
|
|
if (!S_ISBLK(mode) && !S_ISREG(mode))
|
|
return false;
|
|
if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
|
|
!(ctx->flags & IORING_SETUP_IOPOLL)))
|
|
return false;
|
|
/*
|
|
* If ref is dying, we might be running poll reap from the exit work.
|
|
* Don't attempt to reissue from that path, just let it fail with
|
|
* -EAGAIN.
|
|
*/
|
|
if (percpu_ref_is_dying(&ctx->refs))
|
|
return false;
|
|
/*
|
|
* Play it safe and assume not safe to re-import and reissue if we're
|
|
* not in the original thread group (or in task context).
|
|
*/
|
|
if (!same_thread_group(req->tctx->task, current) || !in_task())
|
|
return false;
|
|
return true;
|
|
}
|
|
#else
|
|
static void io_resubmit_prep(struct io_kiocb *req)
|
|
{
|
|
}
|
|
static bool io_rw_should_reissue(struct io_kiocb *req)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
static void io_req_end_write(struct io_kiocb *req)
|
|
{
|
|
if (req->flags & REQ_F_ISREG) {
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
|
|
kiocb_end_write(&rw->kiocb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Trigger the notifications after having done some IO, and finish the write
|
|
* accounting, if any.
|
|
*/
|
|
static void io_req_io_end(struct io_kiocb *req)
|
|
{
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
|
|
if (rw->kiocb.ki_flags & IOCB_WRITE) {
|
|
io_req_end_write(req);
|
|
fsnotify_modify(req->file);
|
|
} else {
|
|
fsnotify_access(req->file);
|
|
}
|
|
}
|
|
|
|
static bool __io_complete_rw_common(struct io_kiocb *req, long res)
|
|
{
|
|
if (unlikely(res != req->cqe.res)) {
|
|
if (res == -EAGAIN && io_rw_should_reissue(req)) {
|
|
/*
|
|
* Reissue will start accounting again, finish the
|
|
* current cycle.
|
|
*/
|
|
io_req_io_end(req);
|
|
req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
|
|
return true;
|
|
}
|
|
req_set_fail(req);
|
|
req->cqe.res = res;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline int io_fixup_rw_res(struct io_kiocb *req, long res)
|
|
{
|
|
struct io_async_rw *io = req->async_data;
|
|
|
|
/* add previously done IO, if any */
|
|
if (req_has_async_data(req) && io->bytes_done > 0) {
|
|
if (res < 0)
|
|
res = io->bytes_done;
|
|
else
|
|
res += io->bytes_done;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void io_req_rw_complete(struct io_kiocb *req, struct io_tw_state *ts)
|
|
{
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
struct kiocb *kiocb = &rw->kiocb;
|
|
|
|
if ((kiocb->ki_flags & IOCB_DIO_CALLER_COMP) && kiocb->dio_complete) {
|
|
long res = kiocb->dio_complete(rw->kiocb.private);
|
|
|
|
io_req_set_res(req, io_fixup_rw_res(req, res), 0);
|
|
}
|
|
|
|
io_req_io_end(req);
|
|
|
|
if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING))
|
|
req->cqe.flags |= io_put_kbuf(req, req->cqe.res, 0);
|
|
|
|
io_req_rw_cleanup(req, 0);
|
|
io_req_task_complete(req, ts);
|
|
}
|
|
|
|
static void io_complete_rw(struct kiocb *kiocb, long res)
|
|
{
|
|
struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
|
|
struct io_kiocb *req = cmd_to_io_kiocb(rw);
|
|
|
|
if (!kiocb->dio_complete || !(kiocb->ki_flags & IOCB_DIO_CALLER_COMP)) {
|
|
if (__io_complete_rw_common(req, res))
|
|
return;
|
|
io_req_set_res(req, io_fixup_rw_res(req, res), 0);
|
|
}
|
|
req->io_task_work.func = io_req_rw_complete;
|
|
__io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE);
|
|
}
|
|
|
|
static void io_complete_rw_iopoll(struct kiocb *kiocb, long res)
|
|
{
|
|
struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb);
|
|
struct io_kiocb *req = cmd_to_io_kiocb(rw);
|
|
|
|
if (kiocb->ki_flags & IOCB_WRITE)
|
|
io_req_end_write(req);
|
|
if (unlikely(res != req->cqe.res)) {
|
|
if (res == -EAGAIN && io_rw_should_reissue(req)) {
|
|
req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE;
|
|
return;
|
|
}
|
|
req->cqe.res = res;
|
|
}
|
|
|
|
/* order with io_iopoll_complete() checking ->iopoll_completed */
|
|
smp_store_release(&req->iopoll_completed, 1);
|
|
}
|
|
|
|
static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
|
|
{
|
|
/* IO was queued async, completion will happen later */
|
|
if (ret == -EIOCBQUEUED)
|
|
return;
|
|
|
|
/* transform internal restart error codes */
|
|
if (unlikely(ret < 0)) {
|
|
switch (ret) {
|
|
case -ERESTARTSYS:
|
|
case -ERESTARTNOINTR:
|
|
case -ERESTARTNOHAND:
|
|
case -ERESTART_RESTARTBLOCK:
|
|
/*
|
|
* We can't just restart the syscall, since previously
|
|
* submitted sqes may already be in progress. Just fail
|
|
* this IO with EINTR.
|
|
*/
|
|
ret = -EINTR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
INDIRECT_CALL_2(kiocb->ki_complete, io_complete_rw_iopoll,
|
|
io_complete_rw, kiocb, ret);
|
|
}
|
|
|
|
static int kiocb_done(struct io_kiocb *req, ssize_t ret,
|
|
unsigned int issue_flags)
|
|
{
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
unsigned final_ret = io_fixup_rw_res(req, ret);
|
|
|
|
if (ret >= 0 && req->flags & REQ_F_CUR_POS)
|
|
req->file->f_pos = rw->kiocb.ki_pos;
|
|
if (ret >= 0 && (rw->kiocb.ki_complete == io_complete_rw)) {
|
|
if (!__io_complete_rw_common(req, ret)) {
|
|
/*
|
|
* Safe to call io_end from here as we're inline
|
|
* from the submission path.
|
|
*/
|
|
io_req_io_end(req);
|
|
io_req_set_res(req, final_ret,
|
|
io_put_kbuf(req, ret, issue_flags));
|
|
io_req_rw_cleanup(req, issue_flags);
|
|
return IOU_OK;
|
|
}
|
|
} else {
|
|
io_rw_done(&rw->kiocb, ret);
|
|
}
|
|
|
|
if (req->flags & REQ_F_REISSUE) {
|
|
req->flags &= ~REQ_F_REISSUE;
|
|
io_resubmit_prep(req);
|
|
return -EAGAIN;
|
|
}
|
|
return IOU_ISSUE_SKIP_COMPLETE;
|
|
}
|
|
|
|
static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
|
|
{
|
|
return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
|
|
}
|
|
|
|
/*
|
|
* For files that don't have ->read_iter() and ->write_iter(), handle them
|
|
* by looping over ->read() or ->write() manually.
|
|
*/
|
|
static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter)
|
|
{
|
|
struct kiocb *kiocb = &rw->kiocb;
|
|
struct file *file = kiocb->ki_filp;
|
|
ssize_t ret = 0;
|
|
loff_t *ppos;
|
|
|
|
/*
|
|
* Don't support polled IO through this interface, and we can't
|
|
* support non-blocking either. For the latter, this just causes
|
|
* the kiocb to be handled from an async context.
|
|
*/
|
|
if (kiocb->ki_flags & IOCB_HIPRI)
|
|
return -EOPNOTSUPP;
|
|
if ((kiocb->ki_flags & IOCB_NOWAIT) &&
|
|
!(kiocb->ki_filp->f_flags & O_NONBLOCK))
|
|
return -EAGAIN;
|
|
|
|
ppos = io_kiocb_ppos(kiocb);
|
|
|
|
while (iov_iter_count(iter)) {
|
|
void __user *addr;
|
|
size_t len;
|
|
ssize_t nr;
|
|
|
|
if (iter_is_ubuf(iter)) {
|
|
addr = iter->ubuf + iter->iov_offset;
|
|
len = iov_iter_count(iter);
|
|
} else if (!iov_iter_is_bvec(iter)) {
|
|
addr = iter_iov_addr(iter);
|
|
len = iter_iov_len(iter);
|
|
} else {
|
|
addr = u64_to_user_ptr(rw->addr);
|
|
len = rw->len;
|
|
}
|
|
|
|
if (ddir == READ)
|
|
nr = file->f_op->read(file, addr, len, ppos);
|
|
else
|
|
nr = file->f_op->write(file, addr, len, ppos);
|
|
|
|
if (nr < 0) {
|
|
if (!ret)
|
|
ret = nr;
|
|
break;
|
|
}
|
|
ret += nr;
|
|
if (!iov_iter_is_bvec(iter)) {
|
|
iov_iter_advance(iter, nr);
|
|
} else {
|
|
rw->addr += nr;
|
|
rw->len -= nr;
|
|
if (!rw->len)
|
|
break;
|
|
}
|
|
if (nr != len)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is our waitqueue callback handler, registered through __folio_lock_async()
|
|
* when we initially tried to do the IO with the iocb armed our waitqueue.
|
|
* This gets called when the page is unlocked, and we generally expect that to
|
|
* happen when the page IO is completed and the page is now uptodate. This will
|
|
* queue a task_work based retry of the operation, attempting to copy the data
|
|
* again. If the latter fails because the page was NOT uptodate, then we will
|
|
* do a thread based blocking retry of the operation. That's the unexpected
|
|
* slow path.
|
|
*/
|
|
static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
|
|
int sync, void *arg)
|
|
{
|
|
struct wait_page_queue *wpq;
|
|
struct io_kiocb *req = wait->private;
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
struct wait_page_key *key = arg;
|
|
|
|
wpq = container_of(wait, struct wait_page_queue, wait);
|
|
|
|
if (!wake_page_match(wpq, key))
|
|
return 0;
|
|
|
|
rw->kiocb.ki_flags &= ~IOCB_WAITQ;
|
|
list_del_init(&wait->entry);
|
|
io_req_task_queue(req);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This controls whether a given IO request should be armed for async page
|
|
* based retry. If we return false here, the request is handed to the async
|
|
* worker threads for retry. If we're doing buffered reads on a regular file,
|
|
* we prepare a private wait_page_queue entry and retry the operation. This
|
|
* will either succeed because the page is now uptodate and unlocked, or it
|
|
* will register a callback when the page is unlocked at IO completion. Through
|
|
* that callback, io_uring uses task_work to setup a retry of the operation.
|
|
* That retry will attempt the buffered read again. The retry will generally
|
|
* succeed, or in rare cases where it fails, we then fall back to using the
|
|
* async worker threads for a blocking retry.
|
|
*/
|
|
static bool io_rw_should_retry(struct io_kiocb *req)
|
|
{
|
|
struct io_async_rw *io = req->async_data;
|
|
struct wait_page_queue *wait = &io->wpq;
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
struct kiocb *kiocb = &rw->kiocb;
|
|
|
|
/* never retry for NOWAIT, we just complete with -EAGAIN */
|
|
if (req->flags & REQ_F_NOWAIT)
|
|
return false;
|
|
|
|
/* Only for buffered IO */
|
|
if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
|
|
return false;
|
|
|
|
/*
|
|
* just use poll if we can, and don't attempt if the fs doesn't
|
|
* support callback based unlocks
|
|
*/
|
|
if (io_file_can_poll(req) ||
|
|
!(req->file->f_op->fop_flags & FOP_BUFFER_RASYNC))
|
|
return false;
|
|
|
|
wait->wait.func = io_async_buf_func;
|
|
wait->wait.private = req;
|
|
wait->wait.flags = 0;
|
|
INIT_LIST_HEAD(&wait->wait.entry);
|
|
kiocb->ki_flags |= IOCB_WAITQ;
|
|
kiocb->ki_flags &= ~IOCB_NOWAIT;
|
|
kiocb->ki_waitq = wait;
|
|
return true;
|
|
}
|
|
|
|
static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter)
|
|
{
|
|
struct file *file = rw->kiocb.ki_filp;
|
|
|
|
if (likely(file->f_op->read_iter))
|
|
return file->f_op->read_iter(&rw->kiocb, iter);
|
|
else if (file->f_op->read)
|
|
return loop_rw_iter(READ, rw, iter);
|
|
else
|
|
return -EINVAL;
|
|
}
|
|
|
|
static bool need_complete_io(struct io_kiocb *req)
|
|
{
|
|
return req->flags & REQ_F_ISREG ||
|
|
S_ISBLK(file_inode(req->file)->i_mode);
|
|
}
|
|
|
|
static int io_rw_init_file(struct io_kiocb *req, fmode_t mode, int rw_type)
|
|
{
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
struct kiocb *kiocb = &rw->kiocb;
|
|
struct io_ring_ctx *ctx = req->ctx;
|
|
struct file *file = req->file;
|
|
int ret;
|
|
|
|
if (unlikely(!(file->f_mode & mode)))
|
|
return -EBADF;
|
|
|
|
if (!(req->flags & REQ_F_FIXED_FILE))
|
|
req->flags |= io_file_get_flags(file);
|
|
|
|
kiocb->ki_flags = file->f_iocb_flags;
|
|
ret = kiocb_set_rw_flags(kiocb, rw->flags, rw_type);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
kiocb->ki_flags |= IOCB_ALLOC_CACHE;
|
|
|
|
/*
|
|
* If the file is marked O_NONBLOCK, still allow retry for it if it
|
|
* supports async. Otherwise it's impossible to use O_NONBLOCK files
|
|
* reliably. If not, or it IOCB_NOWAIT is set, don't retry.
|
|
*/
|
|
if (kiocb->ki_flags & IOCB_NOWAIT ||
|
|
((file->f_flags & O_NONBLOCK && !(req->flags & REQ_F_SUPPORT_NOWAIT))))
|
|
req->flags |= REQ_F_NOWAIT;
|
|
|
|
if (ctx->flags & IORING_SETUP_IOPOLL) {
|
|
if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll)
|
|
return -EOPNOTSUPP;
|
|
|
|
kiocb->private = NULL;
|
|
kiocb->ki_flags |= IOCB_HIPRI;
|
|
kiocb->ki_complete = io_complete_rw_iopoll;
|
|
req->iopoll_completed = 0;
|
|
if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL) {
|
|
/* make sure every req only blocks once*/
|
|
req->flags &= ~REQ_F_IOPOLL_STATE;
|
|
req->iopoll_start = ktime_get_ns();
|
|
}
|
|
} else {
|
|
if (kiocb->ki_flags & IOCB_HIPRI)
|
|
return -EINVAL;
|
|
kiocb->ki_complete = io_complete_rw;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __io_read(struct io_kiocb *req, unsigned int issue_flags)
|
|
{
|
|
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
struct io_async_rw *io = req->async_data;
|
|
struct kiocb *kiocb = &rw->kiocb;
|
|
ssize_t ret;
|
|
loff_t *ppos;
|
|
|
|
if (io_do_buffer_select(req)) {
|
|
ret = io_import_iovec(ITER_DEST, req, io, issue_flags);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
}
|
|
ret = io_rw_init_file(req, FMODE_READ, READ);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
req->cqe.res = iov_iter_count(&io->iter);
|
|
|
|
if (force_nonblock) {
|
|
/* If the file doesn't support async, just async punt */
|
|
if (unlikely(!io_file_supports_nowait(req, EPOLLIN)))
|
|
return -EAGAIN;
|
|
kiocb->ki_flags |= IOCB_NOWAIT;
|
|
} else {
|
|
/* Ensure we clear previously set non-block flag */
|
|
kiocb->ki_flags &= ~IOCB_NOWAIT;
|
|
}
|
|
|
|
ppos = io_kiocb_update_pos(req);
|
|
|
|
ret = rw_verify_area(READ, req->file, ppos, req->cqe.res);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
ret = io_iter_do_read(rw, &io->iter);
|
|
|
|
/*
|
|
* Some file systems like to return -EOPNOTSUPP for an IOCB_NOWAIT
|
|
* issue, even though they should be returning -EAGAIN. To be safe,
|
|
* retry from blocking context for either.
|
|
*/
|
|
if (ret == -EOPNOTSUPP && force_nonblock)
|
|
ret = -EAGAIN;
|
|
|
|
if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
|
|
req->flags &= ~REQ_F_REISSUE;
|
|
/* If we can poll, just do that. */
|
|
if (io_file_can_poll(req))
|
|
return -EAGAIN;
|
|
/* IOPOLL retry should happen for io-wq threads */
|
|
if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
|
|
goto done;
|
|
/* no retry on NONBLOCK nor RWF_NOWAIT */
|
|
if (req->flags & REQ_F_NOWAIT)
|
|
goto done;
|
|
ret = 0;
|
|
} else if (ret == -EIOCBQUEUED) {
|
|
return IOU_ISSUE_SKIP_COMPLETE;
|
|
} else if (ret == req->cqe.res || ret <= 0 || !force_nonblock ||
|
|
(req->flags & REQ_F_NOWAIT) || !need_complete_io(req)) {
|
|
/* read all, failed, already did sync or don't want to retry */
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Don't depend on the iter state matching what was consumed, or being
|
|
* untouched in case of error. Restore it and we'll advance it
|
|
* manually if we need to.
|
|
*/
|
|
iov_iter_restore(&io->iter, &io->iter_state);
|
|
|
|
do {
|
|
/*
|
|
* We end up here because of a partial read, either from
|
|
* above or inside this loop. Advance the iter by the bytes
|
|
* that were consumed.
|
|
*/
|
|
iov_iter_advance(&io->iter, ret);
|
|
if (!iov_iter_count(&io->iter))
|
|
break;
|
|
io->bytes_done += ret;
|
|
iov_iter_save_state(&io->iter, &io->iter_state);
|
|
|
|
/* if we can retry, do so with the callbacks armed */
|
|
if (!io_rw_should_retry(req)) {
|
|
kiocb->ki_flags &= ~IOCB_WAITQ;
|
|
return -EAGAIN;
|
|
}
|
|
|
|
req->cqe.res = iov_iter_count(&io->iter);
|
|
/*
|
|
* Now retry read with the IOCB_WAITQ parts set in the iocb. If
|
|
* we get -EIOCBQUEUED, then we'll get a notification when the
|
|
* desired page gets unlocked. We can also get a partial read
|
|
* here, and if we do, then just retry at the new offset.
|
|
*/
|
|
ret = io_iter_do_read(rw, &io->iter);
|
|
if (ret == -EIOCBQUEUED)
|
|
return IOU_ISSUE_SKIP_COMPLETE;
|
|
/* we got some bytes, but not all. retry. */
|
|
kiocb->ki_flags &= ~IOCB_WAITQ;
|
|
iov_iter_restore(&io->iter, &io->iter_state);
|
|
} while (ret > 0);
|
|
done:
|
|
/* it's faster to check here then delegate to kfree */
|
|
return ret;
|
|
}
|
|
|
|
int io_read(struct io_kiocb *req, unsigned int issue_flags)
|
|
{
|
|
int ret;
|
|
|
|
ret = __io_read(req, issue_flags);
|
|
if (ret >= 0)
|
|
return kiocb_done(req, ret, issue_flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags)
|
|
{
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
unsigned int cflags = 0;
|
|
int ret;
|
|
|
|
/*
|
|
* Multishot MUST be used on a pollable file
|
|
*/
|
|
if (!io_file_can_poll(req))
|
|
return -EBADFD;
|
|
|
|
ret = __io_read(req, issue_flags);
|
|
|
|
/*
|
|
* If we get -EAGAIN, recycle our buffer and just let normal poll
|
|
* handling arm it.
|
|
*/
|
|
if (ret == -EAGAIN) {
|
|
/*
|
|
* Reset rw->len to 0 again to avoid clamping future mshot
|
|
* reads, in case the buffer size varies.
|
|
*/
|
|
if (io_kbuf_recycle(req, issue_flags))
|
|
rw->len = 0;
|
|
if (issue_flags & IO_URING_F_MULTISHOT)
|
|
return IOU_ISSUE_SKIP_COMPLETE;
|
|
return -EAGAIN;
|
|
} else if (ret <= 0) {
|
|
io_kbuf_recycle(req, issue_flags);
|
|
if (ret < 0)
|
|
req_set_fail(req);
|
|
} else {
|
|
/*
|
|
* Any successful return value will keep the multishot read
|
|
* armed, if it's still set. Put our buffer and post a CQE. If
|
|
* we fail to post a CQE, or multishot is no longer set, then
|
|
* jump to the termination path. This request is then done.
|
|
*/
|
|
cflags = io_put_kbuf(req, ret, issue_flags);
|
|
rw->len = 0; /* similarly to above, reset len to 0 */
|
|
|
|
if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) {
|
|
if (issue_flags & IO_URING_F_MULTISHOT) {
|
|
/*
|
|
* Force retry, as we might have more data to
|
|
* be read and otherwise it won't get retried
|
|
* until (if ever) another poll is triggered.
|
|
*/
|
|
io_poll_multishot_retry(req);
|
|
return IOU_ISSUE_SKIP_COMPLETE;
|
|
}
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Either an error, or we've hit overflow posting the CQE. For any
|
|
* multishot request, hitting overflow will terminate it.
|
|
*/
|
|
io_req_set_res(req, ret, cflags);
|
|
io_req_rw_cleanup(req, issue_flags);
|
|
if (issue_flags & IO_URING_F_MULTISHOT)
|
|
return IOU_STOP_MULTISHOT;
|
|
return IOU_OK;
|
|
}
|
|
|
|
static bool io_kiocb_start_write(struct io_kiocb *req, struct kiocb *kiocb)
|
|
{
|
|
struct inode *inode;
|
|
bool ret;
|
|
|
|
if (!(req->flags & REQ_F_ISREG))
|
|
return true;
|
|
if (!(kiocb->ki_flags & IOCB_NOWAIT)) {
|
|
kiocb_start_write(kiocb);
|
|
return true;
|
|
}
|
|
|
|
inode = file_inode(kiocb->ki_filp);
|
|
ret = sb_start_write_trylock(inode->i_sb);
|
|
if (ret)
|
|
__sb_writers_release(inode->i_sb, SB_FREEZE_WRITE);
|
|
return ret;
|
|
}
|
|
|
|
int io_write(struct io_kiocb *req, unsigned int issue_flags)
|
|
{
|
|
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
struct io_async_rw *io = req->async_data;
|
|
struct kiocb *kiocb = &rw->kiocb;
|
|
ssize_t ret, ret2;
|
|
loff_t *ppos;
|
|
|
|
ret = io_rw_init_file(req, FMODE_WRITE, WRITE);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
req->cqe.res = iov_iter_count(&io->iter);
|
|
|
|
if (force_nonblock) {
|
|
/* If the file doesn't support async, just async punt */
|
|
if (unlikely(!io_file_supports_nowait(req, EPOLLOUT)))
|
|
goto ret_eagain;
|
|
|
|
/* Check if we can support NOWAIT. */
|
|
if (!(kiocb->ki_flags & IOCB_DIRECT) &&
|
|
!(req->file->f_op->fop_flags & FOP_BUFFER_WASYNC) &&
|
|
(req->flags & REQ_F_ISREG))
|
|
goto ret_eagain;
|
|
|
|
kiocb->ki_flags |= IOCB_NOWAIT;
|
|
} else {
|
|
/* Ensure we clear previously set non-block flag */
|
|
kiocb->ki_flags &= ~IOCB_NOWAIT;
|
|
}
|
|
|
|
ppos = io_kiocb_update_pos(req);
|
|
|
|
ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
if (unlikely(!io_kiocb_start_write(req, kiocb)))
|
|
return -EAGAIN;
|
|
kiocb->ki_flags |= IOCB_WRITE;
|
|
|
|
if (likely(req->file->f_op->write_iter))
|
|
ret2 = req->file->f_op->write_iter(kiocb, &io->iter);
|
|
else if (req->file->f_op->write)
|
|
ret2 = loop_rw_iter(WRITE, rw, &io->iter);
|
|
else
|
|
ret2 = -EINVAL;
|
|
|
|
if (req->flags & REQ_F_REISSUE) {
|
|
req->flags &= ~REQ_F_REISSUE;
|
|
ret2 = -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
|
|
* retry them without IOCB_NOWAIT.
|
|
*/
|
|
if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
|
|
ret2 = -EAGAIN;
|
|
/* no retry on NONBLOCK nor RWF_NOWAIT */
|
|
if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
|
|
goto done;
|
|
if (!force_nonblock || ret2 != -EAGAIN) {
|
|
/* IOPOLL retry should happen for io-wq threads */
|
|
if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL))
|
|
goto ret_eagain;
|
|
|
|
if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) {
|
|
trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2,
|
|
req->cqe.res, ret2);
|
|
|
|
/* This is a partial write. The file pos has already been
|
|
* updated, setup the async struct to complete the request
|
|
* in the worker. Also update bytes_done to account for
|
|
* the bytes already written.
|
|
*/
|
|
iov_iter_save_state(&io->iter, &io->iter_state);
|
|
io->bytes_done += ret2;
|
|
|
|
if (kiocb->ki_flags & IOCB_WRITE)
|
|
io_req_end_write(req);
|
|
return -EAGAIN;
|
|
}
|
|
done:
|
|
return kiocb_done(req, ret2, issue_flags);
|
|
} else {
|
|
ret_eagain:
|
|
iov_iter_restore(&io->iter, &io->iter_state);
|
|
if (kiocb->ki_flags & IOCB_WRITE)
|
|
io_req_end_write(req);
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
|
|
void io_rw_fail(struct io_kiocb *req)
|
|
{
|
|
int res;
|
|
|
|
res = io_fixup_rw_res(req, req->cqe.res);
|
|
io_req_set_res(req, res, req->cqe.flags);
|
|
}
|
|
|
|
static int io_uring_classic_poll(struct io_kiocb *req, struct io_comp_batch *iob,
|
|
unsigned int poll_flags)
|
|
{
|
|
struct file *file = req->file;
|
|
|
|
if (req->opcode == IORING_OP_URING_CMD) {
|
|
struct io_uring_cmd *ioucmd;
|
|
|
|
ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd);
|
|
return file->f_op->uring_cmd_iopoll(ioucmd, iob, poll_flags);
|
|
} else {
|
|
struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw);
|
|
|
|
return file->f_op->iopoll(&rw->kiocb, iob, poll_flags);
|
|
}
|
|
}
|
|
|
|
static u64 io_hybrid_iopoll_delay(struct io_ring_ctx *ctx, struct io_kiocb *req)
|
|
{
|
|
struct hrtimer_sleeper timer;
|
|
enum hrtimer_mode mode;
|
|
ktime_t kt;
|
|
u64 sleep_time;
|
|
|
|
if (req->flags & REQ_F_IOPOLL_STATE)
|
|
return 0;
|
|
|
|
if (ctx->hybrid_poll_time == LLONG_MAX)
|
|
return 0;
|
|
|
|
/* Using half the running time to do schedule */
|
|
sleep_time = ctx->hybrid_poll_time / 2;
|
|
|
|
kt = ktime_set(0, sleep_time);
|
|
req->flags |= REQ_F_IOPOLL_STATE;
|
|
|
|
mode = HRTIMER_MODE_REL;
|
|
hrtimer_setup_sleeper_on_stack(&timer, CLOCK_MONOTONIC, mode);
|
|
hrtimer_set_expires(&timer.timer, kt);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
hrtimer_sleeper_start_expires(&timer, mode);
|
|
|
|
if (timer.task)
|
|
io_schedule();
|
|
|
|
hrtimer_cancel(&timer.timer);
|
|
__set_current_state(TASK_RUNNING);
|
|
destroy_hrtimer_on_stack(&timer.timer);
|
|
return sleep_time;
|
|
}
|
|
|
|
static int io_uring_hybrid_poll(struct io_kiocb *req,
|
|
struct io_comp_batch *iob, unsigned int poll_flags)
|
|
{
|
|
struct io_ring_ctx *ctx = req->ctx;
|
|
u64 runtime, sleep_time;
|
|
int ret;
|
|
|
|
sleep_time = io_hybrid_iopoll_delay(ctx, req);
|
|
ret = io_uring_classic_poll(req, iob, poll_flags);
|
|
runtime = ktime_get_ns() - req->iopoll_start - sleep_time;
|
|
|
|
/*
|
|
* Use minimum sleep time if we're polling devices with different
|
|
* latencies. We could get more completions from the faster ones.
|
|
*/
|
|
if (ctx->hybrid_poll_time > runtime)
|
|
ctx->hybrid_poll_time = runtime;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin)
|
|
{
|
|
struct io_wq_work_node *pos, *start, *prev;
|
|
unsigned int poll_flags = 0;
|
|
DEFINE_IO_COMP_BATCH(iob);
|
|
int nr_events = 0;
|
|
|
|
/*
|
|
* Only spin for completions if we don't have multiple devices hanging
|
|
* off our complete list.
|
|
*/
|
|
if (ctx->poll_multi_queue || force_nonspin)
|
|
poll_flags |= BLK_POLL_ONESHOT;
|
|
|
|
wq_list_for_each(pos, start, &ctx->iopoll_list) {
|
|
struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
|
|
int ret;
|
|
|
|
/*
|
|
* Move completed and retryable entries to our local lists.
|
|
* If we find a request that requires polling, break out
|
|
* and complete those lists first, if we have entries there.
|
|
*/
|
|
if (READ_ONCE(req->iopoll_completed))
|
|
break;
|
|
|
|
if (ctx->flags & IORING_SETUP_HYBRID_IOPOLL)
|
|
ret = io_uring_hybrid_poll(req, &iob, poll_flags);
|
|
else
|
|
ret = io_uring_classic_poll(req, &iob, poll_flags);
|
|
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
else if (ret)
|
|
poll_flags |= BLK_POLL_ONESHOT;
|
|
|
|
/* iopoll may have completed current req */
|
|
if (!rq_list_empty(&iob.req_list) ||
|
|
READ_ONCE(req->iopoll_completed))
|
|
break;
|
|
}
|
|
|
|
if (!rq_list_empty(&iob.req_list))
|
|
iob.complete(&iob);
|
|
else if (!pos)
|
|
return 0;
|
|
|
|
prev = start;
|
|
wq_list_for_each_resume(pos, prev) {
|
|
struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list);
|
|
|
|
/* order with io_complete_rw_iopoll(), e.g. ->result updates */
|
|
if (!smp_load_acquire(&req->iopoll_completed))
|
|
break;
|
|
nr_events++;
|
|
req->cqe.flags = io_put_kbuf(req, req->cqe.res, 0);
|
|
if (req->opcode != IORING_OP_URING_CMD)
|
|
io_req_rw_cleanup(req, 0);
|
|
}
|
|
if (unlikely(!nr_events))
|
|
return 0;
|
|
|
|
pos = start ? start->next : ctx->iopoll_list.first;
|
|
wq_list_cut(&ctx->iopoll_list, prev, start);
|
|
|
|
if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs)))
|
|
return 0;
|
|
ctx->submit_state.compl_reqs.first = pos;
|
|
__io_submit_flush_completions(ctx);
|
|
return nr_events;
|
|
}
|
|
|
|
void io_rw_cache_free(const void *entry)
|
|
{
|
|
struct io_async_rw *rw = (struct io_async_rw *) entry;
|
|
|
|
if (rw->free_iovec) {
|
|
kasan_mempool_unpoison_object(rw->free_iovec,
|
|
rw->free_iov_nr * sizeof(struct iovec));
|
|
io_rw_iovec_free(rw);
|
|
}
|
|
kfree(rw);
|
|
}
|