linux-next/Documentation/admin-guide
Linus Torvalds 3efc57369a x86:
* KVM currently invalidates the entirety of the page tables, not just
   those for the memslot being touched, when a memslot is moved or deleted.
   The former does not have particularly noticeable overhead, but Intel's
   TDX will require the guest to re-accept private pages if they are
   dropped from the secure EPT, which is a non starter.  Actually,
   the only reason why this is not already being done is a bug which
   was never fully investigated and caused VM instability with assigned
   GeForce GPUs, so allow userspace to opt into the new behavior.
 
 * Advertise AVX10.1 to userspace (effectively prep work for the "real" AVX10
   functionality that is on the horizon).
 
 * Rework common MSR handling code to suppress errors on userspace accesses to
   unsupported-but-advertised MSRs.  This will allow removing (almost?) all of
   KVM's exemptions for userspace access to MSRs that shouldn't exist based on
   the vCPU model (the actual cleanup is non-trivial future work).
 
 * Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC) splits the
   64-bit value into the legacy ICR and ICR2 storage, whereas Intel (APICv)
   stores the entire 64-bit value at the ICR offset.
 
 * Fix a bug where KVM would fail to exit to userspace if one was triggered by
   a fastpath exit handler.
 
 * Add fastpath handling of HLT VM-Exit to expedite re-entering the guest when
   there's already a pending wake event at the time of the exit.
 
 * Fix a WARN caused by RSM entering a nested guest from SMM with invalid guest
   state, by forcing the vCPU out of guest mode prior to signalling SHUTDOWN
   (the SHUTDOWN hits the VM altogether, not the nested guest)
 
 * Overhaul the "unprotect and retry" logic to more precisely identify cases
   where retrying is actually helpful, and to harden all retry paths against
   putting the guest into an infinite retry loop.
 
 * Add support for yielding, e.g. to honor NEED_RESCHED, when zapping rmaps in
   the shadow MMU.
 
 * Refactor pieces of the shadow MMU related to aging SPTEs in prepartion for
   adding multi generation LRU support in KVM.
 
 * Don't stuff the RSB after VM-Exit when RETPOLINE=y and AutoIBRS is enabled,
   i.e. when the CPU has already flushed the RSB.
 
 * Trace the per-CPU host save area as a VMCB pointer to improve readability
   and cleanup the retrieval of the SEV-ES host save area.
 
 * Remove unnecessary accounting of temporary nested VMCB related allocations.
 
 * Set FINAL/PAGE in the page fault error code for EPT violations if and only
   if the GVA is valid.  If the GVA is NOT valid, there is no guest-side page
   table walk and so stuffing paging related metadata is nonsensical.
 
 * Fix a bug where KVM would incorrectly synthesize a nested VM-Exit instead of
   emulating posted interrupt delivery to L2.
 
 * Add a lockdep assertion to detect unsafe accesses of vmcs12 structures.
 
 * Harden eVMCS loading against an impossible NULL pointer deref (really truly
   should be impossible).
 
 * Minor SGX fix and a cleanup.
 
 * Misc cleanups
 
 Generic:
 
 * Register KVM's cpuhp and syscore callbacks when enabling virtualization in
   hardware, as the sole purpose of said callbacks is to disable and re-enable
   virtualization as needed.
 
 * Enable virtualization when KVM is loaded, not right before the first VM
   is created.  Together with the previous change, this simplifies a
   lot the logic of the callbacks, because their very existence implies
   virtualization is enabled.
 
 * Fix a bug that results in KVM prematurely exiting to userspace for coalesced
   MMIO/PIO in many cases, clean up the related code, and add a testcase.
 
 * Fix a bug in kvm_clear_guest() where it would trigger a buffer overflow _if_
   the gpa+len crosses a page boundary, which thankfully is guaranteed to not
   happen in the current code base.  Add WARNs in more helpers that read/write
   guest memory to detect similar bugs.
 
 Selftests:
 
 * Fix a goof that caused some Hyper-V tests to be skipped when run on bare
   metal, i.e. NOT in a VM.
 
 * Add a regression test for KVM's handling of SHUTDOWN for an SEV-ES guest.
 
 * Explicitly include one-off assets in .gitignore.  Past Sean was completely
   wrong about not being able to detect missing .gitignore entries.
 
 * Verify userspace single-stepping works when KVM happens to handle a VM-Exit
   in its fastpath.
 
 * Misc cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmb201AUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOM1gf+Ij7dpCh0KwoNYlHfW2aCHAv3PqQd
 cKMDSGxoCernbJEyPO/3qXNUK+p4zKedk3d92snW3mKa+cwxMdfthJ3i9d7uoNiw
 7hAgcfKNHDZGqAQXhx8QcVF3wgp+diXSyirR+h1IKrGtCCmjMdNC8ftSYe6voEkw
 VTVbLL+tER5H0Xo5UKaXbnXKDbQvWLXkdIqM8dtLGFGLQ2PnF/DdMP0p6HYrKf1w
 B7LBu0rvqYDL8/pS82mtR3brHJXxAr9m72fOezRLEUbfUdzkTUi/b1vEe6nDCl0Q
 i/PuFlARDLWuetlR0VVWKNbop/C/l4EmwCcKzFHa+gfNH3L9361Oz+NzBw==
 =Q7kz
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull x86 kvm updates from Paolo Bonzini:
 "x86:

   - KVM currently invalidates the entirety of the page tables, not just
     those for the memslot being touched, when a memslot is moved or
     deleted.

     This does not traditionally have particularly noticeable overhead,
     but Intel's TDX will require the guest to re-accept private pages
     if they are dropped from the secure EPT, which is a non starter.

     Actually, the only reason why this is not already being done is a
     bug which was never fully investigated and caused VM instability
     with assigned GeForce GPUs, so allow userspace to opt into the new
     behavior.

   - Advertise AVX10.1 to userspace (effectively prep work for the
     "real" AVX10 functionality that is on the horizon)

   - Rework common MSR handling code to suppress errors on userspace
     accesses to unsupported-but-advertised MSRs

     This will allow removing (almost?) all of KVM's exemptions for
     userspace access to MSRs that shouldn't exist based on the vCPU
     model (the actual cleanup is non-trivial future work)

   - Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC)
     splits the 64-bit value into the legacy ICR and ICR2 storage,
     whereas Intel (APICv) stores the entire 64-bit value at the ICR
     offset

   - Fix a bug where KVM would fail to exit to userspace if one was
     triggered by a fastpath exit handler

   - Add fastpath handling of HLT VM-Exit to expedite re-entering the
     guest when there's already a pending wake event at the time of the
     exit

   - Fix a WARN caused by RSM entering a nested guest from SMM with
     invalid guest state, by forcing the vCPU out of guest mode prior to
     signalling SHUTDOWN (the SHUTDOWN hits the VM altogether, not the
     nested guest)

   - Overhaul the "unprotect and retry" logic to more precisely identify
     cases where retrying is actually helpful, and to harden all retry
     paths against putting the guest into an infinite retry loop

   - Add support for yielding, e.g. to honor NEED_RESCHED, when zapping
     rmaps in the shadow MMU

   - Refactor pieces of the shadow MMU related to aging SPTEs in
     prepartion for adding multi generation LRU support in KVM

   - Don't stuff the RSB after VM-Exit when RETPOLINE=y and AutoIBRS is
     enabled, i.e. when the CPU has already flushed the RSB

   - Trace the per-CPU host save area as a VMCB pointer to improve
     readability and cleanup the retrieval of the SEV-ES host save area

   - Remove unnecessary accounting of temporary nested VMCB related
     allocations

   - Set FINAL/PAGE in the page fault error code for EPT violations if
     and only if the GVA is valid. If the GVA is NOT valid, there is no
     guest-side page table walk and so stuffing paging related metadata
     is nonsensical

   - Fix a bug where KVM would incorrectly synthesize a nested VM-Exit
     instead of emulating posted interrupt delivery to L2

   - Add a lockdep assertion to detect unsafe accesses of vmcs12
     structures

   - Harden eVMCS loading against an impossible NULL pointer deref
     (really truly should be impossible)

   - Minor SGX fix and a cleanup

   - Misc cleanups

  Generic:

   - Register KVM's cpuhp and syscore callbacks when enabling
     virtualization in hardware, as the sole purpose of said callbacks
     is to disable and re-enable virtualization as needed

   - Enable virtualization when KVM is loaded, not right before the
     first VM is created

     Together with the previous change, this simplifies a lot the logic
     of the callbacks, because their very existence implies
     virtualization is enabled

   - Fix a bug that results in KVM prematurely exiting to userspace for
     coalesced MMIO/PIO in many cases, clean up the related code, and
     add a testcase

   - Fix a bug in kvm_clear_guest() where it would trigger a buffer
     overflow _if_ the gpa+len crosses a page boundary, which thankfully
     is guaranteed to not happen in the current code base. Add WARNs in
     more helpers that read/write guest memory to detect similar bugs

  Selftests:

   - Fix a goof that caused some Hyper-V tests to be skipped when run on
     bare metal, i.e. NOT in a VM

   - Add a regression test for KVM's handling of SHUTDOWN for an SEV-ES
     guest

   - Explicitly include one-off assets in .gitignore. Past Sean was
     completely wrong about not being able to detect missing .gitignore
     entries

   - Verify userspace single-stepping works when KVM happens to handle a
     VM-Exit in its fastpath

   - Misc cleanups"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits)
  Documentation: KVM: fix warning in "make htmldocs"
  s390: Enable KVM_S390_UCONTROL config in debug_defconfig
  selftests: kvm: s390: Add VM run test case
  KVM: SVM: let alternatives handle the cases when RSB filling is required
  KVM: VMX: Set PFERR_GUEST_{FINAL,PAGE}_MASK if and only if the GVA is valid
  KVM: x86/mmu: Use KVM_PAGES_PER_HPAGE() instead of an open coded equivalent
  KVM: x86/mmu: Add KVM_RMAP_MANY to replace open coded '1' and '1ul' literals
  KVM: x86/mmu: Fold mmu_spte_age() into kvm_rmap_age_gfn_range()
  KVM: x86/mmu: Morph kvm_handle_gfn_range() into an aging specific helper
  KVM: x86/mmu: Honor NEED_RESCHED when zapping rmaps and blocking is allowed
  KVM: x86/mmu: Add a helper to walk and zap rmaps for a memslot
  KVM: x86/mmu: Plumb a @can_yield parameter into __walk_slot_rmaps()
  KVM: x86/mmu: Move walk_slot_rmaps() up near for_each_slot_rmap_range()
  KVM: x86/mmu: WARN on MMIO cache hit when emulating write-protected gfn
  KVM: x86/mmu: Detect if unprotect will do anything based on invalid_list
  KVM: x86/mmu: Subsume kvm_mmu_unprotect_page() into the and_retry() version
  KVM: x86: Rename reexecute_instruction()=>kvm_unprotect_and_retry_on_failure()
  KVM: x86: Update retry protection fields when forcing retry on emulation failure
  KVM: x86: Apply retry protection to "unprotect on failure" path
  KVM: x86: Check EMULTYPE_WRITE_PF_TO_SP before unprotecting gfn
  ...
2024-09-28 09:20:14 -07:00
..
acpi Documentation: admin-guide: PM: Fix two typos 2024-01-10 15:10:44 +01:00
aoe
auxdisplay
blockdev zram: support priority parameter in recompression 2024-09-09 16:39:12 -07:00
cgroup-v1 memcg: initiate deprecation of pressure_level 2024-09-01 20:26:21 -07:00
cifs smb3: fix setting SecurityFlags when encryption is required 2024-08-08 11:14:53 -05:00
device-mapper - Misc VDO fixes 2024-09-27 09:12:51 -07:00
gpio gpio: virtuser: new virtual testing driver for the GPIO API 2024-07-09 09:39:54 +02:00
hw-vuln Documentation/srso: Document a method for checking safe RET operates properly 2024-08-27 09:16:35 +02:00
kdump Documentation: kdump: clean up the outdated description 2024-04-25 21:07:04 -07:00
laptops platform/x86: Support for mode FN key 2024-01-24 12:40:55 +02:00
LSM documentation: add IPE documentation 2024-08-20 14:03:47 -04:00
media media updates for v6.12-rc1 2024-09-23 15:27:58 -07:00
mm Many singleton patches - please see the various changelogs for details. 2024-09-21 08:20:50 -07:00
namespaces
nfs NFS: update documentation for the nfs4_unique_id parameter 2022-05-17 15:30:03 -04:00
perf perf: Add driver for Arm NI-700 interconnect PMU 2024-09-06 12:58:28 +01:00
pm platform-drivers-x86 for v6.12-1 2024-09-19 09:16:04 +02:00
RAS Documentation: Move RAS section to admin-guide 2024-02-14 17:10:06 +01:00
sysctl parisc architecture fixes and updates for kernel v6.11-rc1: 2024-07-25 12:37:42 -07:00
thermal It has been a moderately calm cycle for documentation; the significant 2023-02-22 12:00:20 -08:00
abi-obsolete.rst docs: kernel_abi.py: fix command injection 2024-01-03 13:44:11 -07:00
abi-removed.rst docs: kernel_abi.py: fix command injection 2024-01-03 13:44:11 -07:00
abi-stable.rst docs: kernel_abi.py: fix command injection 2024-01-03 13:44:11 -07:00
abi-testing.rst docs: kernel_abi.py: fix command injection 2024-01-03 13:44:11 -07:00
abi.rst
bcache.rst bcache: Remove dead references to cache_readaheads 2023-06-15 07:30:11 -06:00
binderfs.rst docs: binderfs: add section about feature files 2021-07-21 13:46:36 +02:00
binfmt-misc.rst
bootconfig.rst Allow forcing unconditional bootconfig processing 2023-02-22 08:27:48 +09:00
braille-console.rst
btmrvl.rst
bug-bisect.rst docs: bug-bisect: rewrite to better match the other bisecting text 2024-08-26 15:34:51 -06:00
bug-hunting.rst Documentation: admin-guide: direct people to bug trackers, if specified 2024-08-26 16:10:12 -06:00
cgroup-v2.rst ALong with the usual shower of singleton patches, notable patch series in 2024-09-21 07:29:05 -07:00
clearing-warn-once.rst
cpu-load.rst
cputopology.rst topology/sysfs: get rid of htmldoc warning 2021-12-07 11:20:45 +01:00
dell_rbu.rst
devices.rst docs: admin: devices: drop confusing outdated statement on Latex 2022-07-14 15:03:56 -06:00
devices.txt Documentation: devices.txt: Update ttyUL major number allocation details 2023-11-25 07:23:16 +00:00
dynamic-debug-howto.rst Documentation: add reference from dynamic debug to loglevel kernel params 2024-07-09 08:57:52 -06:00
edid.rst drm/edid/firmware: Remove built-in EDIDs 2024-02-26 14:05:18 +01:00
efi-stub.rst Documentation efi-stub.rst: fix arm64 EFI source location 2023-09-22 05:29:19 -06:00
ext4.rst Documentation: ext4.rst: remove obsolete descriptions of noacl/nouser_xattr options 2024-08-26 23:40:06 -04:00
features.rst docs: kernel_feat.py: fix potential command injection 2024-01-11 09:21:01 -07:00
filesystem-monitoring.rst docs: Fix formatting of literal sections in fanotify docs 2021-11-01 12:45:06 +01:00
highuid.rst
hw_random.rst docs: admin-guide: hw_random: update rng-tools website 2024-01-11 09:35:18 -07:00
index.rst Docs/admin-guide: Remove pmf leftover reference from the index 2024-07-16 11:41:46 +03:00
init.rst
initrd.rst
iostats.rst Documentation: block/diskstats: update function names 2022-02-24 12:18:54 -07:00
java.rst
jfs.rst
kernel-parameters.rst Documentation: Remove IA-64 from kernel-parameters 2024-06-27 11:31:52 -06:00
kernel-parameters.txt x86: 2024-09-28 09:20:14 -07:00
kernel-per-CPU-kthreads.rst docs: admin-guide: remove obsolete advice related to SLAB allocator 2024-01-23 14:52:37 -07:00
lcd-panel-cgram.rst
ldm.rst
lockup-watchdogs.rst doc: watchdog: modify the explanation related to watchdog thread 2021-06-29 10:53:46 -07:00
md.rst Documentation: admin-guide: correct spelling 2023-02-02 11:04:42 -07:00
module-signing.rst Documentation/module-signing.txt: bring up to date 2023-10-27 18:04:30 +08:00
mono.rst
numastat.rst
parport.rst
perf-security.rst
pnp.rst
pstore-blk.rst docs: pstore-blk.rst: fix typo, s/console/ftrace 2023-09-23 20:45:26 -07:00
quickly-build-trimmed-linux.rst docs: quickly-build-trimmed-linux: various small fixes and improvements 2023-05-16 12:50:05 -06:00
ramoops.rst pstore/ramoops: Fix typo as there is no "reserver" 2024-08-08 10:51:33 -07:00
rapidio.rst
README.rst docs: admin-guide: Update bootloader and installation instructions 2024-02-14 15:46:34 -07:00
reporting-issues.rst Documentation/security-bugs: move from admin-guide/ to process/ 2023-03-12 15:56:43 +01:00
reporting-regressions.rst docs: *-regressions.rst: unify quoting, add missing word 2024-04-10 15:01:32 -06:00
rtc.rst
serial-console.rst Documentation: serial-console: Fix literal block marker 2023-08-28 12:42:03 -06:00
spkguide.txt speakup: Document USB support 2023-10-26 11:35:21 -06:00
svga.rst
syscall-user-dispatch.rst ptrace: Provide set/get interface for syscall user dispatch 2023-04-16 14:23:07 +02:00
sysfs-rules.rst
sysrq.rst tty/sysrq: Replay kernel log messages on consoles via sysrq 2024-04-11 14:22:52 +02:00
tainted-kernels.rst Documentation: Add detailed explanation for 'N' taint flag 2024-07-30 07:56:30 -06:00
thunderbolt.rst
ufs.rst
unicode.rst docs: admin: unicode: update information on state of lanana.org document 2023-03-14 12:27:39 -06:00
verify-bugs-and-bisect-regressions.rst docs: verify/bisect: Fix rendered version URL 2024-06-26 16:54:24 -06:00
vga-softcursor.rst
video-output.rst
workload-tracing.rst docs: add workload-tracing document to admin-guide 2023-02-02 10:43:13 -07:00
xfs.rst Documentation: admin-guide: correct "it's" to possessive "its" 2023-07-14 13:17:55 -06:00

.. _readme:

Linux kernel release 6.x <http://kernel.org/>
=============================================

These are the release notes for Linux version 6.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong.

What is Linux?
--------------

  Linux is a clone of the operating system Unix, written from scratch by
  Linus Torvalds with assistance from a loosely-knit team of hackers across
  the Net. It aims towards POSIX and Single UNIX Specification compliance.

  It has all the features you would expect in a modern fully-fledged Unix,
  including true multitasking, virtual memory, shared libraries, demand
  loading, shared copy-on-write executables, proper memory management,
  and multistack networking including IPv4 and IPv6.

  It is distributed under the GNU General Public License v2 - see the
  accompanying COPYING file for more details.

On what hardware does it run?
-----------------------------

  Although originally developed first for 32-bit x86-based PCs (386 or higher),
  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64 Xtensa, and
  ARC architectures.

  Linux is easily portable to most general-purpose 32- or 64-bit architectures
  as long as they have a paged memory management unit (PMMU) and a port of the
  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
  also been ported to a number of architectures without a PMMU, although
  functionality is then obviously somewhat limited.
  Linux has also been ported to itself. You can now run the kernel as a
  userspace application - this is called UserMode Linux (UML).

Documentation
-------------

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some
   drivers for example. Please read the
   :ref:`Documentation/process/changes.rst <changes>` file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

Installing the kernel source
----------------------------

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (e.g. your home directory) and
   unpack it::

     xz -cd linux-6.x.tar.xz | tar xvf -

   Replace "X" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 6.x releases by patching.  Patches are
   distributed in the xz format.  To install by patching, get all the
   newer patch files, enter the top level directory of the kernel source
   (linux-6.x) and execute::

     xz -cd ../patch-6.x.xz | patch -p1

   Replace "x" for all versions bigger than the version "x" of your current
   source tree, **in_order**, and you should be ok.  You may want to remove
   the backup files (some-file-name~ or some-file-name.orig), and make sure
   that there are no failed patches (some-file-name# or some-file-name.rej).
   If there are, either you or I have made a mistake.

   Unlike patches for the 6.x kernels, patches for the 6.x.y kernels
   (also known as the -stable kernels) are not incremental but instead apply
   directly to the base 6.x kernel.  For example, if your base kernel is 6.0
   and you want to apply the 6.0.3 patch, you must not first apply the 6.0.1
   and 6.0.2 patches. Similarly, if you are running kernel version 6.0.2 and
   want to jump to 6.0.3, you must first reverse the 6.0.2 patch (that is,
   patch -R) **before** applying the 6.0.3 patch. You can read more on this in
   :ref:`Documentation/process/applying-patches.rst <applying_patches>`.

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found::

     linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - Make sure you have no stale .o files and dependencies lying around::

     cd linux
     make mrproper

   You should now have the sources correctly installed.

Software requirements
---------------------

   Compiling and running the 6.x kernels requires up-to-date
   versions of various software packages.  Consult
   :ref:`Documentation/process/changes.rst <changes>` for the minimum version numbers
   required and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

Build directory for the kernel
------------------------------

   When compiling the kernel, all output files will per default be
   stored together with the kernel source code.
   Using the option ``make O=output/dir`` allows you to specify an alternate
   place for the output files (including .config).
   Example::

     kernel source code: /usr/src/linux-6.x
     build directory:    /home/name/build/kernel

   To configure and build the kernel, use::

     cd /usr/src/linux-6.x
     make O=/home/name/build/kernel menuconfig
     make O=/home/name/build/kernel
     sudo make O=/home/name/build/kernel modules_install install

   Please note: If the ``O=output/dir`` option is used, then it must be
   used for all invocations of make.

Configuring the kernel
----------------------

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use ``make oldconfig``, which will
   only ask you for the answers to new questions.

 - Alternative configuration commands are::

     "make config"      Plain text interface.

     "make menuconfig"  Text based color menus, radiolists & dialogs.

     "make nconfig"     Enhanced text based color menus.

     "make xconfig"     Qt based configuration tool.

     "make gconfig"     GTK+ based configuration tool.

     "make oldconfig"   Default all questions based on the contents of
                        your existing ./.config file and asking about
                        new config symbols.

     "make olddefconfig"
                        Like above, but sets new symbols to their default
                        values without prompting.

     "make defconfig"   Create a ./.config file by using the default
                        symbol values from either arch/$ARCH/defconfig
                        or arch/$ARCH/configs/${PLATFORM}_defconfig,
                        depending on the architecture.

     "make ${PLATFORM}_defconfig"
                        Create a ./.config file by using the default
                        symbol values from
                        arch/$ARCH/configs/${PLATFORM}_defconfig.
                        Use "make help" to get a list of all available
                        platforms of your architecture.

     "make allyesconfig"
                        Create a ./.config file by setting symbol
                        values to 'y' as much as possible.

     "make allmodconfig"
                        Create a ./.config file by setting symbol
                        values to 'm' as much as possible.

     "make allnoconfig" Create a ./.config file by setting symbol
                        values to 'n' as much as possible.

     "make randconfig"  Create a ./.config file by setting symbol
                        values to random values.

     "make localmodconfig" Create a config based on current config and
                           loaded modules (lsmod). Disables any module
                           option that is not needed for the loaded modules.

                           To create a localmodconfig for another machine,
                           store the lsmod of that machine into a file
                           and pass it in as a LSMOD parameter.

                           Also, you can preserve modules in certain folders
                           or kconfig files by specifying their paths in
                           parameter LMC_KEEP.

                   target$ lsmod > /tmp/mylsmod
                   target$ scp /tmp/mylsmod host:/tmp

                   host$ make LSMOD=/tmp/mylsmod \
                           LMC_KEEP="drivers/usb:drivers/gpu:fs" \
                           localmodconfig

                           The above also works when cross compiling.

     "make localyesconfig" Similar to localmodconfig, except it will convert
                           all module options to built in (=y) options. You can
                           also preserve modules by LMC_KEEP.

     "make kvm_guest.config"   Enable additional options for kvm guest kernel
                               support.

     "make xen.config"   Enable additional options for xen dom0 guest kernel
                         support.

     "make tinyconfig"  Configure the tiniest possible kernel.

   You can find more information on using the Linux kernel config tools
   in Documentation/kbuild/kconfig.rst.

 - NOTES on ``make config``:

    - Having unnecessary drivers will make the kernel bigger, and can
      under some circumstances lead to problems: probing for a
      nonexistent controller card may confuse your other controllers.

    - A kernel with math-emulation compiled in will still use the
      coprocessor if one is present: the math emulation will just
      never get used in that case.  The kernel will be slightly larger,
      but will work on different machines regardless of whether they
      have a math coprocessor or not.

    - The "kernel hacking" configuration details usually result in a
      bigger or slower kernel (or both), and can even make the kernel
      less stable by configuring some routines to actively try to
      break bad code to find kernel problems (kmalloc()).  Thus you
      should probably answer 'n' to the questions for "development",
      "experimental", or "debugging" features.

Compiling the kernel
--------------------

 - Make sure you have at least gcc 5.1 available.
   For more information, refer to :ref:`Documentation/process/changes.rst <changes>`.

 - Do a ``make`` to create a compressed kernel image. It is also possible to do
   ``make install`` if you have lilo installed or if your distribution has an
   install script recognised by the kernel's installer. Most popular
   distributions will have a recognized install script. You may want to
   check your distribution's setup first.

   To do the actual install, you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as ``modules``, you
   will also have to do ``make modules_install``.

 - Verbose kernel compile/build output:

   Normally, the kernel build system runs in a fairly quiet mode (but not
   totally silent).  However, sometimes you or other kernel developers need
   to see compile, link, or other commands exactly as they are executed.
   For this, use "verbose" build mode.  This is done by passing
   ``V=1`` to the ``make`` command, e.g.::

     make V=1 all

   To have the build system also tell the reason for the rebuild of each
   target, use ``V=2``.  The default is ``V=0``.

 - Keep a backup kernel handy in case something goes wrong.  This is
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a ``make modules_install``.

   Alternatively, before compiling, use the kernel config option
   "LOCALVERSION" to append a unique suffix to the regular kernel version.
   LOCALVERSION can be set in the "General Setup" menu.

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/x86/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found.

 - Booting a kernel directly from a storage device without the assistance
   of a bootloader such as LILO or GRUB, is no longer supported in BIOS
   (non-EFI systems). On UEFI/EFI systems, however, you can use EFISTUB
   which allows the motherboard to boot directly to the kernel.
   On modern workstations and desktops, it's generally recommended to use a
   bootloader as difficulties can arise with multiple kernels and secure boot.
   For more details on EFISTUB,
   see "Documentation/admin-guide/efi-stub.rst".

 - It's important to note that as of 2016 LILO (LInux LOader) is no longer in
   active development, though as it was extremely popular, it often comes up
   in documentation. Popular alternatives include GRUB2, rEFInd, Syslinux,
   systemd-boot, or EFISTUB. For various reasons, it's not recommended to use
   software that's no longer in active development.

 - Chances are your distribution includes an install script and running
   ``make install`` will be all that's needed. Should that not be the case
   you'll have to identify your bootloader and reference its documentation or
   configure your EFI.

Legacy LILO Instructions
------------------------


 - If you use LILO the kernel images are specified in the file /etc/lilo.conf.
   The kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage. To use the new kernel, save a copy of the old image and copy
   the new image over the old one. Then, you MUST RERUN LILO to update the
   loading map! If you don't, you won't be able to boot the new kernel image.

 - Reinstalling LILO is usually a matter of running /sbin/lilo. You may wish
   to edit /etc/lilo.conf to specify an entry for your old kernel image
   (say, /vmlinux.old) in case the new one does not work. See the LILO docs
   for more information.

 - After reinstalling LILO, you should be all set. Shutdown the system,
   reboot, and enjoy!

 - If you ever need to change the default root device, video mode, etc. in the
   kernel image, use your bootloader's boot options where appropriate. No need
   to recompile the kernel to change these parameters.

 - Reboot with the new kernel and enjoy.


If something goes wrong
-----------------------

If you have problems that seem to be due to kernel bugs, please follow the
instructions at 'Documentation/admin-guide/reporting-issues.rst'.

Hints on understanding kernel bug reports are in
'Documentation/admin-guide/bug-hunting.rst'. More on debugging the kernel
with gdb is in 'Documentation/dev-tools/gdb-kernel-debugging.rst' and
'Documentation/dev-tools/kgdb.rst'.