mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-11 00:08:50 +00:00
b2b755b5f1
Commit ddd588b5dd55 ("oom: suppress nodes that are not allowed from meminfo on oom kill") moved lib/show_mem.o out of lib/lib.a, which resulted in build warnings on all architectures that implement their own versions of show_mem(): lib/lib.a(show_mem.o): In function `show_mem': show_mem.c:(.text+0x1f4): multiple definition of `show_mem' arch/sparc/mm/built-in.o:(.text+0xd70): first defined here The fix is to remove __show_mem() and add its argument to show_mem() in all implementations to prevent this breakage. Architectures that implement their own show_mem() actually don't do anything with the argument yet, but they could be made to filter nodes that aren't allowed in the current context in the future just like the generic implementation. Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Reported-by: James Bottomley <James.Bottomley@hansenpartnership.com> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
354 lines
9.4 KiB
C
354 lines
9.4 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 1998-2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Stephane Eranian <eranian@hpl.hp.com>
|
|
* Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
|
|
* Copyright (C) 1999 VA Linux Systems
|
|
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
|
|
* Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
|
|
*
|
|
* Routines used by ia64 machines with contiguous (or virtually contiguous)
|
|
* memory.
|
|
*/
|
|
#include <linux/bootmem.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/swap.h>
|
|
|
|
#include <asm/meminit.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/mca.h>
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
static unsigned long max_gap;
|
|
#endif
|
|
|
|
/**
|
|
* show_mem - give short summary of memory stats
|
|
*
|
|
* Shows a simple page count of reserved and used pages in the system.
|
|
* For discontig machines, it does this on a per-pgdat basis.
|
|
*/
|
|
void show_mem(unsigned int filter)
|
|
{
|
|
int i, total_reserved = 0;
|
|
int total_shared = 0, total_cached = 0;
|
|
unsigned long total_present = 0;
|
|
pg_data_t *pgdat;
|
|
|
|
printk(KERN_INFO "Mem-info:\n");
|
|
show_free_areas();
|
|
printk(KERN_INFO "Node memory in pages:\n");
|
|
for_each_online_pgdat(pgdat) {
|
|
unsigned long present;
|
|
unsigned long flags;
|
|
int shared = 0, cached = 0, reserved = 0;
|
|
|
|
pgdat_resize_lock(pgdat, &flags);
|
|
present = pgdat->node_present_pages;
|
|
for(i = 0; i < pgdat->node_spanned_pages; i++) {
|
|
struct page *page;
|
|
if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
|
|
touch_nmi_watchdog();
|
|
if (pfn_valid(pgdat->node_start_pfn + i))
|
|
page = pfn_to_page(pgdat->node_start_pfn + i);
|
|
else {
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
if (max_gap < LARGE_GAP)
|
|
continue;
|
|
#endif
|
|
i = vmemmap_find_next_valid_pfn(pgdat->node_id,
|
|
i) - 1;
|
|
continue;
|
|
}
|
|
if (PageReserved(page))
|
|
reserved++;
|
|
else if (PageSwapCache(page))
|
|
cached++;
|
|
else if (page_count(page))
|
|
shared += page_count(page)-1;
|
|
}
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
total_present += present;
|
|
total_reserved += reserved;
|
|
total_cached += cached;
|
|
total_shared += shared;
|
|
printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
|
|
"shrd: %10d, swpd: %10d\n", pgdat->node_id,
|
|
present, reserved, shared, cached);
|
|
}
|
|
printk(KERN_INFO "%ld pages of RAM\n", total_present);
|
|
printk(KERN_INFO "%d reserved pages\n", total_reserved);
|
|
printk(KERN_INFO "%d pages shared\n", total_shared);
|
|
printk(KERN_INFO "%d pages swap cached\n", total_cached);
|
|
printk(KERN_INFO "Total of %ld pages in page table cache\n",
|
|
quicklist_total_size());
|
|
printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
|
|
}
|
|
|
|
|
|
/* physical address where the bootmem map is located */
|
|
unsigned long bootmap_start;
|
|
|
|
/**
|
|
* find_bootmap_location - callback to find a memory area for the bootmap
|
|
* @start: start of region
|
|
* @end: end of region
|
|
* @arg: unused callback data
|
|
*
|
|
* Find a place to put the bootmap and return its starting address in
|
|
* bootmap_start. This address must be page-aligned.
|
|
*/
|
|
static int __init
|
|
find_bootmap_location (u64 start, u64 end, void *arg)
|
|
{
|
|
u64 needed = *(unsigned long *)arg;
|
|
u64 range_start, range_end, free_start;
|
|
int i;
|
|
|
|
#if IGNORE_PFN0
|
|
if (start == PAGE_OFFSET) {
|
|
start += PAGE_SIZE;
|
|
if (start >= end)
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
free_start = PAGE_OFFSET;
|
|
|
|
for (i = 0; i < num_rsvd_regions; i++) {
|
|
range_start = max(start, free_start);
|
|
range_end = min(end, rsvd_region[i].start & PAGE_MASK);
|
|
|
|
free_start = PAGE_ALIGN(rsvd_region[i].end);
|
|
|
|
if (range_end <= range_start)
|
|
continue; /* skip over empty range */
|
|
|
|
if (range_end - range_start >= needed) {
|
|
bootmap_start = __pa(range_start);
|
|
return -1; /* done */
|
|
}
|
|
|
|
/* nothing more available in this segment */
|
|
if (range_end == end)
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void *cpu_data;
|
|
/**
|
|
* per_cpu_init - setup per-cpu variables
|
|
*
|
|
* Allocate and setup per-cpu data areas.
|
|
*/
|
|
void * __cpuinit
|
|
per_cpu_init (void)
|
|
{
|
|
static bool first_time = true;
|
|
void *cpu0_data = __cpu0_per_cpu;
|
|
unsigned int cpu;
|
|
|
|
if (!first_time)
|
|
goto skip;
|
|
first_time = false;
|
|
|
|
/*
|
|
* get_free_pages() cannot be used before cpu_init() done.
|
|
* BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
|
|
* to avoid that AP calls get_zeroed_page().
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
|
|
|
|
memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
|
|
__per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
|
|
per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
|
|
|
|
/*
|
|
* percpu area for cpu0 is moved from the __init area
|
|
* which is setup by head.S and used till this point.
|
|
* Update ar.k3. This move is ensures that percpu
|
|
* area for cpu0 is on the correct node and its
|
|
* virtual address isn't insanely far from other
|
|
* percpu areas which is important for congruent
|
|
* percpu allocator.
|
|
*/
|
|
if (cpu == 0)
|
|
ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
|
|
(unsigned long)__per_cpu_start);
|
|
|
|
cpu_data += PERCPU_PAGE_SIZE;
|
|
}
|
|
skip:
|
|
return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
|
|
}
|
|
|
|
static inline void
|
|
alloc_per_cpu_data(void)
|
|
{
|
|
cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
|
|
PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
|
|
}
|
|
|
|
/**
|
|
* setup_per_cpu_areas - setup percpu areas
|
|
*
|
|
* Arch code has already allocated and initialized percpu areas. All
|
|
* this function has to do is to teach the determined layout to the
|
|
* dynamic percpu allocator, which happens to be more complex than
|
|
* creating whole new ones using helpers.
|
|
*/
|
|
void __init
|
|
setup_per_cpu_areas(void)
|
|
{
|
|
struct pcpu_alloc_info *ai;
|
|
struct pcpu_group_info *gi;
|
|
unsigned int cpu;
|
|
ssize_t static_size, reserved_size, dyn_size;
|
|
int rc;
|
|
|
|
ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
|
|
if (!ai)
|
|
panic("failed to allocate pcpu_alloc_info");
|
|
gi = &ai->groups[0];
|
|
|
|
/* units are assigned consecutively to possible cpus */
|
|
for_each_possible_cpu(cpu)
|
|
gi->cpu_map[gi->nr_units++] = cpu;
|
|
|
|
/* set parameters */
|
|
static_size = __per_cpu_end - __per_cpu_start;
|
|
reserved_size = PERCPU_MODULE_RESERVE;
|
|
dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
|
|
if (dyn_size < 0)
|
|
panic("percpu area overflow static=%zd reserved=%zd\n",
|
|
static_size, reserved_size);
|
|
|
|
ai->static_size = static_size;
|
|
ai->reserved_size = reserved_size;
|
|
ai->dyn_size = dyn_size;
|
|
ai->unit_size = PERCPU_PAGE_SIZE;
|
|
ai->atom_size = PAGE_SIZE;
|
|
ai->alloc_size = PERCPU_PAGE_SIZE;
|
|
|
|
rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
|
|
if (rc)
|
|
panic("failed to setup percpu area (err=%d)", rc);
|
|
|
|
pcpu_free_alloc_info(ai);
|
|
}
|
|
#else
|
|
#define alloc_per_cpu_data() do { } while (0)
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/**
|
|
* find_memory - setup memory map
|
|
*
|
|
* Walk the EFI memory map and find usable memory for the system, taking
|
|
* into account reserved areas.
|
|
*/
|
|
void __init
|
|
find_memory (void)
|
|
{
|
|
unsigned long bootmap_size;
|
|
|
|
reserve_memory();
|
|
|
|
/* first find highest page frame number */
|
|
min_low_pfn = ~0UL;
|
|
max_low_pfn = 0;
|
|
efi_memmap_walk(find_max_min_low_pfn, NULL);
|
|
max_pfn = max_low_pfn;
|
|
/* how many bytes to cover all the pages */
|
|
bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
|
|
|
|
/* look for a location to hold the bootmap */
|
|
bootmap_start = ~0UL;
|
|
efi_memmap_walk(find_bootmap_location, &bootmap_size);
|
|
if (bootmap_start == ~0UL)
|
|
panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
|
|
|
|
bootmap_size = init_bootmem_node(NODE_DATA(0),
|
|
(bootmap_start >> PAGE_SHIFT), 0, max_pfn);
|
|
|
|
/* Free all available memory, then mark bootmem-map as being in use. */
|
|
efi_memmap_walk(filter_rsvd_memory, free_bootmem);
|
|
reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
|
|
|
|
find_initrd();
|
|
|
|
alloc_per_cpu_data();
|
|
}
|
|
|
|
static int count_pages(u64 start, u64 end, void *arg)
|
|
{
|
|
unsigned long *count = arg;
|
|
|
|
*count += (end - start) >> PAGE_SHIFT;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up the page tables.
|
|
*/
|
|
|
|
void __init
|
|
paging_init (void)
|
|
{
|
|
unsigned long max_dma;
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
|
|
num_physpages = 0;
|
|
efi_memmap_walk(count_pages, &num_physpages);
|
|
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
#ifdef CONFIG_ZONE_DMA
|
|
max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
|
|
max_zone_pfns[ZONE_DMA] = max_dma;
|
|
#endif
|
|
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
efi_memmap_walk(filter_memory, register_active_ranges);
|
|
efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
|
|
if (max_gap < LARGE_GAP) {
|
|
vmem_map = (struct page *) 0;
|
|
free_area_init_nodes(max_zone_pfns);
|
|
} else {
|
|
unsigned long map_size;
|
|
|
|
/* allocate virtual_mem_map */
|
|
|
|
map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
|
|
sizeof(struct page));
|
|
VMALLOC_END -= map_size;
|
|
vmem_map = (struct page *) VMALLOC_END;
|
|
efi_memmap_walk(create_mem_map_page_table, NULL);
|
|
|
|
/*
|
|
* alloc_node_mem_map makes an adjustment for mem_map
|
|
* which isn't compatible with vmem_map.
|
|
*/
|
|
NODE_DATA(0)->node_mem_map = vmem_map +
|
|
find_min_pfn_with_active_regions();
|
|
free_area_init_nodes(max_zone_pfns);
|
|
|
|
printk("Virtual mem_map starts at 0x%p\n", mem_map);
|
|
}
|
|
#else /* !CONFIG_VIRTUAL_MEM_MAP */
|
|
add_active_range(0, 0, max_low_pfn);
|
|
free_area_init_nodes(max_zone_pfns);
|
|
#endif /* !CONFIG_VIRTUAL_MEM_MAP */
|
|
zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
|
|
}
|