linux-next/drivers/net/bnx2x_init_ops.h
Vladislav Zolotarov 94a78b79cb bnx2x: Separated FW from the source.
>From now on FW will be downloaded from the binary file using request_firmware.

There will be different files for every supported chip. Currently 57710 (e1) and
57711 (e1h).

File names have the following format: bnx2x-<chip version>-<FW version>.fw.
ihex versions of current FW files are submitted in the next patch.

Each binary file has a header in the following format:


struct bnx2x_fw_file_section {
	__be32 len;
	__be32 offset;
}

struct bnx2x_fw_file_hdr {
	struct bnx2x_fw_file_section init_ops;
	struct bnx2x_fw_file_section init_ops_offsets;
	struct bnx2x_fw_file_section init_data;
	struct bnx2x_fw_file_section tsem_int_table_data;
	struct bnx2x_fw_file_section tsem_pram_data;
	struct bnx2x_fw_file_section usem_int_table_data;
	struct bnx2x_fw_file_section usem_pram_data;
	struct bnx2x_fw_file_section csem_int_table_data;
	struct bnx2x_fw_file_section csem_pram_data;
	struct bnx2x_fw_file_section xsem_int_table_data;
	struct bnx2x_fw_file_section xsem_pram_data;
	struct bnx2x_fw_file_section fw_version;
}

Each bnx2x_fw_file_section contains the length and the offset of the appropriate
section in the binary file. Values are stored in the big endian format.

Data types of arrays:

init_data            __be32
init_ops_offsets     __be16
XXsem_pram_data         u8
XXsem_int_table_data    u8
init_ops             struct raw_op {
                          u8   op;
			__be24 offset;
                        __be32 data;
		     }
fw_version              u8

>From now boundaries of a specific initialization stage are stored in
init_ops_offsets array instead of being defined by separate macroes. The index 
in init_ops_offsets is calculated by BLOCK_OPS_IDX macro:

#define BLOCK_OPS_IDX(block, stage, end) \
       (2*(((block)*STAGE_IDX_MAX) + (stage)) + (end))

Security:

In addition to sanity check of array boundaries bnx2x will check a FW version.
Additional checks might be added in the future.

Signed-off-by: Vladislav Zolotarov <vladz@broadcom.com>
Signed-off-by: Eilon Greenstein <eilong@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-04-27 03:27:43 -07:00

443 lines
12 KiB
C

/* bnx2x_init_ops.h: Broadcom Everest network driver.
* Static functions needed during the initialization.
* This file is "included" in bnx2x_main.c.
*
* Copyright (c) 2007-2009 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
* Written by: Vladislav Zolotarov <vladz@broadcom.com>
*/
#ifndef BNX2X_INIT_OPS_H
#define BNX2X_INIT_OPS_H
static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len)
{
int i;
for (i = 0; i < len; i++) {
REG_WR(bp, addr + i*4, data[i]);
if (!(i % 10000)) {
touch_softlockup_watchdog();
cpu_relax();
}
}
}
static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
u16 len)
{
int i;
for (i = 0; i < len; i++) {
REG_WR_IND(bp, addr + i*4, data[i]);
if (!(i % 10000)) {
touch_softlockup_watchdog();
cpu_relax();
}
}
}
static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
{
int offset = 0;
if (bp->dmae_ready) {
while (len > DMAE_LEN32_WR_MAX) {
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, DMAE_LEN32_WR_MAX);
offset += DMAE_LEN32_WR_MAX * 4;
len -= DMAE_LEN32_WR_MAX;
}
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, len);
} else
bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
}
static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
{
u32 buf_len = (((len * 4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len * 4));
u32 buf_len32 = buf_len / 4;
int i;
memset(bp->gunzip_buf, fill, buf_len);
for (i = 0; i < len; i += buf_len32) {
u32 cur_len = min(buf_len32, len - i);
bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
}
}
static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len64)
{
u32 buf_len32 = FW_BUF_SIZE / 4;
u32 len = len64 * 2;
u64 data64 = 0;
int i;
/* 64 bit value is in a blob: first low DWORD, then high DWORD */
data64 = HILO_U64((*(data + 1)), (*data));
len64 = min((u32)(FW_BUF_SIZE/8), len64);
for (i = 0; i < len64; i++) {
u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i;
*pdata = data64;
}
for (i = 0; i < len; i += buf_len32) {
u32 cur_len = min(buf_len32, len - i);
bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
}
}
/*********************************************************
There are different blobs for each PRAM section.
In addition, each blob write operation is divided into a few operations
in order to decrease the amount of phys. contiguous buffer needed.
Thus, when we select a blob the address may be with some offset
from the beginning of PRAM section.
The same holds for the INT_TABLE sections.
**********************************************************/
#define IF_IS_INT_TABLE_ADDR(base, addr) \
if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
#define IF_IS_PRAM_ADDR(base, addr) \
if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
{
IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
data = bp->tsem_int_table_data;
else IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
data = bp->csem_int_table_data;
else IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
data = bp->usem_int_table_data;
else IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
data = bp->xsem_int_table_data;
else IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
data = bp->tsem_pram_data;
else IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
data = bp->csem_pram_data;
else IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
data = bp->usem_pram_data;
else IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
data = bp->xsem_pram_data;
return data;
}
static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
{
int offset = 0;
if (bp->dmae_ready) {
while (len > DMAE_LEN32_WR_MAX) {
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, DMAE_LEN32_WR_MAX);
offset += DMAE_LEN32_WR_MAX * 4;
len -= DMAE_LEN32_WR_MAX;
}
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, len);
} else
bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
}
static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len)
{
/* This is needed for NO_ZIP mode, currently supported
in little endian mode only */
data = (const u32*)bnx2x_sel_blob(bp, addr, (const u8*)data);
if ((len * 4) > FW_BUF_SIZE) {
BNX2X_ERR("LARGE DMAE OPERATION ! "
"addr 0x%x len 0x%x\n", addr, len*4);
return;
}
memcpy(bp->gunzip_buf, data, len * 4);
bnx2x_write_big_buf_wb(bp, addr, len);
}
static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr,
u32 len, u32 blob_off)
{
int rc, i;
const u8 *data = NULL;
data = bnx2x_sel_blob(bp, addr, data) + 4*blob_off;
if (data == NULL) {
panic("Blob not found for addr 0x%x\n", addr);
return;
}
rc = bnx2x_gunzip(bp, data, len);
if (rc) {
BNX2X_ERR("gunzip failed ! addr 0x%x rc %d\n", addr, rc);
BNX2X_ERR("blob_offset=0x%x\n", blob_off);
return;
}
/* gunzip_outlen is in dwords */
len = bp->gunzip_outlen;
for (i = 0; i < len; i++)
((u32 *)bp->gunzip_buf)[i] =
cpu_to_le32(((u32 *)bp->gunzip_buf)[i]);
bnx2x_write_big_buf_wb(bp, addr, len);
}
static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
{
int hw_wr, i;
u16 op_start =
bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_START)];
u16 op_end =
bp->init_ops_offsets[BLOCK_OPS_IDX(block,stage,STAGE_END)];
union init_op *op;
u32 op_type, addr, len;
const u32 *data, *data_base;
/* If empty block */
if (op_start == op_end)
return;
if (CHIP_REV_IS_FPGA(bp))
hw_wr = OP_WR_FPGA;
else if (CHIP_REV_IS_EMUL(bp))
hw_wr = OP_WR_EMUL;
else
hw_wr = OP_WR_ASIC;
data_base = bp->init_data;
for (i = op_start; i < op_end; i++) {
op = (union init_op *)&(bp->init_ops[i]);
op_type = op->str_wr.op;
addr = op->str_wr.offset;
len = op->str_wr.data_len;
data = data_base + op->str_wr.data_off;
/* HW/EMUL specific */
if (unlikely((op_type > OP_WB) && (op_type == hw_wr)))
op_type = OP_WR;
switch (op_type) {
case OP_RD:
REG_RD(bp, addr);
break;
case OP_WR:
REG_WR(bp, addr, op->write.val);
break;
case OP_SW:
bnx2x_init_str_wr(bp, addr, data, len);
break;
case OP_WB:
bnx2x_init_wr_wb(bp, addr, data, len);
break;
case OP_SI:
bnx2x_init_ind_wr(bp, addr, data, len);
break;
case OP_ZR:
bnx2x_init_fill(bp, addr, 0, op->zero.len);
break;
case OP_ZP:
bnx2x_init_wr_zp(bp, addr, len,
op->str_wr.data_off);
break;
case OP_WR_64:
bnx2x_init_wr_64(bp, addr, data, len);
break;
default:
/* happens whenever an op is of a diff HW */
#if 0
DP(NETIF_MSG_HW, "skipping init operation "
"index %d[%d:%d]: type %d addr 0x%x "
"len %d(0x%x)\n",
i, op_start, op_end, op_type, addr, len, len);
#endif
break;
}
}
}
/* PXP */
static void bnx2x_init_pxp(struct bnx2x *bp)
{
u16 devctl;
int r_order, w_order;
u32 val, i;
pci_read_config_word(bp->pdev,
bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
if (bp->mrrs == -1)
r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
else {
DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
r_order = bp->mrrs;
}
if (r_order > MAX_RD_ORD) {
DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
r_order, MAX_RD_ORD);
r_order = MAX_RD_ORD;
}
if (w_order > MAX_WR_ORD) {
DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
w_order, MAX_WR_ORD);
w_order = MAX_WR_ORD;
}
if (CHIP_REV_IS_FPGA(bp)) {
DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
w_order = 0;
}
DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
for (i = 0; i < NUM_RD_Q-1; i++) {
REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
REG_WR(bp, read_arb_addr[i].add,
read_arb_data[i][r_order].add);
REG_WR(bp, read_arb_addr[i].ubound,
read_arb_data[i][r_order].ubound);
}
for (i = 0; i < NUM_WR_Q-1; i++) {
if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
(write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
REG_WR(bp, write_arb_addr[i].l,
write_arb_data[i][w_order].l);
REG_WR(bp, write_arb_addr[i].add,
write_arb_data[i][w_order].add);
REG_WR(bp, write_arb_addr[i].ubound,
write_arb_data[i][w_order].ubound);
} else {
val = REG_RD(bp, write_arb_addr[i].l);
REG_WR(bp, write_arb_addr[i].l,
val | (write_arb_data[i][w_order].l << 10));
val = REG_RD(bp, write_arb_addr[i].add);
REG_WR(bp, write_arb_addr[i].add,
val | (write_arb_data[i][w_order].add << 10));
val = REG_RD(bp, write_arb_addr[i].ubound);
REG_WR(bp, write_arb_addr[i].ubound,
val | (write_arb_data[i][w_order].ubound << 7));
}
}
val = write_arb_data[NUM_WR_Q-1][w_order].add;
val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
val = read_arb_data[NUM_RD_Q-1][r_order].add;
val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
if (r_order == MAX_RD_ORD)
REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
if (CHIP_IS_E1H(bp)) {
val = ((w_order == 0) ? 2 : 3);
REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
}
}
/*****************************************************************************
* Description:
* Calculates crc 8 on a word value: polynomial 0-1-2-8
* Code was translated from Verilog.
****************************************************************************/
static u8 calc_crc8(u32 data, u8 crc)
{
u8 D[32];
u8 NewCRC[8];
u8 C[8];
u8 crc_res;
u8 i;
/* split the data into 31 bits */
for (i = 0; i < 32; i++) {
D[i] = data & 1;
data = data >> 1;
}
/* split the crc into 8 bits */
for (i = 0; i < 8; i++) {
C[i] = crc & 1;
crc = crc >> 1;
}
NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
C[6] ^ C[7];
NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
C[0] ^ C[1] ^ C[4] ^ C[5];
NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
C[1] ^ C[2] ^ C[5] ^ C[6];
NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
C[3] ^ C[4] ^ C[7];
NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
C[5];
NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
C[6];
crc_res = 0;
for (i = 0; i < 8; i++)
crc_res |= (NewCRC[i] << i);
return crc_res;
}
#endif /* BNX2X_INIT_OPS_H */