linux-next/drivers/net/pcnet32.c
John Dykstra ce105a0823 pcnet32: Remove pointless memory barriers
These two memory barriers in performance-critical paths are not needed
on x86.  Even if some other architecture does buffer PCI I/O space
writes, the existing memory-mapped I/O barriers are unlikely to be what
is needed.

Signed-off-by: John Dykstra <john.dykstra1@gmail.com>
Acked-by:  Don Fry <pcnet32@verizon.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-04-29 17:22:30 -07:00

3061 lines
83 KiB
C

/* pcnet32.c: An AMD PCnet32 ethernet driver for linux. */
/*
* Copyright 1996-1999 Thomas Bogendoerfer
*
* Derived from the lance driver written 1993,1994,1995 by Donald Becker.
*
* Copyright 1993 United States Government as represented by the
* Director, National Security Agency.
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* This driver is for PCnet32 and PCnetPCI based ethercards
*/
/**************************************************************************
* 23 Oct, 2000.
* Fixed a few bugs, related to running the controller in 32bit mode.
*
* Carsten Langgaard, carstenl@mips.com
* Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
*
*************************************************************************/
#define DRV_NAME "pcnet32"
#define DRV_VERSION "1.35"
#define DRV_RELDATE "21.Apr.2008"
#define PFX DRV_NAME ": "
static const char *const version =
DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " tsbogend@alpha.franken.de\n";
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/crc32.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/moduleparam.h>
#include <linux/bitops.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
/*
* PCI device identifiers for "new style" Linux PCI Device Drivers
*/
static struct pci_device_id pcnet32_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_LANCE_HOME), },
{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_LANCE), },
/*
* Adapters that were sold with IBM's RS/6000 or pSeries hardware have
* the incorrect vendor id.
*/
{ PCI_DEVICE(PCI_VENDOR_ID_TRIDENT, PCI_DEVICE_ID_AMD_LANCE),
.class = (PCI_CLASS_NETWORK_ETHERNET << 8), .class_mask = 0xffff00, },
{ } /* terminate list */
};
MODULE_DEVICE_TABLE(pci, pcnet32_pci_tbl);
static int cards_found;
/*
* VLB I/O addresses
*/
static unsigned int pcnet32_portlist[] __initdata =
{ 0x300, 0x320, 0x340, 0x360, 0 };
static int pcnet32_debug = 0;
static int tx_start = 1; /* Mapping -- 0:20, 1:64, 2:128, 3:~220 (depends on chip vers) */
static int pcnet32vlb; /* check for VLB cards ? */
static struct net_device *pcnet32_dev;
static int max_interrupt_work = 2;
static int rx_copybreak = 200;
#define PCNET32_PORT_AUI 0x00
#define PCNET32_PORT_10BT 0x01
#define PCNET32_PORT_GPSI 0x02
#define PCNET32_PORT_MII 0x03
#define PCNET32_PORT_PORTSEL 0x03
#define PCNET32_PORT_ASEL 0x04
#define PCNET32_PORT_100 0x40
#define PCNET32_PORT_FD 0x80
#define PCNET32_DMA_MASK 0xffffffff
#define PCNET32_WATCHDOG_TIMEOUT (jiffies + (2 * HZ))
#define PCNET32_BLINK_TIMEOUT (jiffies + (HZ/4))
/*
* table to translate option values from tulip
* to internal options
*/
static const unsigned char options_mapping[] = {
PCNET32_PORT_ASEL, /* 0 Auto-select */
PCNET32_PORT_AUI, /* 1 BNC/AUI */
PCNET32_PORT_AUI, /* 2 AUI/BNC */
PCNET32_PORT_ASEL, /* 3 not supported */
PCNET32_PORT_10BT | PCNET32_PORT_FD, /* 4 10baseT-FD */
PCNET32_PORT_ASEL, /* 5 not supported */
PCNET32_PORT_ASEL, /* 6 not supported */
PCNET32_PORT_ASEL, /* 7 not supported */
PCNET32_PORT_ASEL, /* 8 not supported */
PCNET32_PORT_MII, /* 9 MII 10baseT */
PCNET32_PORT_MII | PCNET32_PORT_FD, /* 10 MII 10baseT-FD */
PCNET32_PORT_MII, /* 11 MII (autosel) */
PCNET32_PORT_10BT, /* 12 10BaseT */
PCNET32_PORT_MII | PCNET32_PORT_100, /* 13 MII 100BaseTx */
/* 14 MII 100BaseTx-FD */
PCNET32_PORT_MII | PCNET32_PORT_100 | PCNET32_PORT_FD,
PCNET32_PORT_ASEL /* 15 not supported */
};
static const char pcnet32_gstrings_test[][ETH_GSTRING_LEN] = {
"Loopback test (offline)"
};
#define PCNET32_TEST_LEN ARRAY_SIZE(pcnet32_gstrings_test)
#define PCNET32_NUM_REGS 136
#define MAX_UNITS 8 /* More are supported, limit only on options */
static int options[MAX_UNITS];
static int full_duplex[MAX_UNITS];
static int homepna[MAX_UNITS];
/*
* Theory of Operation
*
* This driver uses the same software structure as the normal lance
* driver. So look for a verbose description in lance.c. The differences
* to the normal lance driver is the use of the 32bit mode of PCnet32
* and PCnetPCI chips. Because these chips are 32bit chips, there is no
* 16MB limitation and we don't need bounce buffers.
*/
/*
* Set the number of Tx and Rx buffers, using Log_2(# buffers).
* Reasonable default values are 4 Tx buffers, and 16 Rx buffers.
* That translates to 2 (4 == 2^^2) and 4 (16 == 2^^4).
*/
#ifndef PCNET32_LOG_TX_BUFFERS
#define PCNET32_LOG_TX_BUFFERS 4
#define PCNET32_LOG_RX_BUFFERS 5
#define PCNET32_LOG_MAX_TX_BUFFERS 9 /* 2^9 == 512 */
#define PCNET32_LOG_MAX_RX_BUFFERS 9
#endif
#define TX_RING_SIZE (1 << (PCNET32_LOG_TX_BUFFERS))
#define TX_MAX_RING_SIZE (1 << (PCNET32_LOG_MAX_TX_BUFFERS))
#define RX_RING_SIZE (1 << (PCNET32_LOG_RX_BUFFERS))
#define RX_MAX_RING_SIZE (1 << (PCNET32_LOG_MAX_RX_BUFFERS))
#define PKT_BUF_SKB 1544
/* actual buffer length after being aligned */
#define PKT_BUF_SIZE (PKT_BUF_SKB - NET_IP_ALIGN)
/* chip wants twos complement of the (aligned) buffer length */
#define NEG_BUF_SIZE (NET_IP_ALIGN - PKT_BUF_SKB)
/* Offsets from base I/O address. */
#define PCNET32_WIO_RDP 0x10
#define PCNET32_WIO_RAP 0x12
#define PCNET32_WIO_RESET 0x14
#define PCNET32_WIO_BDP 0x16
#define PCNET32_DWIO_RDP 0x10
#define PCNET32_DWIO_RAP 0x14
#define PCNET32_DWIO_RESET 0x18
#define PCNET32_DWIO_BDP 0x1C
#define PCNET32_TOTAL_SIZE 0x20
#define CSR0 0
#define CSR0_INIT 0x1
#define CSR0_START 0x2
#define CSR0_STOP 0x4
#define CSR0_TXPOLL 0x8
#define CSR0_INTEN 0x40
#define CSR0_IDON 0x0100
#define CSR0_NORMAL (CSR0_START | CSR0_INTEN)
#define PCNET32_INIT_LOW 1
#define PCNET32_INIT_HIGH 2
#define CSR3 3
#define CSR4 4
#define CSR5 5
#define CSR5_SUSPEND 0x0001
#define CSR15 15
#define PCNET32_MC_FILTER 8
#define PCNET32_79C970A 0x2621
/* The PCNET32 Rx and Tx ring descriptors. */
struct pcnet32_rx_head {
__le32 base;
__le16 buf_length; /* two`s complement of length */
__le16 status;
__le32 msg_length;
__le32 reserved;
};
struct pcnet32_tx_head {
__le32 base;
__le16 length; /* two`s complement of length */
__le16 status;
__le32 misc;
__le32 reserved;
};
/* The PCNET32 32-Bit initialization block, described in databook. */
struct pcnet32_init_block {
__le16 mode;
__le16 tlen_rlen;
u8 phys_addr[6];
__le16 reserved;
__le32 filter[2];
/* Receive and transmit ring base, along with extra bits. */
__le32 rx_ring;
__le32 tx_ring;
};
/* PCnet32 access functions */
struct pcnet32_access {
u16 (*read_csr) (unsigned long, int);
void (*write_csr) (unsigned long, int, u16);
u16 (*read_bcr) (unsigned long, int);
void (*write_bcr) (unsigned long, int, u16);
u16 (*read_rap) (unsigned long);
void (*write_rap) (unsigned long, u16);
void (*reset) (unsigned long);
};
/*
* The first field of pcnet32_private is read by the ethernet device
* so the structure should be allocated using pci_alloc_consistent().
*/
struct pcnet32_private {
struct pcnet32_init_block *init_block;
/* The Tx and Rx ring entries must be aligned on 16-byte boundaries in 32bit mode. */
struct pcnet32_rx_head *rx_ring;
struct pcnet32_tx_head *tx_ring;
dma_addr_t init_dma_addr;/* DMA address of beginning of the init block,
returned by pci_alloc_consistent */
struct pci_dev *pci_dev;
const char *name;
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
struct sk_buff **tx_skbuff;
struct sk_buff **rx_skbuff;
dma_addr_t *tx_dma_addr;
dma_addr_t *rx_dma_addr;
struct pcnet32_access a;
spinlock_t lock; /* Guard lock */
unsigned int cur_rx, cur_tx; /* The next free ring entry */
unsigned int rx_ring_size; /* current rx ring size */
unsigned int tx_ring_size; /* current tx ring size */
unsigned int rx_mod_mask; /* rx ring modular mask */
unsigned int tx_mod_mask; /* tx ring modular mask */
unsigned short rx_len_bits;
unsigned short tx_len_bits;
dma_addr_t rx_ring_dma_addr;
dma_addr_t tx_ring_dma_addr;
unsigned int dirty_rx, /* ring entries to be freed. */
dirty_tx;
struct net_device *dev;
struct napi_struct napi;
char tx_full;
char phycount; /* number of phys found */
int options;
unsigned int shared_irq:1, /* shared irq possible */
dxsuflo:1, /* disable transmit stop on uflo */
mii:1; /* mii port available */
struct net_device *next;
struct mii_if_info mii_if;
struct timer_list watchdog_timer;
struct timer_list blink_timer;
u32 msg_enable; /* debug message level */
/* each bit indicates an available PHY */
u32 phymask;
unsigned short chip_version; /* which variant this is */
};
static int pcnet32_probe_pci(struct pci_dev *, const struct pci_device_id *);
static int pcnet32_probe1(unsigned long, int, struct pci_dev *);
static int pcnet32_open(struct net_device *);
static int pcnet32_init_ring(struct net_device *);
static int pcnet32_start_xmit(struct sk_buff *, struct net_device *);
static void pcnet32_tx_timeout(struct net_device *dev);
static irqreturn_t pcnet32_interrupt(int, void *);
static int pcnet32_close(struct net_device *);
static struct net_device_stats *pcnet32_get_stats(struct net_device *);
static void pcnet32_load_multicast(struct net_device *dev);
static void pcnet32_set_multicast_list(struct net_device *);
static int pcnet32_ioctl(struct net_device *, struct ifreq *, int);
static void pcnet32_watchdog(struct net_device *);
static int mdio_read(struct net_device *dev, int phy_id, int reg_num);
static void mdio_write(struct net_device *dev, int phy_id, int reg_num,
int val);
static void pcnet32_restart(struct net_device *dev, unsigned int csr0_bits);
static void pcnet32_ethtool_test(struct net_device *dev,
struct ethtool_test *eth_test, u64 * data);
static int pcnet32_loopback_test(struct net_device *dev, uint64_t * data1);
static int pcnet32_phys_id(struct net_device *dev, u32 data);
static void pcnet32_led_blink_callback(struct net_device *dev);
static int pcnet32_get_regs_len(struct net_device *dev);
static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *ptr);
static void pcnet32_purge_tx_ring(struct net_device *dev);
static int pcnet32_alloc_ring(struct net_device *dev, const char *name);
static void pcnet32_free_ring(struct net_device *dev);
static void pcnet32_check_media(struct net_device *dev, int verbose);
static u16 pcnet32_wio_read_csr(unsigned long addr, int index)
{
outw(index, addr + PCNET32_WIO_RAP);
return inw(addr + PCNET32_WIO_RDP);
}
static void pcnet32_wio_write_csr(unsigned long addr, int index, u16 val)
{
outw(index, addr + PCNET32_WIO_RAP);
outw(val, addr + PCNET32_WIO_RDP);
}
static u16 pcnet32_wio_read_bcr(unsigned long addr, int index)
{
outw(index, addr + PCNET32_WIO_RAP);
return inw(addr + PCNET32_WIO_BDP);
}
static void pcnet32_wio_write_bcr(unsigned long addr, int index, u16 val)
{
outw(index, addr + PCNET32_WIO_RAP);
outw(val, addr + PCNET32_WIO_BDP);
}
static u16 pcnet32_wio_read_rap(unsigned long addr)
{
return inw(addr + PCNET32_WIO_RAP);
}
static void pcnet32_wio_write_rap(unsigned long addr, u16 val)
{
outw(val, addr + PCNET32_WIO_RAP);
}
static void pcnet32_wio_reset(unsigned long addr)
{
inw(addr + PCNET32_WIO_RESET);
}
static int pcnet32_wio_check(unsigned long addr)
{
outw(88, addr + PCNET32_WIO_RAP);
return (inw(addr + PCNET32_WIO_RAP) == 88);
}
static struct pcnet32_access pcnet32_wio = {
.read_csr = pcnet32_wio_read_csr,
.write_csr = pcnet32_wio_write_csr,
.read_bcr = pcnet32_wio_read_bcr,
.write_bcr = pcnet32_wio_write_bcr,
.read_rap = pcnet32_wio_read_rap,
.write_rap = pcnet32_wio_write_rap,
.reset = pcnet32_wio_reset
};
static u16 pcnet32_dwio_read_csr(unsigned long addr, int index)
{
outl(index, addr + PCNET32_DWIO_RAP);
return (inl(addr + PCNET32_DWIO_RDP) & 0xffff);
}
static void pcnet32_dwio_write_csr(unsigned long addr, int index, u16 val)
{
outl(index, addr + PCNET32_DWIO_RAP);
outl(val, addr + PCNET32_DWIO_RDP);
}
static u16 pcnet32_dwio_read_bcr(unsigned long addr, int index)
{
outl(index, addr + PCNET32_DWIO_RAP);
return (inl(addr + PCNET32_DWIO_BDP) & 0xffff);
}
static void pcnet32_dwio_write_bcr(unsigned long addr, int index, u16 val)
{
outl(index, addr + PCNET32_DWIO_RAP);
outl(val, addr + PCNET32_DWIO_BDP);
}
static u16 pcnet32_dwio_read_rap(unsigned long addr)
{
return (inl(addr + PCNET32_DWIO_RAP) & 0xffff);
}
static void pcnet32_dwio_write_rap(unsigned long addr, u16 val)
{
outl(val, addr + PCNET32_DWIO_RAP);
}
static void pcnet32_dwio_reset(unsigned long addr)
{
inl(addr + PCNET32_DWIO_RESET);
}
static int pcnet32_dwio_check(unsigned long addr)
{
outl(88, addr + PCNET32_DWIO_RAP);
return ((inl(addr + PCNET32_DWIO_RAP) & 0xffff) == 88);
}
static struct pcnet32_access pcnet32_dwio = {
.read_csr = pcnet32_dwio_read_csr,
.write_csr = pcnet32_dwio_write_csr,
.read_bcr = pcnet32_dwio_read_bcr,
.write_bcr = pcnet32_dwio_write_bcr,
.read_rap = pcnet32_dwio_read_rap,
.write_rap = pcnet32_dwio_write_rap,
.reset = pcnet32_dwio_reset
};
static void pcnet32_netif_stop(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
dev->trans_start = jiffies;
napi_disable(&lp->napi);
netif_tx_disable(dev);
}
static void pcnet32_netif_start(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
ulong ioaddr = dev->base_addr;
u16 val;
netif_wake_queue(dev);
val = lp->a.read_csr(ioaddr, CSR3);
val &= 0x00ff;
lp->a.write_csr(ioaddr, CSR3, val);
napi_enable(&lp->napi);
}
/*
* Allocate space for the new sized tx ring.
* Free old resources
* Save new resources.
* Any failure keeps old resources.
* Must be called with lp->lock held.
*/
static void pcnet32_realloc_tx_ring(struct net_device *dev,
struct pcnet32_private *lp,
unsigned int size)
{
dma_addr_t new_ring_dma_addr;
dma_addr_t *new_dma_addr_list;
struct pcnet32_tx_head *new_tx_ring;
struct sk_buff **new_skb_list;
pcnet32_purge_tx_ring(dev);
new_tx_ring = pci_alloc_consistent(lp->pci_dev,
sizeof(struct pcnet32_tx_head) *
(1 << size),
&new_ring_dma_addr);
if (new_tx_ring == NULL) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR
"%s: Consistent memory allocation failed.\n",
dev->name);
return;
}
memset(new_tx_ring, 0, sizeof(struct pcnet32_tx_head) * (1 << size));
new_dma_addr_list = kcalloc((1 << size), sizeof(dma_addr_t),
GFP_ATOMIC);
if (!new_dma_addr_list) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR
"%s: Memory allocation failed.\n", dev->name);
goto free_new_tx_ring;
}
new_skb_list = kcalloc((1 << size), sizeof(struct sk_buff *),
GFP_ATOMIC);
if (!new_skb_list) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR
"%s: Memory allocation failed.\n", dev->name);
goto free_new_lists;
}
kfree(lp->tx_skbuff);
kfree(lp->tx_dma_addr);
pci_free_consistent(lp->pci_dev,
sizeof(struct pcnet32_tx_head) *
lp->tx_ring_size, lp->tx_ring,
lp->tx_ring_dma_addr);
lp->tx_ring_size = (1 << size);
lp->tx_mod_mask = lp->tx_ring_size - 1;
lp->tx_len_bits = (size << 12);
lp->tx_ring = new_tx_ring;
lp->tx_ring_dma_addr = new_ring_dma_addr;
lp->tx_dma_addr = new_dma_addr_list;
lp->tx_skbuff = new_skb_list;
return;
free_new_lists:
kfree(new_dma_addr_list);
free_new_tx_ring:
pci_free_consistent(lp->pci_dev,
sizeof(struct pcnet32_tx_head) *
(1 << size),
new_tx_ring,
new_ring_dma_addr);
return;
}
/*
* Allocate space for the new sized rx ring.
* Re-use old receive buffers.
* alloc extra buffers
* free unneeded buffers
* free unneeded buffers
* Save new resources.
* Any failure keeps old resources.
* Must be called with lp->lock held.
*/
static void pcnet32_realloc_rx_ring(struct net_device *dev,
struct pcnet32_private *lp,
unsigned int size)
{
dma_addr_t new_ring_dma_addr;
dma_addr_t *new_dma_addr_list;
struct pcnet32_rx_head *new_rx_ring;
struct sk_buff **new_skb_list;
int new, overlap;
new_rx_ring = pci_alloc_consistent(lp->pci_dev,
sizeof(struct pcnet32_rx_head) *
(1 << size),
&new_ring_dma_addr);
if (new_rx_ring == NULL) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR
"%s: Consistent memory allocation failed.\n",
dev->name);
return;
}
memset(new_rx_ring, 0, sizeof(struct pcnet32_rx_head) * (1 << size));
new_dma_addr_list = kcalloc((1 << size), sizeof(dma_addr_t),
GFP_ATOMIC);
if (!new_dma_addr_list) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR
"%s: Memory allocation failed.\n", dev->name);
goto free_new_rx_ring;
}
new_skb_list = kcalloc((1 << size), sizeof(struct sk_buff *),
GFP_ATOMIC);
if (!new_skb_list) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR
"%s: Memory allocation failed.\n", dev->name);
goto free_new_lists;
}
/* first copy the current receive buffers */
overlap = min(size, lp->rx_ring_size);
for (new = 0; new < overlap; new++) {
new_rx_ring[new] = lp->rx_ring[new];
new_dma_addr_list[new] = lp->rx_dma_addr[new];
new_skb_list[new] = lp->rx_skbuff[new];
}
/* now allocate any new buffers needed */
for (; new < size; new++ ) {
struct sk_buff *rx_skbuff;
new_skb_list[new] = dev_alloc_skb(PKT_BUF_SKB);
if (!(rx_skbuff = new_skb_list[new])) {
/* keep the original lists and buffers */
if (netif_msg_drv(lp))
printk(KERN_ERR
"%s: pcnet32_realloc_rx_ring dev_alloc_skb failed.\n",
dev->name);
goto free_all_new;
}
skb_reserve(rx_skbuff, NET_IP_ALIGN);
new_dma_addr_list[new] =
pci_map_single(lp->pci_dev, rx_skbuff->data,
PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
new_rx_ring[new].base = cpu_to_le32(new_dma_addr_list[new]);
new_rx_ring[new].buf_length = cpu_to_le16(NEG_BUF_SIZE);
new_rx_ring[new].status = cpu_to_le16(0x8000);
}
/* and free any unneeded buffers */
for (; new < lp->rx_ring_size; new++) {
if (lp->rx_skbuff[new]) {
pci_unmap_single(lp->pci_dev, lp->rx_dma_addr[new],
PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
dev_kfree_skb(lp->rx_skbuff[new]);
}
}
kfree(lp->rx_skbuff);
kfree(lp->rx_dma_addr);
pci_free_consistent(lp->pci_dev,
sizeof(struct pcnet32_rx_head) *
lp->rx_ring_size, lp->rx_ring,
lp->rx_ring_dma_addr);
lp->rx_ring_size = (1 << size);
lp->rx_mod_mask = lp->rx_ring_size - 1;
lp->rx_len_bits = (size << 4);
lp->rx_ring = new_rx_ring;
lp->rx_ring_dma_addr = new_ring_dma_addr;
lp->rx_dma_addr = new_dma_addr_list;
lp->rx_skbuff = new_skb_list;
return;
free_all_new:
for (; --new >= lp->rx_ring_size; ) {
if (new_skb_list[new]) {
pci_unmap_single(lp->pci_dev, new_dma_addr_list[new],
PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
dev_kfree_skb(new_skb_list[new]);
}
}
kfree(new_skb_list);
free_new_lists:
kfree(new_dma_addr_list);
free_new_rx_ring:
pci_free_consistent(lp->pci_dev,
sizeof(struct pcnet32_rx_head) *
(1 << size),
new_rx_ring,
new_ring_dma_addr);
return;
}
static void pcnet32_purge_rx_ring(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
int i;
/* free all allocated skbuffs */
for (i = 0; i < lp->rx_ring_size; i++) {
lp->rx_ring[i].status = 0; /* CPU owns buffer */
wmb(); /* Make sure adapter sees owner change */
if (lp->rx_skbuff[i]) {
pci_unmap_single(lp->pci_dev, lp->rx_dma_addr[i],
PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(lp->rx_skbuff[i]);
}
lp->rx_skbuff[i] = NULL;
lp->rx_dma_addr[i] = 0;
}
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void pcnet32_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
pcnet32_interrupt(0, dev);
enable_irq(dev->irq);
}
#endif
static int pcnet32_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
int r = -EOPNOTSUPP;
if (lp->mii) {
spin_lock_irqsave(&lp->lock, flags);
mii_ethtool_gset(&lp->mii_if, cmd);
spin_unlock_irqrestore(&lp->lock, flags);
r = 0;
}
return r;
}
static int pcnet32_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
int r = -EOPNOTSUPP;
if (lp->mii) {
spin_lock_irqsave(&lp->lock, flags);
r = mii_ethtool_sset(&lp->mii_if, cmd);
spin_unlock_irqrestore(&lp->lock, flags);
}
return r;
}
static void pcnet32_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct pcnet32_private *lp = netdev_priv(dev);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
if (lp->pci_dev)
strcpy(info->bus_info, pci_name(lp->pci_dev));
else
sprintf(info->bus_info, "VLB 0x%lx", dev->base_addr);
}
static u32 pcnet32_get_link(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
int r;
spin_lock_irqsave(&lp->lock, flags);
if (lp->mii) {
r = mii_link_ok(&lp->mii_if);
} else if (lp->chip_version >= PCNET32_79C970A) {
ulong ioaddr = dev->base_addr; /* card base I/O address */
r = (lp->a.read_bcr(ioaddr, 4) != 0xc0);
} else { /* can not detect link on really old chips */
r = 1;
}
spin_unlock_irqrestore(&lp->lock, flags);
return r;
}
static u32 pcnet32_get_msglevel(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
return lp->msg_enable;
}
static void pcnet32_set_msglevel(struct net_device *dev, u32 value)
{
struct pcnet32_private *lp = netdev_priv(dev);
lp->msg_enable = value;
}
static int pcnet32_nway_reset(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
int r = -EOPNOTSUPP;
if (lp->mii) {
spin_lock_irqsave(&lp->lock, flags);
r = mii_nway_restart(&lp->mii_if);
spin_unlock_irqrestore(&lp->lock, flags);
}
return r;
}
static void pcnet32_get_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct pcnet32_private *lp = netdev_priv(dev);
ering->tx_max_pending = TX_MAX_RING_SIZE;
ering->tx_pending = lp->tx_ring_size;
ering->rx_max_pending = RX_MAX_RING_SIZE;
ering->rx_pending = lp->rx_ring_size;
}
static int pcnet32_set_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
unsigned int size;
ulong ioaddr = dev->base_addr;
int i;
if (ering->rx_mini_pending || ering->rx_jumbo_pending)
return -EINVAL;
if (netif_running(dev))
pcnet32_netif_stop(dev);
spin_lock_irqsave(&lp->lock, flags);
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); /* stop the chip */
size = min(ering->tx_pending, (unsigned int)TX_MAX_RING_SIZE);
/* set the minimum ring size to 4, to allow the loopback test to work
* unchanged.
*/
for (i = 2; i <= PCNET32_LOG_MAX_TX_BUFFERS; i++) {
if (size <= (1 << i))
break;
}
if ((1 << i) != lp->tx_ring_size)
pcnet32_realloc_tx_ring(dev, lp, i);
size = min(ering->rx_pending, (unsigned int)RX_MAX_RING_SIZE);
for (i = 2; i <= PCNET32_LOG_MAX_RX_BUFFERS; i++) {
if (size <= (1 << i))
break;
}
if ((1 << i) != lp->rx_ring_size)
pcnet32_realloc_rx_ring(dev, lp, i);
lp->napi.weight = lp->rx_ring_size / 2;
if (netif_running(dev)) {
pcnet32_netif_start(dev);
pcnet32_restart(dev, CSR0_NORMAL);
}
spin_unlock_irqrestore(&lp->lock, flags);
if (netif_msg_drv(lp))
printk(KERN_INFO
"%s: Ring Param Settings: RX: %d, TX: %d\n", dev->name,
lp->rx_ring_size, lp->tx_ring_size);
return 0;
}
static void pcnet32_get_strings(struct net_device *dev, u32 stringset,
u8 * data)
{
memcpy(data, pcnet32_gstrings_test, sizeof(pcnet32_gstrings_test));
}
static int pcnet32_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_TEST:
return PCNET32_TEST_LEN;
default:
return -EOPNOTSUPP;
}
}
static void pcnet32_ethtool_test(struct net_device *dev,
struct ethtool_test *test, u64 * data)
{
struct pcnet32_private *lp = netdev_priv(dev);
int rc;
if (test->flags == ETH_TEST_FL_OFFLINE) {
rc = pcnet32_loopback_test(dev, data);
if (rc) {
if (netif_msg_hw(lp))
printk(KERN_DEBUG "%s: Loopback test failed.\n",
dev->name);
test->flags |= ETH_TEST_FL_FAILED;
} else if (netif_msg_hw(lp))
printk(KERN_DEBUG "%s: Loopback test passed.\n",
dev->name);
} else if (netif_msg_hw(lp))
printk(KERN_DEBUG
"%s: No tests to run (specify 'Offline' on ethtool).",
dev->name);
} /* end pcnet32_ethtool_test */
static int pcnet32_loopback_test(struct net_device *dev, uint64_t * data1)
{
struct pcnet32_private *lp = netdev_priv(dev);
struct pcnet32_access *a = &lp->a; /* access to registers */
ulong ioaddr = dev->base_addr; /* card base I/O address */
struct sk_buff *skb; /* sk buff */
int x, i; /* counters */
int numbuffs = 4; /* number of TX/RX buffers and descs */
u16 status = 0x8300; /* TX ring status */
__le16 teststatus; /* test of ring status */
int rc; /* return code */
int size; /* size of packets */
unsigned char *packet; /* source packet data */
static const int data_len = 60; /* length of source packets */
unsigned long flags;
unsigned long ticks;
rc = 1; /* default to fail */
if (netif_running(dev))
pcnet32_netif_stop(dev);
spin_lock_irqsave(&lp->lock, flags);
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); /* stop the chip */
numbuffs = min(numbuffs, (int)min(lp->rx_ring_size, lp->tx_ring_size));
/* Reset the PCNET32 */
lp->a.reset(ioaddr);
lp->a.write_csr(ioaddr, CSR4, 0x0915); /* auto tx pad */
/* switch pcnet32 to 32bit mode */
lp->a.write_bcr(ioaddr, 20, 2);
/* purge & init rings but don't actually restart */
pcnet32_restart(dev, 0x0000);
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); /* Set STOP bit */
/* Initialize Transmit buffers. */
size = data_len + 15;
for (x = 0; x < numbuffs; x++) {
if (!(skb = dev_alloc_skb(size))) {
if (netif_msg_hw(lp))
printk(KERN_DEBUG
"%s: Cannot allocate skb at line: %d!\n",
dev->name, __LINE__);
goto clean_up;
} else {
packet = skb->data;
skb_put(skb, size); /* create space for data */
lp->tx_skbuff[x] = skb;
lp->tx_ring[x].length = cpu_to_le16(-skb->len);
lp->tx_ring[x].misc = 0;
/* put DA and SA into the skb */
for (i = 0; i < 6; i++)
*packet++ = dev->dev_addr[i];
for (i = 0; i < 6; i++)
*packet++ = dev->dev_addr[i];
/* type */
*packet++ = 0x08;
*packet++ = 0x06;
/* packet number */
*packet++ = x;
/* fill packet with data */
for (i = 0; i < data_len; i++)
*packet++ = i;
lp->tx_dma_addr[x] =
pci_map_single(lp->pci_dev, skb->data, skb->len,
PCI_DMA_TODEVICE);
lp->tx_ring[x].base = cpu_to_le32(lp->tx_dma_addr[x]);
wmb(); /* Make sure owner changes after all others are visible */
lp->tx_ring[x].status = cpu_to_le16(status);
}
}
x = a->read_bcr(ioaddr, 32); /* set internal loopback in BCR32 */
a->write_bcr(ioaddr, 32, x | 0x0002);
/* set int loopback in CSR15 */
x = a->read_csr(ioaddr, CSR15) & 0xfffc;
lp->a.write_csr(ioaddr, CSR15, x | 0x0044);
teststatus = cpu_to_le16(0x8000);
lp->a.write_csr(ioaddr, CSR0, CSR0_START); /* Set STRT bit */
/* Check status of descriptors */
for (x = 0; x < numbuffs; x++) {
ticks = 0;
rmb();
while ((lp->rx_ring[x].status & teststatus) && (ticks < 200)) {
spin_unlock_irqrestore(&lp->lock, flags);
msleep(1);
spin_lock_irqsave(&lp->lock, flags);
rmb();
ticks++;
}
if (ticks == 200) {
if (netif_msg_hw(lp))
printk("%s: Desc %d failed to reset!\n",
dev->name, x);
break;
}
}
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP); /* Set STOP bit */
wmb();
if (netif_msg_hw(lp) && netif_msg_pktdata(lp)) {
printk(KERN_DEBUG "%s: RX loopback packets:\n", dev->name);
for (x = 0; x < numbuffs; x++) {
printk(KERN_DEBUG "%s: Packet %d:\n", dev->name, x);
skb = lp->rx_skbuff[x];
for (i = 0; i < size; i++) {
printk("%02x ", *(skb->data + i));
}
printk("\n");
}
}
x = 0;
rc = 0;
while (x < numbuffs && !rc) {
skb = lp->rx_skbuff[x];
packet = lp->tx_skbuff[x]->data;
for (i = 0; i < size; i++) {
if (*(skb->data + i) != packet[i]) {
if (netif_msg_hw(lp))
printk(KERN_DEBUG
"%s: Error in compare! %2x - %02x %02x\n",
dev->name, i, *(skb->data + i),
packet[i]);
rc = 1;
break;
}
}
x++;
}
clean_up:
*data1 = rc;
pcnet32_purge_tx_ring(dev);
x = a->read_csr(ioaddr, CSR15);
a->write_csr(ioaddr, CSR15, (x & ~0x0044)); /* reset bits 6 and 2 */
x = a->read_bcr(ioaddr, 32); /* reset internal loopback */
a->write_bcr(ioaddr, 32, (x & ~0x0002));
if (netif_running(dev)) {
pcnet32_netif_start(dev);
pcnet32_restart(dev, CSR0_NORMAL);
} else {
pcnet32_purge_rx_ring(dev);
lp->a.write_bcr(ioaddr, 20, 4); /* return to 16bit mode */
}
spin_unlock_irqrestore(&lp->lock, flags);
return (rc);
} /* end pcnet32_loopback_test */
static void pcnet32_led_blink_callback(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
struct pcnet32_access *a = &lp->a;
ulong ioaddr = dev->base_addr;
unsigned long flags;
int i;
spin_lock_irqsave(&lp->lock, flags);
for (i = 4; i < 8; i++) {
a->write_bcr(ioaddr, i, a->read_bcr(ioaddr, i) ^ 0x4000);
}
spin_unlock_irqrestore(&lp->lock, flags);
mod_timer(&lp->blink_timer, PCNET32_BLINK_TIMEOUT);
}
static int pcnet32_phys_id(struct net_device *dev, u32 data)
{
struct pcnet32_private *lp = netdev_priv(dev);
struct pcnet32_access *a = &lp->a;
ulong ioaddr = dev->base_addr;
unsigned long flags;
int i, regs[4];
if (!lp->blink_timer.function) {
init_timer(&lp->blink_timer);
lp->blink_timer.function = (void *)pcnet32_led_blink_callback;
lp->blink_timer.data = (unsigned long)dev;
}
/* Save the current value of the bcrs */
spin_lock_irqsave(&lp->lock, flags);
for (i = 4; i < 8; i++) {
regs[i - 4] = a->read_bcr(ioaddr, i);
}
spin_unlock_irqrestore(&lp->lock, flags);
mod_timer(&lp->blink_timer, jiffies);
set_current_state(TASK_INTERRUPTIBLE);
/* AV: the limit here makes no sense whatsoever */
if ((!data) || (data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ)))
data = (u32) (MAX_SCHEDULE_TIMEOUT / HZ);
msleep_interruptible(data * 1000);
del_timer_sync(&lp->blink_timer);
/* Restore the original value of the bcrs */
spin_lock_irqsave(&lp->lock, flags);
for (i = 4; i < 8; i++) {
a->write_bcr(ioaddr, i, regs[i - 4]);
}
spin_unlock_irqrestore(&lp->lock, flags);
return 0;
}
/*
* lp->lock must be held.
*/
static int pcnet32_suspend(struct net_device *dev, unsigned long *flags,
int can_sleep)
{
int csr5;
struct pcnet32_private *lp = netdev_priv(dev);
struct pcnet32_access *a = &lp->a;
ulong ioaddr = dev->base_addr;
int ticks;
/* really old chips have to be stopped. */
if (lp->chip_version < PCNET32_79C970A)
return 0;
/* set SUSPEND (SPND) - CSR5 bit 0 */
csr5 = a->read_csr(ioaddr, CSR5);
a->write_csr(ioaddr, CSR5, csr5 | CSR5_SUSPEND);
/* poll waiting for bit to be set */
ticks = 0;
while (!(a->read_csr(ioaddr, CSR5) & CSR5_SUSPEND)) {
spin_unlock_irqrestore(&lp->lock, *flags);
if (can_sleep)
msleep(1);
else
mdelay(1);
spin_lock_irqsave(&lp->lock, *flags);
ticks++;
if (ticks > 200) {
if (netif_msg_hw(lp))
printk(KERN_DEBUG
"%s: Error getting into suspend!\n",
dev->name);
return 0;
}
}
return 1;
}
/*
* process one receive descriptor entry
*/
static void pcnet32_rx_entry(struct net_device *dev,
struct pcnet32_private *lp,
struct pcnet32_rx_head *rxp,
int entry)
{
int status = (short)le16_to_cpu(rxp->status) >> 8;
int rx_in_place = 0;
struct sk_buff *skb;
short pkt_len;
if (status != 0x03) { /* There was an error. */
/*
* There is a tricky error noted by John Murphy,
* <murf@perftech.com> to Russ Nelson: Even with full-sized
* buffers it's possible for a jabber packet to use two
* buffers, with only the last correctly noting the error.
*/
if (status & 0x01) /* Only count a general error at the */
dev->stats.rx_errors++; /* end of a packet. */
if (status & 0x20)
dev->stats.rx_frame_errors++;
if (status & 0x10)
dev->stats.rx_over_errors++;
if (status & 0x08)
dev->stats.rx_crc_errors++;
if (status & 0x04)
dev->stats.rx_fifo_errors++;
return;
}
pkt_len = (le32_to_cpu(rxp->msg_length) & 0xfff) - 4;
/* Discard oversize frames. */
if (unlikely(pkt_len > PKT_BUF_SIZE)) {
if (netif_msg_drv(lp))
printk(KERN_ERR "%s: Impossible packet size %d!\n",
dev->name, pkt_len);
dev->stats.rx_errors++;
return;
}
if (pkt_len < 60) {
if (netif_msg_rx_err(lp))
printk(KERN_ERR "%s: Runt packet!\n", dev->name);
dev->stats.rx_errors++;
return;
}
if (pkt_len > rx_copybreak) {
struct sk_buff *newskb;
if ((newskb = dev_alloc_skb(PKT_BUF_SKB))) {
skb_reserve(newskb, NET_IP_ALIGN);
skb = lp->rx_skbuff[entry];
pci_unmap_single(lp->pci_dev,
lp->rx_dma_addr[entry],
PKT_BUF_SIZE,
PCI_DMA_FROMDEVICE);
skb_put(skb, pkt_len);
lp->rx_skbuff[entry] = newskb;
lp->rx_dma_addr[entry] =
pci_map_single(lp->pci_dev,
newskb->data,
PKT_BUF_SIZE,
PCI_DMA_FROMDEVICE);
rxp->base = cpu_to_le32(lp->rx_dma_addr[entry]);
rx_in_place = 1;
} else
skb = NULL;
} else {
skb = dev_alloc_skb(pkt_len + NET_IP_ALIGN);
}
if (skb == NULL) {
if (netif_msg_drv(lp))
printk(KERN_ERR
"%s: Memory squeeze, dropping packet.\n",
dev->name);
dev->stats.rx_dropped++;
return;
}
if (!rx_in_place) {
skb_reserve(skb, NET_IP_ALIGN);
skb_put(skb, pkt_len); /* Make room */
pci_dma_sync_single_for_cpu(lp->pci_dev,
lp->rx_dma_addr[entry],
pkt_len,
PCI_DMA_FROMDEVICE);
skb_copy_to_linear_data(skb,
(unsigned char *)(lp->rx_skbuff[entry]->data),
pkt_len);
pci_dma_sync_single_for_device(lp->pci_dev,
lp->rx_dma_addr[entry],
pkt_len,
PCI_DMA_FROMDEVICE);
}
dev->stats.rx_bytes += skb->len;
skb->protocol = eth_type_trans(skb, dev);
netif_receive_skb(skb);
dev->stats.rx_packets++;
return;
}
static int pcnet32_rx(struct net_device *dev, int budget)
{
struct pcnet32_private *lp = netdev_priv(dev);
int entry = lp->cur_rx & lp->rx_mod_mask;
struct pcnet32_rx_head *rxp = &lp->rx_ring[entry];
int npackets = 0;
/* If we own the next entry, it's a new packet. Send it up. */
while (npackets < budget && (short)le16_to_cpu(rxp->status) >= 0) {
pcnet32_rx_entry(dev, lp, rxp, entry);
npackets += 1;
/*
* The docs say that the buffer length isn't touched, but Andrew
* Boyd of QNX reports that some revs of the 79C965 clear it.
*/
rxp->buf_length = cpu_to_le16(NEG_BUF_SIZE);
wmb(); /* Make sure owner changes after others are visible */
rxp->status = cpu_to_le16(0x8000);
entry = (++lp->cur_rx) & lp->rx_mod_mask;
rxp = &lp->rx_ring[entry];
}
return npackets;
}
static int pcnet32_tx(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned int dirty_tx = lp->dirty_tx;
int delta;
int must_restart = 0;
while (dirty_tx != lp->cur_tx) {
int entry = dirty_tx & lp->tx_mod_mask;
int status = (short)le16_to_cpu(lp->tx_ring[entry].status);
if (status < 0)
break; /* It still hasn't been Txed */
lp->tx_ring[entry].base = 0;
if (status & 0x4000) {
/* There was a major error, log it. */
int err_status = le32_to_cpu(lp->tx_ring[entry].misc);
dev->stats.tx_errors++;
if (netif_msg_tx_err(lp))
printk(KERN_ERR
"%s: Tx error status=%04x err_status=%08x\n",
dev->name, status,
err_status);
if (err_status & 0x04000000)
dev->stats.tx_aborted_errors++;
if (err_status & 0x08000000)
dev->stats.tx_carrier_errors++;
if (err_status & 0x10000000)
dev->stats.tx_window_errors++;
#ifndef DO_DXSUFLO
if (err_status & 0x40000000) {
dev->stats.tx_fifo_errors++;
/* Ackk! On FIFO errors the Tx unit is turned off! */
/* Remove this verbosity later! */
if (netif_msg_tx_err(lp))
printk(KERN_ERR
"%s: Tx FIFO error!\n",
dev->name);
must_restart = 1;
}
#else
if (err_status & 0x40000000) {
dev->stats.tx_fifo_errors++;
if (!lp->dxsuflo) { /* If controller doesn't recover ... */
/* Ackk! On FIFO errors the Tx unit is turned off! */
/* Remove this verbosity later! */
if (netif_msg_tx_err(lp))
printk(KERN_ERR
"%s: Tx FIFO error!\n",
dev->name);
must_restart = 1;
}
}
#endif
} else {
if (status & 0x1800)
dev->stats.collisions++;
dev->stats.tx_packets++;
}
/* We must free the original skb */
if (lp->tx_skbuff[entry]) {
pci_unmap_single(lp->pci_dev,
lp->tx_dma_addr[entry],
lp->tx_skbuff[entry]->
len, PCI_DMA_TODEVICE);
dev_kfree_skb_any(lp->tx_skbuff[entry]);
lp->tx_skbuff[entry] = NULL;
lp->tx_dma_addr[entry] = 0;
}
dirty_tx++;
}
delta = (lp->cur_tx - dirty_tx) & (lp->tx_mod_mask + lp->tx_ring_size);
if (delta > lp->tx_ring_size) {
if (netif_msg_drv(lp))
printk(KERN_ERR
"%s: out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
dev->name, dirty_tx, lp->cur_tx,
lp->tx_full);
dirty_tx += lp->tx_ring_size;
delta -= lp->tx_ring_size;
}
if (lp->tx_full &&
netif_queue_stopped(dev) &&
delta < lp->tx_ring_size - 2) {
/* The ring is no longer full, clear tbusy. */
lp->tx_full = 0;
netif_wake_queue(dev);
}
lp->dirty_tx = dirty_tx;
return must_restart;
}
static int pcnet32_poll(struct napi_struct *napi, int budget)
{
struct pcnet32_private *lp = container_of(napi, struct pcnet32_private, napi);
struct net_device *dev = lp->dev;
unsigned long ioaddr = dev->base_addr;
unsigned long flags;
int work_done;
u16 val;
work_done = pcnet32_rx(dev, budget);
spin_lock_irqsave(&lp->lock, flags);
if (pcnet32_tx(dev)) {
/* reset the chip to clear the error condition, then restart */
lp->a.reset(ioaddr);
lp->a.write_csr(ioaddr, CSR4, 0x0915); /* auto tx pad */
pcnet32_restart(dev, CSR0_START);
netif_wake_queue(dev);
}
spin_unlock_irqrestore(&lp->lock, flags);
if (work_done < budget) {
spin_lock_irqsave(&lp->lock, flags);
__napi_complete(napi);
/* clear interrupt masks */
val = lp->a.read_csr(ioaddr, CSR3);
val &= 0x00ff;
lp->a.write_csr(ioaddr, CSR3, val);
/* Set interrupt enable. */
lp->a.write_csr(ioaddr, CSR0, CSR0_INTEN);
spin_unlock_irqrestore(&lp->lock, flags);
}
return work_done;
}
#define PCNET32_REGS_PER_PHY 32
#define PCNET32_MAX_PHYS 32
static int pcnet32_get_regs_len(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
int j = lp->phycount * PCNET32_REGS_PER_PHY;
return ((PCNET32_NUM_REGS + j) * sizeof(u16));
}
static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *ptr)
{
int i, csr0;
u16 *buff = ptr;
struct pcnet32_private *lp = netdev_priv(dev);
struct pcnet32_access *a = &lp->a;
ulong ioaddr = dev->base_addr;
unsigned long flags;
spin_lock_irqsave(&lp->lock, flags);
csr0 = a->read_csr(ioaddr, CSR0);
if (!(csr0 & CSR0_STOP)) /* If not stopped */
pcnet32_suspend(dev, &flags, 1);
/* read address PROM */
for (i = 0; i < 16; i += 2)
*buff++ = inw(ioaddr + i);
/* read control and status registers */
for (i = 0; i < 90; i++) {
*buff++ = a->read_csr(ioaddr, i);
}
*buff++ = a->read_csr(ioaddr, 112);
*buff++ = a->read_csr(ioaddr, 114);
/* read bus configuration registers */
for (i = 0; i < 30; i++) {
*buff++ = a->read_bcr(ioaddr, i);
}
*buff++ = 0; /* skip bcr30 so as not to hang 79C976 */
for (i = 31; i < 36; i++) {
*buff++ = a->read_bcr(ioaddr, i);
}
/* read mii phy registers */
if (lp->mii) {
int j;
for (j = 0; j < PCNET32_MAX_PHYS; j++) {
if (lp->phymask & (1 << j)) {
for (i = 0; i < PCNET32_REGS_PER_PHY; i++) {
lp->a.write_bcr(ioaddr, 33,
(j << 5) | i);
*buff++ = lp->a.read_bcr(ioaddr, 34);
}
}
}
}
if (!(csr0 & CSR0_STOP)) { /* If not stopped */
int csr5;
/* clear SUSPEND (SPND) - CSR5 bit 0 */
csr5 = a->read_csr(ioaddr, CSR5);
a->write_csr(ioaddr, CSR5, csr5 & (~CSR5_SUSPEND));
}
spin_unlock_irqrestore(&lp->lock, flags);
}
static const struct ethtool_ops pcnet32_ethtool_ops = {
.get_settings = pcnet32_get_settings,
.set_settings = pcnet32_set_settings,
.get_drvinfo = pcnet32_get_drvinfo,
.get_msglevel = pcnet32_get_msglevel,
.set_msglevel = pcnet32_set_msglevel,
.nway_reset = pcnet32_nway_reset,
.get_link = pcnet32_get_link,
.get_ringparam = pcnet32_get_ringparam,
.set_ringparam = pcnet32_set_ringparam,
.get_strings = pcnet32_get_strings,
.self_test = pcnet32_ethtool_test,
.phys_id = pcnet32_phys_id,
.get_regs_len = pcnet32_get_regs_len,
.get_regs = pcnet32_get_regs,
.get_sset_count = pcnet32_get_sset_count,
};
/* only probes for non-PCI devices, the rest are handled by
* pci_register_driver via pcnet32_probe_pci */
static void __devinit pcnet32_probe_vlbus(unsigned int *pcnet32_portlist)
{
unsigned int *port, ioaddr;
/* search for PCnet32 VLB cards at known addresses */
for (port = pcnet32_portlist; (ioaddr = *port); port++) {
if (request_region
(ioaddr, PCNET32_TOTAL_SIZE, "pcnet32_probe_vlbus")) {
/* check if there is really a pcnet chip on that ioaddr */
if ((inb(ioaddr + 14) == 0x57)
&& (inb(ioaddr + 15) == 0x57)) {
pcnet32_probe1(ioaddr, 0, NULL);
} else {
release_region(ioaddr, PCNET32_TOTAL_SIZE);
}
}
}
}
static int __devinit
pcnet32_probe_pci(struct pci_dev *pdev, const struct pci_device_id *ent)
{
unsigned long ioaddr;
int err;
err = pci_enable_device(pdev);
if (err < 0) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX
"failed to enable device -- err=%d\n", err);
return err;
}
pci_set_master(pdev);
ioaddr = pci_resource_start(pdev, 0);
if (!ioaddr) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX
"card has no PCI IO resources, aborting\n");
return -ENODEV;
}
if (!pci_dma_supported(pdev, PCNET32_DMA_MASK)) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX
"architecture does not support 32bit PCI busmaster DMA\n");
return -ENODEV;
}
if (request_region(ioaddr, PCNET32_TOTAL_SIZE, "pcnet32_probe_pci") ==
NULL) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX
"io address range already allocated\n");
return -EBUSY;
}
err = pcnet32_probe1(ioaddr, 1, pdev);
if (err < 0) {
pci_disable_device(pdev);
}
return err;
}
static const struct net_device_ops pcnet32_netdev_ops = {
.ndo_open = pcnet32_open,
.ndo_stop = pcnet32_close,
.ndo_start_xmit = pcnet32_start_xmit,
.ndo_tx_timeout = pcnet32_tx_timeout,
.ndo_get_stats = pcnet32_get_stats,
.ndo_set_multicast_list = pcnet32_set_multicast_list,
.ndo_do_ioctl = pcnet32_ioctl,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = pcnet32_poll_controller,
#endif
};
/* pcnet32_probe1
* Called from both pcnet32_probe_vlbus and pcnet_probe_pci.
* pdev will be NULL when called from pcnet32_probe_vlbus.
*/
static int __devinit
pcnet32_probe1(unsigned long ioaddr, int shared, struct pci_dev *pdev)
{
struct pcnet32_private *lp;
int i, media;
int fdx, mii, fset, dxsuflo;
int chip_version;
char *chipname;
struct net_device *dev;
struct pcnet32_access *a = NULL;
u8 promaddr[6];
int ret = -ENODEV;
/* reset the chip */
pcnet32_wio_reset(ioaddr);
/* NOTE: 16-bit check is first, otherwise some older PCnet chips fail */
if (pcnet32_wio_read_csr(ioaddr, 0) == 4 && pcnet32_wio_check(ioaddr)) {
a = &pcnet32_wio;
} else {
pcnet32_dwio_reset(ioaddr);
if (pcnet32_dwio_read_csr(ioaddr, 0) == 4
&& pcnet32_dwio_check(ioaddr)) {
a = &pcnet32_dwio;
} else
goto err_release_region;
}
chip_version =
a->read_csr(ioaddr, 88) | (a->read_csr(ioaddr, 89) << 16);
if ((pcnet32_debug & NETIF_MSG_PROBE) && (pcnet32_debug & NETIF_MSG_HW))
printk(KERN_INFO " PCnet chip version is %#x.\n",
chip_version);
if ((chip_version & 0xfff) != 0x003) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_INFO PFX "Unsupported chip version.\n");
goto err_release_region;
}
/* initialize variables */
fdx = mii = fset = dxsuflo = 0;
chip_version = (chip_version >> 12) & 0xffff;
switch (chip_version) {
case 0x2420:
chipname = "PCnet/PCI 79C970"; /* PCI */
break;
case 0x2430:
if (shared)
chipname = "PCnet/PCI 79C970"; /* 970 gives the wrong chip id back */
else
chipname = "PCnet/32 79C965"; /* 486/VL bus */
break;
case 0x2621:
chipname = "PCnet/PCI II 79C970A"; /* PCI */
fdx = 1;
break;
case 0x2623:
chipname = "PCnet/FAST 79C971"; /* PCI */
fdx = 1;
mii = 1;
fset = 1;
break;
case 0x2624:
chipname = "PCnet/FAST+ 79C972"; /* PCI */
fdx = 1;
mii = 1;
fset = 1;
break;
case 0x2625:
chipname = "PCnet/FAST III 79C973"; /* PCI */
fdx = 1;
mii = 1;
break;
case 0x2626:
chipname = "PCnet/Home 79C978"; /* PCI */
fdx = 1;
/*
* This is based on specs published at www.amd.com. This section
* assumes that a card with a 79C978 wants to go into standard
* ethernet mode. The 79C978 can also go into 1Mb HomePNA mode,
* and the module option homepna=1 can select this instead.
*/
media = a->read_bcr(ioaddr, 49);
media &= ~3; /* default to 10Mb ethernet */
if (cards_found < MAX_UNITS && homepna[cards_found])
media |= 1; /* switch to home wiring mode */
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_DEBUG PFX "media set to %sMbit mode.\n",
(media & 1) ? "1" : "10");
a->write_bcr(ioaddr, 49, media);
break;
case 0x2627:
chipname = "PCnet/FAST III 79C975"; /* PCI */
fdx = 1;
mii = 1;
break;
case 0x2628:
chipname = "PCnet/PRO 79C976";
fdx = 1;
mii = 1;
break;
default:
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_INFO PFX
"PCnet version %#x, no PCnet32 chip.\n",
chip_version);
goto err_release_region;
}
/*
* On selected chips turn on the BCR18:NOUFLO bit. This stops transmit
* starting until the packet is loaded. Strike one for reliability, lose
* one for latency - although on PCI this isnt a big loss. Older chips
* have FIFO's smaller than a packet, so you can't do this.
* Turn on BCR18:BurstRdEn and BCR18:BurstWrEn.
*/
if (fset) {
a->write_bcr(ioaddr, 18, (a->read_bcr(ioaddr, 18) | 0x0860));
a->write_csr(ioaddr, 80,
(a->read_csr(ioaddr, 80) & 0x0C00) | 0x0c00);
dxsuflo = 1;
}
dev = alloc_etherdev(sizeof(*lp));
if (!dev) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX "Memory allocation failed.\n");
ret = -ENOMEM;
goto err_release_region;
}
SET_NETDEV_DEV(dev, &pdev->dev);
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_INFO PFX "%s at %#3lx,", chipname, ioaddr);
/* In most chips, after a chip reset, the ethernet address is read from the
* station address PROM at the base address and programmed into the
* "Physical Address Registers" CSR12-14.
* As a precautionary measure, we read the PROM values and complain if
* they disagree with the CSRs. If they miscompare, and the PROM addr
* is valid, then the PROM addr is used.
*/
for (i = 0; i < 3; i++) {
unsigned int val;
val = a->read_csr(ioaddr, i + 12) & 0x0ffff;
/* There may be endianness issues here. */
dev->dev_addr[2 * i] = val & 0x0ff;
dev->dev_addr[2 * i + 1] = (val >> 8) & 0x0ff;
}
/* read PROM address and compare with CSR address */
for (i = 0; i < 6; i++)
promaddr[i] = inb(ioaddr + i);
if (memcmp(promaddr, dev->dev_addr, 6)
|| !is_valid_ether_addr(dev->dev_addr)) {
if (is_valid_ether_addr(promaddr)) {
if (pcnet32_debug & NETIF_MSG_PROBE) {
printk(" warning: CSR address invalid,\n");
printk(KERN_INFO
" using instead PROM address of");
}
memcpy(dev->dev_addr, promaddr, 6);
}
}
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
/* if the ethernet address is not valid, force to 00:00:00:00:00:00 */
if (!is_valid_ether_addr(dev->perm_addr))
memset(dev->dev_addr, 0, sizeof(dev->dev_addr));
if (pcnet32_debug & NETIF_MSG_PROBE) {
printk(" %pM", dev->dev_addr);
/* Version 0x2623 and 0x2624 */
if (((chip_version + 1) & 0xfffe) == 0x2624) {
i = a->read_csr(ioaddr, 80) & 0x0C00; /* Check tx_start_pt */
printk("\n" KERN_INFO " tx_start_pt(0x%04x):", i);
switch (i >> 10) {
case 0:
printk(" 20 bytes,");
break;
case 1:
printk(" 64 bytes,");
break;
case 2:
printk(" 128 bytes,");
break;
case 3:
printk("~220 bytes,");
break;
}
i = a->read_bcr(ioaddr, 18); /* Check Burst/Bus control */
printk(" BCR18(%x):", i & 0xffff);
if (i & (1 << 5))
printk("BurstWrEn ");
if (i & (1 << 6))
printk("BurstRdEn ");
if (i & (1 << 7))
printk("DWordIO ");
if (i & (1 << 11))
printk("NoUFlow ");
i = a->read_bcr(ioaddr, 25);
printk("\n" KERN_INFO " SRAMSIZE=0x%04x,", i << 8);
i = a->read_bcr(ioaddr, 26);
printk(" SRAM_BND=0x%04x,", i << 8);
i = a->read_bcr(ioaddr, 27);
if (i & (1 << 14))
printk("LowLatRx");
}
}
dev->base_addr = ioaddr;
lp = netdev_priv(dev);
/* pci_alloc_consistent returns page-aligned memory, so we do not have to check the alignment */
if ((lp->init_block =
pci_alloc_consistent(pdev, sizeof(*lp->init_block), &lp->init_dma_addr)) == NULL) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX
"Consistent memory allocation failed.\n");
ret = -ENOMEM;
goto err_free_netdev;
}
lp->pci_dev = pdev;
lp->dev = dev;
spin_lock_init(&lp->lock);
SET_NETDEV_DEV(dev, &pdev->dev);
lp->name = chipname;
lp->shared_irq = shared;
lp->tx_ring_size = TX_RING_SIZE; /* default tx ring size */
lp->rx_ring_size = RX_RING_SIZE; /* default rx ring size */
lp->tx_mod_mask = lp->tx_ring_size - 1;
lp->rx_mod_mask = lp->rx_ring_size - 1;
lp->tx_len_bits = (PCNET32_LOG_TX_BUFFERS << 12);
lp->rx_len_bits = (PCNET32_LOG_RX_BUFFERS << 4);
lp->mii_if.full_duplex = fdx;
lp->mii_if.phy_id_mask = 0x1f;
lp->mii_if.reg_num_mask = 0x1f;
lp->dxsuflo = dxsuflo;
lp->mii = mii;
lp->chip_version = chip_version;
lp->msg_enable = pcnet32_debug;
if ((cards_found >= MAX_UNITS)
|| (options[cards_found] > sizeof(options_mapping)))
lp->options = PCNET32_PORT_ASEL;
else
lp->options = options_mapping[options[cards_found]];
lp->mii_if.dev = dev;
lp->mii_if.mdio_read = mdio_read;
lp->mii_if.mdio_write = mdio_write;
/* napi.weight is used in both the napi and non-napi cases */
lp->napi.weight = lp->rx_ring_size / 2;
netif_napi_add(dev, &lp->napi, pcnet32_poll, lp->rx_ring_size / 2);
if (fdx && !(lp->options & PCNET32_PORT_ASEL) &&
((cards_found >= MAX_UNITS) || full_duplex[cards_found]))
lp->options |= PCNET32_PORT_FD;
if (!a) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_ERR PFX "No access methods\n");
ret = -ENODEV;
goto err_free_consistent;
}
lp->a = *a;
/* prior to register_netdev, dev->name is not yet correct */
if (pcnet32_alloc_ring(dev, pci_name(lp->pci_dev))) {
ret = -ENOMEM;
goto err_free_ring;
}
/* detect special T1/E1 WAN card by checking for MAC address */
if (dev->dev_addr[0] == 0x00 && dev->dev_addr[1] == 0xe0
&& dev->dev_addr[2] == 0x75)
lp->options = PCNET32_PORT_FD | PCNET32_PORT_GPSI;
lp->init_block->mode = cpu_to_le16(0x0003); /* Disable Rx and Tx. */
lp->init_block->tlen_rlen =
cpu_to_le16(lp->tx_len_bits | lp->rx_len_bits);
for (i = 0; i < 6; i++)
lp->init_block->phys_addr[i] = dev->dev_addr[i];
lp->init_block->filter[0] = 0x00000000;
lp->init_block->filter[1] = 0x00000000;
lp->init_block->rx_ring = cpu_to_le32(lp->rx_ring_dma_addr);
lp->init_block->tx_ring = cpu_to_le32(lp->tx_ring_dma_addr);
/* switch pcnet32 to 32bit mode */
a->write_bcr(ioaddr, 20, 2);
a->write_csr(ioaddr, 1, (lp->init_dma_addr & 0xffff));
a->write_csr(ioaddr, 2, (lp->init_dma_addr >> 16));
if (pdev) { /* use the IRQ provided by PCI */
dev->irq = pdev->irq;
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(" assigned IRQ %d.\n", dev->irq);
} else {
unsigned long irq_mask = probe_irq_on();
/*
* To auto-IRQ we enable the initialization-done and DMA error
* interrupts. For ISA boards we get a DMA error, but VLB and PCI
* boards will work.
*/
/* Trigger an initialization just for the interrupt. */
a->write_csr(ioaddr, CSR0, CSR0_INTEN | CSR0_INIT);
mdelay(1);
dev->irq = probe_irq_off(irq_mask);
if (!dev->irq) {
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(", failed to detect IRQ line.\n");
ret = -ENODEV;
goto err_free_ring;
}
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(", probed IRQ %d.\n", dev->irq);
}
/* Set the mii phy_id so that we can query the link state */
if (lp->mii) {
/* lp->phycount and lp->phymask are set to 0 by memset above */
lp->mii_if.phy_id = ((lp->a.read_bcr(ioaddr, 33)) >> 5) & 0x1f;
/* scan for PHYs */
for (i = 0; i < PCNET32_MAX_PHYS; i++) {
unsigned short id1, id2;
id1 = mdio_read(dev, i, MII_PHYSID1);
if (id1 == 0xffff)
continue;
id2 = mdio_read(dev, i, MII_PHYSID2);
if (id2 == 0xffff)
continue;
if (i == 31 && ((chip_version + 1) & 0xfffe) == 0x2624)
continue; /* 79C971 & 79C972 have phantom phy at id 31 */
lp->phycount++;
lp->phymask |= (1 << i);
lp->mii_if.phy_id = i;
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_INFO PFX
"Found PHY %04x:%04x at address %d.\n",
id1, id2, i);
}
lp->a.write_bcr(ioaddr, 33, (lp->mii_if.phy_id) << 5);
if (lp->phycount > 1) {
lp->options |= PCNET32_PORT_MII;
}
}
init_timer(&lp->watchdog_timer);
lp->watchdog_timer.data = (unsigned long)dev;
lp->watchdog_timer.function = (void *)&pcnet32_watchdog;
/* The PCNET32-specific entries in the device structure. */
dev->netdev_ops = &pcnet32_netdev_ops;
dev->ethtool_ops = &pcnet32_ethtool_ops;
dev->watchdog_timeo = (5 * HZ);
/* Fill in the generic fields of the device structure. */
if (register_netdev(dev))
goto err_free_ring;
if (pdev) {
pci_set_drvdata(pdev, dev);
} else {
lp->next = pcnet32_dev;
pcnet32_dev = dev;
}
if (pcnet32_debug & NETIF_MSG_PROBE)
printk(KERN_INFO "%s: registered as %s\n", dev->name, lp->name);
cards_found++;
/* enable LED writes */
a->write_bcr(ioaddr, 2, a->read_bcr(ioaddr, 2) | 0x1000);
return 0;
err_free_ring:
pcnet32_free_ring(dev);
err_free_consistent:
pci_free_consistent(lp->pci_dev, sizeof(*lp->init_block),
lp->init_block, lp->init_dma_addr);
err_free_netdev:
free_netdev(dev);
err_release_region:
release_region(ioaddr, PCNET32_TOTAL_SIZE);
return ret;
}
/* if any allocation fails, caller must also call pcnet32_free_ring */
static int pcnet32_alloc_ring(struct net_device *dev, const char *name)
{
struct pcnet32_private *lp = netdev_priv(dev);
lp->tx_ring = pci_alloc_consistent(lp->pci_dev,
sizeof(struct pcnet32_tx_head) *
lp->tx_ring_size,
&lp->tx_ring_dma_addr);
if (lp->tx_ring == NULL) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR PFX
"%s: Consistent memory allocation failed.\n",
name);
return -ENOMEM;
}
lp->rx_ring = pci_alloc_consistent(lp->pci_dev,
sizeof(struct pcnet32_rx_head) *
lp->rx_ring_size,
&lp->rx_ring_dma_addr);
if (lp->rx_ring == NULL) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR PFX
"%s: Consistent memory allocation failed.\n",
name);
return -ENOMEM;
}
lp->tx_dma_addr = kcalloc(lp->tx_ring_size, sizeof(dma_addr_t),
GFP_ATOMIC);
if (!lp->tx_dma_addr) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR PFX
"%s: Memory allocation failed.\n", name);
return -ENOMEM;
}
lp->rx_dma_addr = kcalloc(lp->rx_ring_size, sizeof(dma_addr_t),
GFP_ATOMIC);
if (!lp->rx_dma_addr) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR PFX
"%s: Memory allocation failed.\n", name);
return -ENOMEM;
}
lp->tx_skbuff = kcalloc(lp->tx_ring_size, sizeof(struct sk_buff *),
GFP_ATOMIC);
if (!lp->tx_skbuff) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR PFX
"%s: Memory allocation failed.\n", name);
return -ENOMEM;
}
lp->rx_skbuff = kcalloc(lp->rx_ring_size, sizeof(struct sk_buff *),
GFP_ATOMIC);
if (!lp->rx_skbuff) {
if (netif_msg_drv(lp))
printk("\n" KERN_ERR PFX
"%s: Memory allocation failed.\n", name);
return -ENOMEM;
}
return 0;
}
static void pcnet32_free_ring(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
kfree(lp->tx_skbuff);
lp->tx_skbuff = NULL;
kfree(lp->rx_skbuff);
lp->rx_skbuff = NULL;
kfree(lp->tx_dma_addr);
lp->tx_dma_addr = NULL;
kfree(lp->rx_dma_addr);
lp->rx_dma_addr = NULL;
if (lp->tx_ring) {
pci_free_consistent(lp->pci_dev,
sizeof(struct pcnet32_tx_head) *
lp->tx_ring_size, lp->tx_ring,
lp->tx_ring_dma_addr);
lp->tx_ring = NULL;
}
if (lp->rx_ring) {
pci_free_consistent(lp->pci_dev,
sizeof(struct pcnet32_rx_head) *
lp->rx_ring_size, lp->rx_ring,
lp->rx_ring_dma_addr);
lp->rx_ring = NULL;
}
}
static int pcnet32_open(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
u16 val;
int i;
int rc;
unsigned long flags;
if (request_irq(dev->irq, &pcnet32_interrupt,
lp->shared_irq ? IRQF_SHARED : 0, dev->name,
(void *)dev)) {
return -EAGAIN;
}
spin_lock_irqsave(&lp->lock, flags);
/* Check for a valid station address */
if (!is_valid_ether_addr(dev->dev_addr)) {
rc = -EINVAL;
goto err_free_irq;
}
/* Reset the PCNET32 */
lp->a.reset(ioaddr);
/* switch pcnet32 to 32bit mode */
lp->a.write_bcr(ioaddr, 20, 2);
if (netif_msg_ifup(lp))
printk(KERN_DEBUG
"%s: pcnet32_open() irq %d tx/rx rings %#x/%#x init %#x.\n",
dev->name, dev->irq, (u32) (lp->tx_ring_dma_addr),
(u32) (lp->rx_ring_dma_addr),
(u32) (lp->init_dma_addr));
/* set/reset autoselect bit */
val = lp->a.read_bcr(ioaddr, 2) & ~2;
if (lp->options & PCNET32_PORT_ASEL)
val |= 2;
lp->a.write_bcr(ioaddr, 2, val);
/* handle full duplex setting */
if (lp->mii_if.full_duplex) {
val = lp->a.read_bcr(ioaddr, 9) & ~3;
if (lp->options & PCNET32_PORT_FD) {
val |= 1;
if (lp->options == (PCNET32_PORT_FD | PCNET32_PORT_AUI))
val |= 2;
} else if (lp->options & PCNET32_PORT_ASEL) {
/* workaround of xSeries250, turn on for 79C975 only */
if (lp->chip_version == 0x2627)
val |= 3;
}
lp->a.write_bcr(ioaddr, 9, val);
}
/* set/reset GPSI bit in test register */
val = lp->a.read_csr(ioaddr, 124) & ~0x10;
if ((lp->options & PCNET32_PORT_PORTSEL) == PCNET32_PORT_GPSI)
val |= 0x10;
lp->a.write_csr(ioaddr, 124, val);
/* Allied Telesyn AT 2700/2701 FX are 100Mbit only and do not negotiate */
if (lp->pci_dev->subsystem_vendor == PCI_VENDOR_ID_AT &&
(lp->pci_dev->subsystem_device == PCI_SUBDEVICE_ID_AT_2700FX ||
lp->pci_dev->subsystem_device == PCI_SUBDEVICE_ID_AT_2701FX)) {
if (lp->options & PCNET32_PORT_ASEL) {
lp->options = PCNET32_PORT_FD | PCNET32_PORT_100;
if (netif_msg_link(lp))
printk(KERN_DEBUG
"%s: Setting 100Mb-Full Duplex.\n",
dev->name);
}
}
if (lp->phycount < 2) {
/*
* 24 Jun 2004 according AMD, in order to change the PHY,
* DANAS (or DISPM for 79C976) must be set; then select the speed,
* duplex, and/or enable auto negotiation, and clear DANAS
*/
if (lp->mii && !(lp->options & PCNET32_PORT_ASEL)) {
lp->a.write_bcr(ioaddr, 32,
lp->a.read_bcr(ioaddr, 32) | 0x0080);
/* disable Auto Negotiation, set 10Mpbs, HD */
val = lp->a.read_bcr(ioaddr, 32) & ~0xb8;
if (lp->options & PCNET32_PORT_FD)
val |= 0x10;
if (lp->options & PCNET32_PORT_100)
val |= 0x08;
lp->a.write_bcr(ioaddr, 32, val);
} else {
if (lp->options & PCNET32_PORT_ASEL) {
lp->a.write_bcr(ioaddr, 32,
lp->a.read_bcr(ioaddr,
32) | 0x0080);
/* enable auto negotiate, setup, disable fd */
val = lp->a.read_bcr(ioaddr, 32) & ~0x98;
val |= 0x20;
lp->a.write_bcr(ioaddr, 32, val);
}
}
} else {
int first_phy = -1;
u16 bmcr;
u32 bcr9;
struct ethtool_cmd ecmd;
/*
* There is really no good other way to handle multiple PHYs
* other than turning off all automatics
*/
val = lp->a.read_bcr(ioaddr, 2);
lp->a.write_bcr(ioaddr, 2, val & ~2);
val = lp->a.read_bcr(ioaddr, 32);
lp->a.write_bcr(ioaddr, 32, val & ~(1 << 7)); /* stop MII manager */
if (!(lp->options & PCNET32_PORT_ASEL)) {
/* setup ecmd */
ecmd.port = PORT_MII;
ecmd.transceiver = XCVR_INTERNAL;
ecmd.autoneg = AUTONEG_DISABLE;
ecmd.speed =
lp->
options & PCNET32_PORT_100 ? SPEED_100 : SPEED_10;
bcr9 = lp->a.read_bcr(ioaddr, 9);
if (lp->options & PCNET32_PORT_FD) {
ecmd.duplex = DUPLEX_FULL;
bcr9 |= (1 << 0);
} else {
ecmd.duplex = DUPLEX_HALF;
bcr9 |= ~(1 << 0);
}
lp->a.write_bcr(ioaddr, 9, bcr9);
}
for (i = 0; i < PCNET32_MAX_PHYS; i++) {
if (lp->phymask & (1 << i)) {
/* isolate all but the first PHY */
bmcr = mdio_read(dev, i, MII_BMCR);
if (first_phy == -1) {
first_phy = i;
mdio_write(dev, i, MII_BMCR,
bmcr & ~BMCR_ISOLATE);
} else {
mdio_write(dev, i, MII_BMCR,
bmcr | BMCR_ISOLATE);
}
/* use mii_ethtool_sset to setup PHY */
lp->mii_if.phy_id = i;
ecmd.phy_address = i;
if (lp->options & PCNET32_PORT_ASEL) {
mii_ethtool_gset(&lp->mii_if, &ecmd);
ecmd.autoneg = AUTONEG_ENABLE;
}
mii_ethtool_sset(&lp->mii_if, &ecmd);
}
}
lp->mii_if.phy_id = first_phy;
if (netif_msg_link(lp))
printk(KERN_INFO "%s: Using PHY number %d.\n",
dev->name, first_phy);
}
#ifdef DO_DXSUFLO
if (lp->dxsuflo) { /* Disable transmit stop on underflow */
val = lp->a.read_csr(ioaddr, CSR3);
val |= 0x40;
lp->a.write_csr(ioaddr, CSR3, val);
}
#endif
lp->init_block->mode =
cpu_to_le16((lp->options & PCNET32_PORT_PORTSEL) << 7);
pcnet32_load_multicast(dev);
if (pcnet32_init_ring(dev)) {
rc = -ENOMEM;
goto err_free_ring;
}
napi_enable(&lp->napi);
/* Re-initialize the PCNET32, and start it when done. */
lp->a.write_csr(ioaddr, 1, (lp->init_dma_addr & 0xffff));
lp->a.write_csr(ioaddr, 2, (lp->init_dma_addr >> 16));
lp->a.write_csr(ioaddr, CSR4, 0x0915); /* auto tx pad */
lp->a.write_csr(ioaddr, CSR0, CSR0_INIT);
netif_start_queue(dev);
if (lp->chip_version >= PCNET32_79C970A) {
/* Print the link status and start the watchdog */
pcnet32_check_media(dev, 1);
mod_timer(&lp->watchdog_timer, PCNET32_WATCHDOG_TIMEOUT);
}
i = 0;
while (i++ < 100)
if (lp->a.read_csr(ioaddr, CSR0) & CSR0_IDON)
break;
/*
* We used to clear the InitDone bit, 0x0100, here but Mark Stockton
* reports that doing so triggers a bug in the '974.
*/
lp->a.write_csr(ioaddr, CSR0, CSR0_NORMAL);
if (netif_msg_ifup(lp))
printk(KERN_DEBUG
"%s: pcnet32 open after %d ticks, init block %#x csr0 %4.4x.\n",
dev->name, i,
(u32) (lp->init_dma_addr),
lp->a.read_csr(ioaddr, CSR0));
spin_unlock_irqrestore(&lp->lock, flags);
return 0; /* Always succeed */
err_free_ring:
/* free any allocated skbuffs */
pcnet32_purge_rx_ring(dev);
/*
* Switch back to 16bit mode to avoid problems with dumb
* DOS packet driver after a warm reboot
*/
lp->a.write_bcr(ioaddr, 20, 4);
err_free_irq:
spin_unlock_irqrestore(&lp->lock, flags);
free_irq(dev->irq, dev);
return rc;
}
/*
* The LANCE has been halted for one reason or another (busmaster memory
* arbitration error, Tx FIFO underflow, driver stopped it to reconfigure,
* etc.). Modern LANCE variants always reload their ring-buffer
* configuration when restarted, so we must reinitialize our ring
* context before restarting. As part of this reinitialization,
* find all packets still on the Tx ring and pretend that they had been
* sent (in effect, drop the packets on the floor) - the higher-level
* protocols will time out and retransmit. It'd be better to shuffle
* these skbs to a temp list and then actually re-Tx them after
* restarting the chip, but I'm too lazy to do so right now. dplatt@3do.com
*/
static void pcnet32_purge_tx_ring(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
int i;
for (i = 0; i < lp->tx_ring_size; i++) {
lp->tx_ring[i].status = 0; /* CPU owns buffer */
wmb(); /* Make sure adapter sees owner change */
if (lp->tx_skbuff[i]) {
pci_unmap_single(lp->pci_dev, lp->tx_dma_addr[i],
lp->tx_skbuff[i]->len,
PCI_DMA_TODEVICE);
dev_kfree_skb_any(lp->tx_skbuff[i]);
}
lp->tx_skbuff[i] = NULL;
lp->tx_dma_addr[i] = 0;
}
}
/* Initialize the PCNET32 Rx and Tx rings. */
static int pcnet32_init_ring(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
int i;
lp->tx_full = 0;
lp->cur_rx = lp->cur_tx = 0;
lp->dirty_rx = lp->dirty_tx = 0;
for (i = 0; i < lp->rx_ring_size; i++) {
struct sk_buff *rx_skbuff = lp->rx_skbuff[i];
if (rx_skbuff == NULL) {
if (!
(rx_skbuff = lp->rx_skbuff[i] =
dev_alloc_skb(PKT_BUF_SKB))) {
/* there is not much, we can do at this point */
if (netif_msg_drv(lp))
printk(KERN_ERR
"%s: pcnet32_init_ring dev_alloc_skb failed.\n",
dev->name);
return -1;
}
skb_reserve(rx_skbuff, NET_IP_ALIGN);
}
rmb();
if (lp->rx_dma_addr[i] == 0)
lp->rx_dma_addr[i] =
pci_map_single(lp->pci_dev, rx_skbuff->data,
PKT_BUF_SIZE, PCI_DMA_FROMDEVICE);
lp->rx_ring[i].base = cpu_to_le32(lp->rx_dma_addr[i]);
lp->rx_ring[i].buf_length = cpu_to_le16(NEG_BUF_SIZE);
wmb(); /* Make sure owner changes after all others are visible */
lp->rx_ring[i].status = cpu_to_le16(0x8000);
}
/* The Tx buffer address is filled in as needed, but we do need to clear
* the upper ownership bit. */
for (i = 0; i < lp->tx_ring_size; i++) {
lp->tx_ring[i].status = 0; /* CPU owns buffer */
wmb(); /* Make sure adapter sees owner change */
lp->tx_ring[i].base = 0;
lp->tx_dma_addr[i] = 0;
}
lp->init_block->tlen_rlen =
cpu_to_le16(lp->tx_len_bits | lp->rx_len_bits);
for (i = 0; i < 6; i++)
lp->init_block->phys_addr[i] = dev->dev_addr[i];
lp->init_block->rx_ring = cpu_to_le32(lp->rx_ring_dma_addr);
lp->init_block->tx_ring = cpu_to_le32(lp->tx_ring_dma_addr);
wmb(); /* Make sure all changes are visible */
return 0;
}
/* the pcnet32 has been issued a stop or reset. Wait for the stop bit
* then flush the pending transmit operations, re-initialize the ring,
* and tell the chip to initialize.
*/
static void pcnet32_restart(struct net_device *dev, unsigned int csr0_bits)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
int i;
/* wait for stop */
for (i = 0; i < 100; i++)
if (lp->a.read_csr(ioaddr, CSR0) & CSR0_STOP)
break;
if (i >= 100 && netif_msg_drv(lp))
printk(KERN_ERR
"%s: pcnet32_restart timed out waiting for stop.\n",
dev->name);
pcnet32_purge_tx_ring(dev);
if (pcnet32_init_ring(dev))
return;
/* ReInit Ring */
lp->a.write_csr(ioaddr, CSR0, CSR0_INIT);
i = 0;
while (i++ < 1000)
if (lp->a.read_csr(ioaddr, CSR0) & CSR0_IDON)
break;
lp->a.write_csr(ioaddr, CSR0, csr0_bits);
}
static void pcnet32_tx_timeout(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr, flags;
spin_lock_irqsave(&lp->lock, flags);
/* Transmitter timeout, serious problems. */
if (pcnet32_debug & NETIF_MSG_DRV)
printk(KERN_ERR
"%s: transmit timed out, status %4.4x, resetting.\n",
dev->name, lp->a.read_csr(ioaddr, CSR0));
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP);
dev->stats.tx_errors++;
if (netif_msg_tx_err(lp)) {
int i;
printk(KERN_DEBUG
" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.",
lp->dirty_tx, lp->cur_tx, lp->tx_full ? " (full)" : "",
lp->cur_rx);
for (i = 0; i < lp->rx_ring_size; i++)
printk("%s %08x %04x %08x %04x", i & 1 ? "" : "\n ",
le32_to_cpu(lp->rx_ring[i].base),
(-le16_to_cpu(lp->rx_ring[i].buf_length)) &
0xffff, le32_to_cpu(lp->rx_ring[i].msg_length),
le16_to_cpu(lp->rx_ring[i].status));
for (i = 0; i < lp->tx_ring_size; i++)
printk("%s %08x %04x %08x %04x", i & 1 ? "" : "\n ",
le32_to_cpu(lp->tx_ring[i].base),
(-le16_to_cpu(lp->tx_ring[i].length)) & 0xffff,
le32_to_cpu(lp->tx_ring[i].misc),
le16_to_cpu(lp->tx_ring[i].status));
printk("\n");
}
pcnet32_restart(dev, CSR0_NORMAL);
dev->trans_start = jiffies;
netif_wake_queue(dev);
spin_unlock_irqrestore(&lp->lock, flags);
}
static int pcnet32_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
u16 status;
int entry;
unsigned long flags;
spin_lock_irqsave(&lp->lock, flags);
if (netif_msg_tx_queued(lp)) {
printk(KERN_DEBUG
"%s: pcnet32_start_xmit() called, csr0 %4.4x.\n",
dev->name, lp->a.read_csr(ioaddr, CSR0));
}
/* Default status -- will not enable Successful-TxDone
* interrupt when that option is available to us.
*/
status = 0x8300;
/* Fill in a Tx ring entry */
/* Mask to ring buffer boundary. */
entry = lp->cur_tx & lp->tx_mod_mask;
/* Caution: the write order is important here, set the status
* with the "ownership" bits last. */
lp->tx_ring[entry].length = cpu_to_le16(-skb->len);
lp->tx_ring[entry].misc = 0x00000000;
lp->tx_skbuff[entry] = skb;
lp->tx_dma_addr[entry] =
pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
lp->tx_ring[entry].base = cpu_to_le32(lp->tx_dma_addr[entry]);
wmb(); /* Make sure owner changes after all others are visible */
lp->tx_ring[entry].status = cpu_to_le16(status);
lp->cur_tx++;
dev->stats.tx_bytes += skb->len;
/* Trigger an immediate send poll. */
lp->a.write_csr(ioaddr, CSR0, CSR0_INTEN | CSR0_TXPOLL);
dev->trans_start = jiffies;
if (lp->tx_ring[(entry + 1) & lp->tx_mod_mask].base != 0) {
lp->tx_full = 1;
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&lp->lock, flags);
return 0;
}
/* The PCNET32 interrupt handler. */
static irqreturn_t
pcnet32_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct pcnet32_private *lp;
unsigned long ioaddr;
u16 csr0;
int boguscnt = max_interrupt_work;
ioaddr = dev->base_addr;
lp = netdev_priv(dev);
spin_lock(&lp->lock);
csr0 = lp->a.read_csr(ioaddr, CSR0);
while ((csr0 & 0x8f00) && --boguscnt >= 0) {
if (csr0 == 0xffff) {
break; /* PCMCIA remove happened */
}
/* Acknowledge all of the current interrupt sources ASAP. */
lp->a.write_csr(ioaddr, CSR0, csr0 & ~0x004f);
if (netif_msg_intr(lp))
printk(KERN_DEBUG
"%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n",
dev->name, csr0, lp->a.read_csr(ioaddr, CSR0));
/* Log misc errors. */
if (csr0 & 0x4000)
dev->stats.tx_errors++; /* Tx babble. */
if (csr0 & 0x1000) {
/*
* This happens when our receive ring is full. This
* shouldn't be a problem as we will see normal rx
* interrupts for the frames in the receive ring. But
* there are some PCI chipsets (I can reproduce this
* on SP3G with Intel saturn chipset) which have
* sometimes problems and will fill up the receive
* ring with error descriptors. In this situation we
* don't get a rx interrupt, but a missed frame
* interrupt sooner or later.
*/
dev->stats.rx_errors++; /* Missed a Rx frame. */
}
if (csr0 & 0x0800) {
if (netif_msg_drv(lp))
printk(KERN_ERR
"%s: Bus master arbitration failure, status %4.4x.\n",
dev->name, csr0);
/* unlike for the lance, there is no restart needed */
}
if (napi_schedule_prep(&lp->napi)) {
u16 val;
/* set interrupt masks */
val = lp->a.read_csr(ioaddr, CSR3);
val |= 0x5f00;
lp->a.write_csr(ioaddr, CSR3, val);
__napi_schedule(&lp->napi);
break;
}
csr0 = lp->a.read_csr(ioaddr, CSR0);
}
if (netif_msg_intr(lp))
printk(KERN_DEBUG "%s: exiting interrupt, csr0=%#4.4x.\n",
dev->name, lp->a.read_csr(ioaddr, CSR0));
spin_unlock(&lp->lock);
return IRQ_HANDLED;
}
static int pcnet32_close(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr;
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
del_timer_sync(&lp->watchdog_timer);
netif_stop_queue(dev);
napi_disable(&lp->napi);
spin_lock_irqsave(&lp->lock, flags);
dev->stats.rx_missed_errors = lp->a.read_csr(ioaddr, 112);
if (netif_msg_ifdown(lp))
printk(KERN_DEBUG
"%s: Shutting down ethercard, status was %2.2x.\n",
dev->name, lp->a.read_csr(ioaddr, CSR0));
/* We stop the PCNET32 here -- it occasionally polls memory if we don't. */
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP);
/*
* Switch back to 16bit mode to avoid problems with dumb
* DOS packet driver after a warm reboot
*/
lp->a.write_bcr(ioaddr, 20, 4);
spin_unlock_irqrestore(&lp->lock, flags);
free_irq(dev->irq, dev);
spin_lock_irqsave(&lp->lock, flags);
pcnet32_purge_rx_ring(dev);
pcnet32_purge_tx_ring(dev);
spin_unlock_irqrestore(&lp->lock, flags);
return 0;
}
static struct net_device_stats *pcnet32_get_stats(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
unsigned long flags;
spin_lock_irqsave(&lp->lock, flags);
dev->stats.rx_missed_errors = lp->a.read_csr(ioaddr, 112);
spin_unlock_irqrestore(&lp->lock, flags);
return &dev->stats;
}
/* taken from the sunlance driver, which it took from the depca driver */
static void pcnet32_load_multicast(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
volatile struct pcnet32_init_block *ib = lp->init_block;
volatile __le16 *mcast_table = (__le16 *)ib->filter;
struct dev_mc_list *dmi = dev->mc_list;
unsigned long ioaddr = dev->base_addr;
char *addrs;
int i;
u32 crc;
/* set all multicast bits */
if (dev->flags & IFF_ALLMULTI) {
ib->filter[0] = cpu_to_le32(~0U);
ib->filter[1] = cpu_to_le32(~0U);
lp->a.write_csr(ioaddr, PCNET32_MC_FILTER, 0xffff);
lp->a.write_csr(ioaddr, PCNET32_MC_FILTER+1, 0xffff);
lp->a.write_csr(ioaddr, PCNET32_MC_FILTER+2, 0xffff);
lp->a.write_csr(ioaddr, PCNET32_MC_FILTER+3, 0xffff);
return;
}
/* clear the multicast filter */
ib->filter[0] = 0;
ib->filter[1] = 0;
/* Add addresses */
for (i = 0; i < dev->mc_count; i++) {
addrs = dmi->dmi_addr;
dmi = dmi->next;
/* multicast address? */
if (!(*addrs & 1))
continue;
crc = ether_crc_le(6, addrs);
crc = crc >> 26;
mcast_table[crc >> 4] |= cpu_to_le16(1 << (crc & 0xf));
}
for (i = 0; i < 4; i++)
lp->a.write_csr(ioaddr, PCNET32_MC_FILTER + i,
le16_to_cpu(mcast_table[i]));
return;
}
/*
* Set or clear the multicast filter for this adaptor.
*/
static void pcnet32_set_multicast_list(struct net_device *dev)
{
unsigned long ioaddr = dev->base_addr, flags;
struct pcnet32_private *lp = netdev_priv(dev);
int csr15, suspended;
spin_lock_irqsave(&lp->lock, flags);
suspended = pcnet32_suspend(dev, &flags, 0);
csr15 = lp->a.read_csr(ioaddr, CSR15);
if (dev->flags & IFF_PROMISC) {
/* Log any net taps. */
if (netif_msg_hw(lp))
printk(KERN_INFO "%s: Promiscuous mode enabled.\n",
dev->name);
lp->init_block->mode =
cpu_to_le16(0x8000 | (lp->options & PCNET32_PORT_PORTSEL) <<
7);
lp->a.write_csr(ioaddr, CSR15, csr15 | 0x8000);
} else {
lp->init_block->mode =
cpu_to_le16((lp->options & PCNET32_PORT_PORTSEL) << 7);
lp->a.write_csr(ioaddr, CSR15, csr15 & 0x7fff);
pcnet32_load_multicast(dev);
}
if (suspended) {
int csr5;
/* clear SUSPEND (SPND) - CSR5 bit 0 */
csr5 = lp->a.read_csr(ioaddr, CSR5);
lp->a.write_csr(ioaddr, CSR5, csr5 & (~CSR5_SUSPEND));
} else {
lp->a.write_csr(ioaddr, CSR0, CSR0_STOP);
pcnet32_restart(dev, CSR0_NORMAL);
netif_wake_queue(dev);
}
spin_unlock_irqrestore(&lp->lock, flags);
}
/* This routine assumes that the lp->lock is held */
static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
u16 val_out;
if (!lp->mii)
return 0;
lp->a.write_bcr(ioaddr, 33, ((phy_id & 0x1f) << 5) | (reg_num & 0x1f));
val_out = lp->a.read_bcr(ioaddr, 34);
return val_out;
}
/* This routine assumes that the lp->lock is held */
static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long ioaddr = dev->base_addr;
if (!lp->mii)
return;
lp->a.write_bcr(ioaddr, 33, ((phy_id & 0x1f) << 5) | (reg_num & 0x1f));
lp->a.write_bcr(ioaddr, 34, val);
}
static int pcnet32_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct pcnet32_private *lp = netdev_priv(dev);
int rc;
unsigned long flags;
/* SIOC[GS]MIIxxx ioctls */
if (lp->mii) {
spin_lock_irqsave(&lp->lock, flags);
rc = generic_mii_ioctl(&lp->mii_if, if_mii(rq), cmd, NULL);
spin_unlock_irqrestore(&lp->lock, flags);
} else {
rc = -EOPNOTSUPP;
}
return rc;
}
static int pcnet32_check_otherphy(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
struct mii_if_info mii = lp->mii_if;
u16 bmcr;
int i;
for (i = 0; i < PCNET32_MAX_PHYS; i++) {
if (i == lp->mii_if.phy_id)
continue; /* skip active phy */
if (lp->phymask & (1 << i)) {
mii.phy_id = i;
if (mii_link_ok(&mii)) {
/* found PHY with active link */
if (netif_msg_link(lp))
printk(KERN_INFO
"%s: Using PHY number %d.\n",
dev->name, i);
/* isolate inactive phy */
bmcr =
mdio_read(dev, lp->mii_if.phy_id, MII_BMCR);
mdio_write(dev, lp->mii_if.phy_id, MII_BMCR,
bmcr | BMCR_ISOLATE);
/* de-isolate new phy */
bmcr = mdio_read(dev, i, MII_BMCR);
mdio_write(dev, i, MII_BMCR,
bmcr & ~BMCR_ISOLATE);
/* set new phy address */
lp->mii_if.phy_id = i;
return 1;
}
}
}
return 0;
}
/*
* Show the status of the media. Similar to mii_check_media however it
* correctly shows the link speed for all (tested) pcnet32 variants.
* Devices with no mii just report link state without speed.
*
* Caller is assumed to hold and release the lp->lock.
*/
static void pcnet32_check_media(struct net_device *dev, int verbose)
{
struct pcnet32_private *lp = netdev_priv(dev);
int curr_link;
int prev_link = netif_carrier_ok(dev) ? 1 : 0;
u32 bcr9;
if (lp->mii) {
curr_link = mii_link_ok(&lp->mii_if);
} else {
ulong ioaddr = dev->base_addr; /* card base I/O address */
curr_link = (lp->a.read_bcr(ioaddr, 4) != 0xc0);
}
if (!curr_link) {
if (prev_link || verbose) {
netif_carrier_off(dev);
if (netif_msg_link(lp))
printk(KERN_INFO "%s: link down\n", dev->name);
}
if (lp->phycount > 1) {
curr_link = pcnet32_check_otherphy(dev);
prev_link = 0;
}
} else if (verbose || !prev_link) {
netif_carrier_on(dev);
if (lp->mii) {
if (netif_msg_link(lp)) {
struct ethtool_cmd ecmd;
mii_ethtool_gset(&lp->mii_if, &ecmd);
printk(KERN_INFO
"%s: link up, %sMbps, %s-duplex\n",
dev->name,
(ecmd.speed == SPEED_100) ? "100" : "10",
(ecmd.duplex ==
DUPLEX_FULL) ? "full" : "half");
}
bcr9 = lp->a.read_bcr(dev->base_addr, 9);
if ((bcr9 & (1 << 0)) != lp->mii_if.full_duplex) {
if (lp->mii_if.full_duplex)
bcr9 |= (1 << 0);
else
bcr9 &= ~(1 << 0);
lp->a.write_bcr(dev->base_addr, 9, bcr9);
}
} else {
if (netif_msg_link(lp))
printk(KERN_INFO "%s: link up\n", dev->name);
}
}
}
/*
* Check for loss of link and link establishment.
* Can not use mii_check_media because it does nothing if mode is forced.
*/
static void pcnet32_watchdog(struct net_device *dev)
{
struct pcnet32_private *lp = netdev_priv(dev);
unsigned long flags;
/* Print the link status if it has changed */
spin_lock_irqsave(&lp->lock, flags);
pcnet32_check_media(dev, 0);
spin_unlock_irqrestore(&lp->lock, flags);
mod_timer(&lp->watchdog_timer, round_jiffies(PCNET32_WATCHDOG_TIMEOUT));
}
static int pcnet32_pm_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (netif_running(dev)) {
netif_device_detach(dev);
pcnet32_close(dev);
}
pci_save_state(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int pcnet32_pm_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
if (netif_running(dev)) {
pcnet32_open(dev);
netif_device_attach(dev);
}
return 0;
}
static void __devexit pcnet32_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (dev) {
struct pcnet32_private *lp = netdev_priv(dev);
unregister_netdev(dev);
pcnet32_free_ring(dev);
release_region(dev->base_addr, PCNET32_TOTAL_SIZE);
pci_free_consistent(lp->pci_dev, sizeof(*lp->init_block),
lp->init_block, lp->init_dma_addr);
free_netdev(dev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
}
static struct pci_driver pcnet32_driver = {
.name = DRV_NAME,
.probe = pcnet32_probe_pci,
.remove = __devexit_p(pcnet32_remove_one),
.id_table = pcnet32_pci_tbl,
.suspend = pcnet32_pm_suspend,
.resume = pcnet32_pm_resume,
};
/* An additional parameter that may be passed in... */
static int debug = -1;
static int tx_start_pt = -1;
static int pcnet32_have_pci;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, DRV_NAME " debug level");
module_param(max_interrupt_work, int, 0);
MODULE_PARM_DESC(max_interrupt_work,
DRV_NAME " maximum events handled per interrupt");
module_param(rx_copybreak, int, 0);
MODULE_PARM_DESC(rx_copybreak,
DRV_NAME " copy breakpoint for copy-only-tiny-frames");
module_param(tx_start_pt, int, 0);
MODULE_PARM_DESC(tx_start_pt, DRV_NAME " transmit start point (0-3)");
module_param(pcnet32vlb, int, 0);
MODULE_PARM_DESC(pcnet32vlb, DRV_NAME " Vesa local bus (VLB) support (0/1)");
module_param_array(options, int, NULL, 0);
MODULE_PARM_DESC(options, DRV_NAME " initial option setting(s) (0-15)");
module_param_array(full_duplex, int, NULL, 0);
MODULE_PARM_DESC(full_duplex, DRV_NAME " full duplex setting(s) (1)");
/* Module Parameter for HomePNA cards added by Patrick Simmons, 2004 */
module_param_array(homepna, int, NULL, 0);
MODULE_PARM_DESC(homepna,
DRV_NAME
" mode for 79C978 cards (1 for HomePNA, 0 for Ethernet, default Ethernet");
MODULE_AUTHOR("Thomas Bogendoerfer");
MODULE_DESCRIPTION("Driver for PCnet32 and PCnetPCI based ethercards");
MODULE_LICENSE("GPL");
#define PCNET32_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
static int __init pcnet32_init_module(void)
{
printk(KERN_INFO "%s", version);
pcnet32_debug = netif_msg_init(debug, PCNET32_MSG_DEFAULT);
if ((tx_start_pt >= 0) && (tx_start_pt <= 3))
tx_start = tx_start_pt;
/* find the PCI devices */
if (!pci_register_driver(&pcnet32_driver))
pcnet32_have_pci = 1;
/* should we find any remaining VLbus devices ? */
if (pcnet32vlb)
pcnet32_probe_vlbus(pcnet32_portlist);
if (cards_found && (pcnet32_debug & NETIF_MSG_PROBE))
printk(KERN_INFO PFX "%d cards_found.\n", cards_found);
return (pcnet32_have_pci + cards_found) ? 0 : -ENODEV;
}
static void __exit pcnet32_cleanup_module(void)
{
struct net_device *next_dev;
while (pcnet32_dev) {
struct pcnet32_private *lp = netdev_priv(pcnet32_dev);
next_dev = lp->next;
unregister_netdev(pcnet32_dev);
pcnet32_free_ring(pcnet32_dev);
release_region(pcnet32_dev->base_addr, PCNET32_TOTAL_SIZE);
pci_free_consistent(lp->pci_dev, sizeof(*lp->init_block),
lp->init_block, lp->init_dma_addr);
free_netdev(pcnet32_dev);
pcnet32_dev = next_dev;
}
if (pcnet32_have_pci)
pci_unregister_driver(&pcnet32_driver);
}
module_init(pcnet32_init_module);
module_exit(pcnet32_cleanup_module);
/*
* Local variables:
* c-indent-level: 4
* tab-width: 8
* End:
*/