linux-next/lib/iov_iter.c
Kefeng Wang 245f092268 mm: hwpoison: coredump: support recovery from dump_user_range()
dump_user_range() is used to copy the user page to a coredump file, but if
a hardware memory error occurred during copy, which called from
__kernel_write_iter() in dump_user_range(), it crashes,

  CPU: 112 PID: 7014 Comm: mca-recover Not tainted 6.3.0-rc2 #425

  pc : __memcpy+0x110/0x260
  lr : _copy_from_iter+0x3bc/0x4c8
  ...
  Call trace:
   __memcpy+0x110/0x260
   copy_page_from_iter+0xcc/0x130
   pipe_write+0x164/0x6d8
   __kernel_write_iter+0x9c/0x210
   dump_user_range+0xc8/0x1d8
   elf_core_dump+0x308/0x368
   do_coredump+0x2e8/0xa40
   get_signal+0x59c/0x788
   do_signal+0x118/0x1f8
   do_notify_resume+0xf0/0x280
   el0_da+0x130/0x138
   el0t_64_sync_handler+0x68/0xc0
   el0t_64_sync+0x188/0x190

Generally, the '->write_iter' of file ops will use copy_page_from_iter()
and copy_page_from_iter_atomic(), change memcpy() to copy_mc_to_kernel()
in both of them to handle #MC during source read, which stop coredump
processing and kill the task instead of kernel panic, but the source
address may not always a user address, so introduce a new copy_mc flag in
struct iov_iter{} to indicate that the iter could do a safe memory copy,
also introduce the helpers to set/cleck the flag, for now, it's only used
in coredump's dump_user_range(), but it could expand to any other
scenarios to fix the similar issue.

Link: https://lkml.kernel.org/r/20230417045323.11054-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Tong Tiangen <tongtiangen@huawei.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-05-02 17:21:50 -07:00

2295 lines
57 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <crypto/hash.h>
#include <linux/export.h>
#include <linux/bvec.h>
#include <linux/fault-inject-usercopy.h>
#include <linux/uio.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/splice.h>
#include <linux/compat.h>
#include <net/checksum.h>
#include <linux/scatterlist.h>
#include <linux/instrumented.h>
#define PIPE_PARANOIA /* for now */
/* covers ubuf and kbuf alike */
#define iterate_buf(i, n, base, len, off, __p, STEP) { \
size_t __maybe_unused off = 0; \
len = n; \
base = __p + i->iov_offset; \
len -= (STEP); \
i->iov_offset += len; \
n = len; \
}
/* covers iovec and kvec alike */
#define iterate_iovec(i, n, base, len, off, __p, STEP) { \
size_t off = 0; \
size_t skip = i->iov_offset; \
do { \
len = min(n, __p->iov_len - skip); \
if (likely(len)) { \
base = __p->iov_base + skip; \
len -= (STEP); \
off += len; \
skip += len; \
n -= len; \
if (skip < __p->iov_len) \
break; \
} \
__p++; \
skip = 0; \
} while (n); \
i->iov_offset = skip; \
n = off; \
}
#define iterate_bvec(i, n, base, len, off, p, STEP) { \
size_t off = 0; \
unsigned skip = i->iov_offset; \
while (n) { \
unsigned offset = p->bv_offset + skip; \
unsigned left; \
void *kaddr = kmap_local_page(p->bv_page + \
offset / PAGE_SIZE); \
base = kaddr + offset % PAGE_SIZE; \
len = min(min(n, (size_t)(p->bv_len - skip)), \
(size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
left = (STEP); \
kunmap_local(kaddr); \
len -= left; \
off += len; \
skip += len; \
if (skip == p->bv_len) { \
skip = 0; \
p++; \
} \
n -= len; \
if (left) \
break; \
} \
i->iov_offset = skip; \
n = off; \
}
#define iterate_xarray(i, n, base, len, __off, STEP) { \
__label__ __out; \
size_t __off = 0; \
struct folio *folio; \
loff_t start = i->xarray_start + i->iov_offset; \
pgoff_t index = start / PAGE_SIZE; \
XA_STATE(xas, i->xarray, index); \
\
len = PAGE_SIZE - offset_in_page(start); \
rcu_read_lock(); \
xas_for_each(&xas, folio, ULONG_MAX) { \
unsigned left; \
size_t offset; \
if (xas_retry(&xas, folio)) \
continue; \
if (WARN_ON(xa_is_value(folio))) \
break; \
if (WARN_ON(folio_test_hugetlb(folio))) \
break; \
offset = offset_in_folio(folio, start + __off); \
while (offset < folio_size(folio)) { \
base = kmap_local_folio(folio, offset); \
len = min(n, len); \
left = (STEP); \
kunmap_local(base); \
len -= left; \
__off += len; \
n -= len; \
if (left || n == 0) \
goto __out; \
offset += len; \
len = PAGE_SIZE; \
} \
} \
__out: \
rcu_read_unlock(); \
i->iov_offset += __off; \
n = __off; \
}
#define __iterate_and_advance(i, n, base, len, off, I, K) { \
if (unlikely(i->count < n)) \
n = i->count; \
if (likely(n)) { \
if (likely(iter_is_ubuf(i))) { \
void __user *base; \
size_t len; \
iterate_buf(i, n, base, len, off, \
i->ubuf, (I)) \
} else if (likely(iter_is_iovec(i))) { \
const struct iovec *iov = iter_iov(i); \
void __user *base; \
size_t len; \
iterate_iovec(i, n, base, len, off, \
iov, (I)) \
i->nr_segs -= iov - iter_iov(i); \
i->__iov = iov; \
} else if (iov_iter_is_bvec(i)) { \
const struct bio_vec *bvec = i->bvec; \
void *base; \
size_t len; \
iterate_bvec(i, n, base, len, off, \
bvec, (K)) \
i->nr_segs -= bvec - i->bvec; \
i->bvec = bvec; \
} else if (iov_iter_is_kvec(i)) { \
const struct kvec *kvec = i->kvec; \
void *base; \
size_t len; \
iterate_iovec(i, n, base, len, off, \
kvec, (K)) \
i->nr_segs -= kvec - i->kvec; \
i->kvec = kvec; \
} else if (iov_iter_is_xarray(i)) { \
void *base; \
size_t len; \
iterate_xarray(i, n, base, len, off, \
(K)) \
} \
i->count -= n; \
} \
}
#define iterate_and_advance(i, n, base, len, off, I, K) \
__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
static int copyout(void __user *to, const void *from, size_t n)
{
if (should_fail_usercopy())
return n;
if (access_ok(to, n)) {
instrument_copy_to_user(to, from, n);
n = raw_copy_to_user(to, from, n);
}
return n;
}
static int copyout_nofault(void __user *to, const void *from, size_t n)
{
long res;
if (should_fail_usercopy())
return n;
res = copy_to_user_nofault(to, from, n);
return res < 0 ? n : res;
}
static int copyin(void *to, const void __user *from, size_t n)
{
size_t res = n;
if (should_fail_usercopy())
return n;
if (access_ok(from, n)) {
instrument_copy_from_user_before(to, from, n);
res = raw_copy_from_user(to, from, n);
instrument_copy_from_user_after(to, from, n, res);
}
return res;
}
#ifdef PIPE_PARANOIA
static bool sanity(const struct iov_iter *i)
{
struct pipe_inode_info *pipe = i->pipe;
unsigned int p_head = pipe->head;
unsigned int p_tail = pipe->tail;
unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
unsigned int i_head = i->head;
unsigned int idx;
if (i->last_offset) {
struct pipe_buffer *p;
if (unlikely(p_occupancy == 0))
goto Bad; // pipe must be non-empty
if (unlikely(i_head != p_head - 1))
goto Bad; // must be at the last buffer...
p = pipe_buf(pipe, i_head);
if (unlikely(p->offset + p->len != abs(i->last_offset)))
goto Bad; // ... at the end of segment
} else {
if (i_head != p_head)
goto Bad; // must be right after the last buffer
}
return true;
Bad:
printk(KERN_ERR "idx = %d, offset = %d\n", i_head, i->last_offset);
printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
p_head, p_tail, pipe->ring_size);
for (idx = 0; idx < pipe->ring_size; idx++)
printk(KERN_ERR "[%p %p %d %d]\n",
pipe->bufs[idx].ops,
pipe->bufs[idx].page,
pipe->bufs[idx].offset,
pipe->bufs[idx].len);
WARN_ON(1);
return false;
}
#else
#define sanity(i) true
#endif
static struct page *push_anon(struct pipe_inode_info *pipe, unsigned size)
{
struct page *page = alloc_page(GFP_USER);
if (page) {
struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
*buf = (struct pipe_buffer) {
.ops = &default_pipe_buf_ops,
.page = page,
.offset = 0,
.len = size
};
}
return page;
}
static void push_page(struct pipe_inode_info *pipe, struct page *page,
unsigned int offset, unsigned int size)
{
struct pipe_buffer *buf = pipe_buf(pipe, pipe->head++);
*buf = (struct pipe_buffer) {
.ops = &page_cache_pipe_buf_ops,
.page = page,
.offset = offset,
.len = size
};
get_page(page);
}
static inline int last_offset(const struct pipe_buffer *buf)
{
if (buf->ops == &default_pipe_buf_ops)
return buf->len; // buf->offset is 0 for those
else
return -(buf->offset + buf->len);
}
static struct page *append_pipe(struct iov_iter *i, size_t size,
unsigned int *off)
{
struct pipe_inode_info *pipe = i->pipe;
int offset = i->last_offset;
struct pipe_buffer *buf;
struct page *page;
if (offset > 0 && offset < PAGE_SIZE) {
// some space in the last buffer; add to it
buf = pipe_buf(pipe, pipe->head - 1);
size = min_t(size_t, size, PAGE_SIZE - offset);
buf->len += size;
i->last_offset += size;
i->count -= size;
*off = offset;
return buf->page;
}
// OK, we need a new buffer
*off = 0;
size = min_t(size_t, size, PAGE_SIZE);
if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
return NULL;
page = push_anon(pipe, size);
if (!page)
return NULL;
i->head = pipe->head - 1;
i->last_offset = size;
i->count -= size;
return page;
}
static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
struct iov_iter *i)
{
struct pipe_inode_info *pipe = i->pipe;
unsigned int head = pipe->head;
if (unlikely(bytes > i->count))
bytes = i->count;
if (unlikely(!bytes))
return 0;
if (!sanity(i))
return 0;
if (offset && i->last_offset == -offset) { // could we merge it?
struct pipe_buffer *buf = pipe_buf(pipe, head - 1);
if (buf->page == page) {
buf->len += bytes;
i->last_offset -= bytes;
i->count -= bytes;
return bytes;
}
}
if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
return 0;
push_page(pipe, page, offset, bytes);
i->last_offset = -(offset + bytes);
i->head = head;
i->count -= bytes;
return bytes;
}
/*
* fault_in_iov_iter_readable - fault in iov iterator for reading
* @i: iterator
* @size: maximum length
*
* Fault in one or more iovecs of the given iov_iter, to a maximum length of
* @size. For each iovec, fault in each page that constitutes the iovec.
*
* Returns the number of bytes not faulted in (like copy_to_user() and
* copy_from_user()).
*
* Always returns 0 for non-userspace iterators.
*/
size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
{
if (iter_is_ubuf(i)) {
size_t n = min(size, iov_iter_count(i));
n -= fault_in_readable(i->ubuf + i->iov_offset, n);
return size - n;
} else if (iter_is_iovec(i)) {
size_t count = min(size, iov_iter_count(i));
const struct iovec *p;
size_t skip;
size -= count;
for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
size_t len = min(count, p->iov_len - skip);
size_t ret;
if (unlikely(!len))
continue;
ret = fault_in_readable(p->iov_base + skip, len);
count -= len - ret;
if (ret)
break;
}
return count + size;
}
return 0;
}
EXPORT_SYMBOL(fault_in_iov_iter_readable);
/*
* fault_in_iov_iter_writeable - fault in iov iterator for writing
* @i: iterator
* @size: maximum length
*
* Faults in the iterator using get_user_pages(), i.e., without triggering
* hardware page faults. This is primarily useful when we already know that
* some or all of the pages in @i aren't in memory.
*
* Returns the number of bytes not faulted in, like copy_to_user() and
* copy_from_user().
*
* Always returns 0 for non-user-space iterators.
*/
size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
{
if (iter_is_ubuf(i)) {
size_t n = min(size, iov_iter_count(i));
n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
return size - n;
} else if (iter_is_iovec(i)) {
size_t count = min(size, iov_iter_count(i));
const struct iovec *p;
size_t skip;
size -= count;
for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
size_t len = min(count, p->iov_len - skip);
size_t ret;
if (unlikely(!len))
continue;
ret = fault_in_safe_writeable(p->iov_base + skip, len);
count -= len - ret;
if (ret)
break;
}
return count + size;
}
return 0;
}
EXPORT_SYMBOL(fault_in_iov_iter_writeable);
void iov_iter_init(struct iov_iter *i, unsigned int direction,
const struct iovec *iov, unsigned long nr_segs,
size_t count)
{
WARN_ON(direction & ~(READ | WRITE));
*i = (struct iov_iter) {
.iter_type = ITER_IOVEC,
.copy_mc = false,
.nofault = false,
.user_backed = true,
.data_source = direction,
.__iov = iov,
.nr_segs = nr_segs,
.iov_offset = 0,
.count = count
};
}
EXPORT_SYMBOL(iov_iter_init);
// returns the offset in partial buffer (if any)
static inline unsigned int pipe_npages(const struct iov_iter *i, int *npages)
{
struct pipe_inode_info *pipe = i->pipe;
int used = pipe->head - pipe->tail;
int off = i->last_offset;
*npages = max((int)pipe->max_usage - used, 0);
if (off > 0 && off < PAGE_SIZE) { // anon and not full
(*npages)++;
return off;
}
return 0;
}
static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
struct iov_iter *i)
{
unsigned int off, chunk;
if (unlikely(bytes > i->count))
bytes = i->count;
if (unlikely(!bytes))
return 0;
if (!sanity(i))
return 0;
for (size_t n = bytes; n; n -= chunk) {
struct page *page = append_pipe(i, n, &off);
chunk = min_t(size_t, n, PAGE_SIZE - off);
if (!page)
return bytes - n;
memcpy_to_page(page, off, addr, chunk);
addr += chunk;
}
return bytes;
}
static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
__wsum sum, size_t off)
{
__wsum next = csum_partial_copy_nocheck(from, to, len);
return csum_block_add(sum, next, off);
}
static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
struct iov_iter *i, __wsum *sump)
{
__wsum sum = *sump;
size_t off = 0;
unsigned int chunk, r;
if (unlikely(bytes > i->count))
bytes = i->count;
if (unlikely(!bytes))
return 0;
if (!sanity(i))
return 0;
while (bytes) {
struct page *page = append_pipe(i, bytes, &r);
char *p;
if (!page)
break;
chunk = min_t(size_t, bytes, PAGE_SIZE - r);
p = kmap_local_page(page);
sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
kunmap_local(p);
off += chunk;
bytes -= chunk;
}
*sump = sum;
return off;
}
size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
{
if (WARN_ON_ONCE(i->data_source))
return 0;
if (unlikely(iov_iter_is_pipe(i)))
return copy_pipe_to_iter(addr, bytes, i);
if (user_backed_iter(i))
might_fault();
iterate_and_advance(i, bytes, base, len, off,
copyout(base, addr + off, len),
memcpy(base, addr + off, len)
)
return bytes;
}
EXPORT_SYMBOL(_copy_to_iter);
#ifdef CONFIG_ARCH_HAS_COPY_MC
static int copyout_mc(void __user *to, const void *from, size_t n)
{
if (access_ok(to, n)) {
instrument_copy_to_user(to, from, n);
n = copy_mc_to_user((__force void *) to, from, n);
}
return n;
}
static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
struct iov_iter *i)
{
size_t xfer = 0;
unsigned int off, chunk;
if (unlikely(bytes > i->count))
bytes = i->count;
if (unlikely(!bytes))
return 0;
if (!sanity(i))
return 0;
while (bytes) {
struct page *page = append_pipe(i, bytes, &off);
unsigned long rem;
char *p;
if (!page)
break;
chunk = min_t(size_t, bytes, PAGE_SIZE - off);
p = kmap_local_page(page);
rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
chunk -= rem;
kunmap_local(p);
xfer += chunk;
bytes -= chunk;
if (rem) {
iov_iter_revert(i, rem);
break;
}
}
return xfer;
}
/**
* _copy_mc_to_iter - copy to iter with source memory error exception handling
* @addr: source kernel address
* @bytes: total transfer length
* @i: destination iterator
*
* The pmem driver deploys this for the dax operation
* (dax_copy_to_iter()) for dax reads (bypass page-cache and the
* block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
* successfully copied.
*
* The main differences between this and typical _copy_to_iter().
*
* * Typical tail/residue handling after a fault retries the copy
* byte-by-byte until the fault happens again. Re-triggering machine
* checks is potentially fatal so the implementation uses source
* alignment and poison alignment assumptions to avoid re-triggering
* hardware exceptions.
*
* * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
* Compare to copy_to_iter() where only ITER_IOVEC attempts might return
* a short copy.
*
* Return: number of bytes copied (may be %0)
*/
size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
{
if (WARN_ON_ONCE(i->data_source))
return 0;
if (unlikely(iov_iter_is_pipe(i)))
return copy_mc_pipe_to_iter(addr, bytes, i);
if (user_backed_iter(i))
might_fault();
__iterate_and_advance(i, bytes, base, len, off,
copyout_mc(base, addr + off, len),
copy_mc_to_kernel(base, addr + off, len)
)
return bytes;
}
EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
#endif /* CONFIG_ARCH_HAS_COPY_MC */
static void *memcpy_from_iter(struct iov_iter *i, void *to, const void *from,
size_t size)
{
if (iov_iter_is_copy_mc(i))
return (void *)copy_mc_to_kernel(to, from, size);
return memcpy(to, from, size);
}
size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
{
if (WARN_ON_ONCE(!i->data_source))
return 0;
if (user_backed_iter(i))
might_fault();
iterate_and_advance(i, bytes, base, len, off,
copyin(addr + off, base, len),
memcpy_from_iter(i, addr + off, base, len)
)
return bytes;
}
EXPORT_SYMBOL(_copy_from_iter);
size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
{
if (WARN_ON_ONCE(!i->data_source))
return 0;
iterate_and_advance(i, bytes, base, len, off,
__copy_from_user_inatomic_nocache(addr + off, base, len),
memcpy(addr + off, base, len)
)
return bytes;
}
EXPORT_SYMBOL(_copy_from_iter_nocache);
#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
/**
* _copy_from_iter_flushcache - write destination through cpu cache
* @addr: destination kernel address
* @bytes: total transfer length
* @i: source iterator
*
* The pmem driver arranges for filesystem-dax to use this facility via
* dax_copy_from_iter() for ensuring that writes to persistent memory
* are flushed through the CPU cache. It is differentiated from
* _copy_from_iter_nocache() in that guarantees all data is flushed for
* all iterator types. The _copy_from_iter_nocache() only attempts to
* bypass the cache for the ITER_IOVEC case, and on some archs may use
* instructions that strand dirty-data in the cache.
*
* Return: number of bytes copied (may be %0)
*/
size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
{
if (WARN_ON_ONCE(!i->data_source))
return 0;
iterate_and_advance(i, bytes, base, len, off,
__copy_from_user_flushcache(addr + off, base, len),
memcpy_flushcache(addr + off, base, len)
)
return bytes;
}
EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
#endif
static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
{
struct page *head;
size_t v = n + offset;
/*
* The general case needs to access the page order in order
* to compute the page size.
* However, we mostly deal with order-0 pages and thus can
* avoid a possible cache line miss for requests that fit all
* page orders.
*/
if (n <= v && v <= PAGE_SIZE)
return true;
head = compound_head(page);
v += (page - head) << PAGE_SHIFT;
if (WARN_ON(n > v || v > page_size(head)))
return false;
return true;
}
size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
struct iov_iter *i)
{
size_t res = 0;
if (!page_copy_sane(page, offset, bytes))
return 0;
if (WARN_ON_ONCE(i->data_source))
return 0;
if (unlikely(iov_iter_is_pipe(i)))
return copy_page_to_iter_pipe(page, offset, bytes, i);
page += offset / PAGE_SIZE; // first subpage
offset %= PAGE_SIZE;
while (1) {
void *kaddr = kmap_local_page(page);
size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
n = _copy_to_iter(kaddr + offset, n, i);
kunmap_local(kaddr);
res += n;
bytes -= n;
if (!bytes || !n)
break;
offset += n;
if (offset == PAGE_SIZE) {
page++;
offset = 0;
}
}
return res;
}
EXPORT_SYMBOL(copy_page_to_iter);
size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
struct iov_iter *i)
{
size_t res = 0;
if (!page_copy_sane(page, offset, bytes))
return 0;
if (WARN_ON_ONCE(i->data_source))
return 0;
if (unlikely(iov_iter_is_pipe(i)))
return copy_page_to_iter_pipe(page, offset, bytes, i);
page += offset / PAGE_SIZE; // first subpage
offset %= PAGE_SIZE;
while (1) {
void *kaddr = kmap_local_page(page);
size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
iterate_and_advance(i, n, base, len, off,
copyout_nofault(base, kaddr + offset + off, len),
memcpy(base, kaddr + offset + off, len)
)
kunmap_local(kaddr);
res += n;
bytes -= n;
if (!bytes || !n)
break;
offset += n;
if (offset == PAGE_SIZE) {
page++;
offset = 0;
}
}
return res;
}
EXPORT_SYMBOL(copy_page_to_iter_nofault);
size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
struct iov_iter *i)
{
size_t res = 0;
if (!page_copy_sane(page, offset, bytes))
return 0;
page += offset / PAGE_SIZE; // first subpage
offset %= PAGE_SIZE;
while (1) {
void *kaddr = kmap_local_page(page);
size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
n = _copy_from_iter(kaddr + offset, n, i);
kunmap_local(kaddr);
res += n;
bytes -= n;
if (!bytes || !n)
break;
offset += n;
if (offset == PAGE_SIZE) {
page++;
offset = 0;
}
}
return res;
}
EXPORT_SYMBOL(copy_page_from_iter);
static size_t pipe_zero(size_t bytes, struct iov_iter *i)
{
unsigned int chunk, off;
if (unlikely(bytes > i->count))
bytes = i->count;
if (unlikely(!bytes))
return 0;
if (!sanity(i))
return 0;
for (size_t n = bytes; n; n -= chunk) {
struct page *page = append_pipe(i, n, &off);
char *p;
if (!page)
return bytes - n;
chunk = min_t(size_t, n, PAGE_SIZE - off);
p = kmap_local_page(page);
memset(p + off, 0, chunk);
kunmap_local(p);
}
return bytes;
}
size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
{
if (unlikely(iov_iter_is_pipe(i)))
return pipe_zero(bytes, i);
iterate_and_advance(i, bytes, base, len, count,
clear_user(base, len),
memset(base, 0, len)
)
return bytes;
}
EXPORT_SYMBOL(iov_iter_zero);
size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
struct iov_iter *i)
{
char *kaddr = kmap_atomic(page), *p = kaddr + offset;
if (!page_copy_sane(page, offset, bytes)) {
kunmap_atomic(kaddr);
return 0;
}
if (WARN_ON_ONCE(!i->data_source)) {
kunmap_atomic(kaddr);
return 0;
}
iterate_and_advance(i, bytes, base, len, off,
copyin(p + off, base, len),
memcpy_from_iter(i, p + off, base, len)
)
kunmap_atomic(kaddr);
return bytes;
}
EXPORT_SYMBOL(copy_page_from_iter_atomic);
static void pipe_advance(struct iov_iter *i, size_t size)
{
struct pipe_inode_info *pipe = i->pipe;
int off = i->last_offset;
if (!off && !size) {
pipe_discard_from(pipe, i->start_head); // discard everything
return;
}
i->count -= size;
while (1) {
struct pipe_buffer *buf = pipe_buf(pipe, i->head);
if (off) /* make it relative to the beginning of buffer */
size += abs(off) - buf->offset;
if (size <= buf->len) {
buf->len = size;
i->last_offset = last_offset(buf);
break;
}
size -= buf->len;
i->head++;
off = 0;
}
pipe_discard_from(pipe, i->head + 1); // discard everything past this one
}
static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
{
const struct bio_vec *bvec, *end;
if (!i->count)
return;
i->count -= size;
size += i->iov_offset;
for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
if (likely(size < bvec->bv_len))
break;
size -= bvec->bv_len;
}
i->iov_offset = size;
i->nr_segs -= bvec - i->bvec;
i->bvec = bvec;
}
static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
{
const struct iovec *iov, *end;
if (!i->count)
return;
i->count -= size;
size += i->iov_offset; // from beginning of current segment
for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
if (likely(size < iov->iov_len))
break;
size -= iov->iov_len;
}
i->iov_offset = size;
i->nr_segs -= iov - iter_iov(i);
i->__iov = iov;
}
void iov_iter_advance(struct iov_iter *i, size_t size)
{
if (unlikely(i->count < size))
size = i->count;
if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
i->iov_offset += size;
i->count -= size;
} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
/* iovec and kvec have identical layouts */
iov_iter_iovec_advance(i, size);
} else if (iov_iter_is_bvec(i)) {
iov_iter_bvec_advance(i, size);
} else if (iov_iter_is_pipe(i)) {
pipe_advance(i, size);
} else if (iov_iter_is_discard(i)) {
i->count -= size;
}
}
EXPORT_SYMBOL(iov_iter_advance);
void iov_iter_revert(struct iov_iter *i, size_t unroll)
{
if (!unroll)
return;
if (WARN_ON(unroll > MAX_RW_COUNT))
return;
i->count += unroll;
if (unlikely(iov_iter_is_pipe(i))) {
struct pipe_inode_info *pipe = i->pipe;
unsigned int head = pipe->head;
while (head > i->start_head) {
struct pipe_buffer *b = pipe_buf(pipe, --head);
if (unroll < b->len) {
b->len -= unroll;
i->last_offset = last_offset(b);
i->head = head;
return;
}
unroll -= b->len;
pipe_buf_release(pipe, b);
pipe->head--;
}
i->last_offset = 0;
i->head = head;
return;
}
if (unlikely(iov_iter_is_discard(i)))
return;
if (unroll <= i->iov_offset) {
i->iov_offset -= unroll;
return;
}
unroll -= i->iov_offset;
if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
BUG(); /* We should never go beyond the start of the specified
* range since we might then be straying into pages that
* aren't pinned.
*/
} else if (iov_iter_is_bvec(i)) {
const struct bio_vec *bvec = i->bvec;
while (1) {
size_t n = (--bvec)->bv_len;
i->nr_segs++;
if (unroll <= n) {
i->bvec = bvec;
i->iov_offset = n - unroll;
return;
}
unroll -= n;
}
} else { /* same logics for iovec and kvec */
const struct iovec *iov = iter_iov(i);
while (1) {
size_t n = (--iov)->iov_len;
i->nr_segs++;
if (unroll <= n) {
i->__iov = iov;
i->iov_offset = n - unroll;
return;
}
unroll -= n;
}
}
}
EXPORT_SYMBOL(iov_iter_revert);
/*
* Return the count of just the current iov_iter segment.
*/
size_t iov_iter_single_seg_count(const struct iov_iter *i)
{
if (i->nr_segs > 1) {
if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
if (iov_iter_is_bvec(i))
return min(i->count, i->bvec->bv_len - i->iov_offset);
}
return i->count;
}
EXPORT_SYMBOL(iov_iter_single_seg_count);
void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
const struct kvec *kvec, unsigned long nr_segs,
size_t count)
{
WARN_ON(direction & ~(READ | WRITE));
*i = (struct iov_iter){
.iter_type = ITER_KVEC,
.copy_mc = false,
.data_source = direction,
.kvec = kvec,
.nr_segs = nr_segs,
.iov_offset = 0,
.count = count
};
}
EXPORT_SYMBOL(iov_iter_kvec);
void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
const struct bio_vec *bvec, unsigned long nr_segs,
size_t count)
{
WARN_ON(direction & ~(READ | WRITE));
*i = (struct iov_iter){
.iter_type = ITER_BVEC,
.copy_mc = false,
.data_source = direction,
.bvec = bvec,
.nr_segs = nr_segs,
.iov_offset = 0,
.count = count
};
}
EXPORT_SYMBOL(iov_iter_bvec);
void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
struct pipe_inode_info *pipe,
size_t count)
{
BUG_ON(direction != READ);
WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
*i = (struct iov_iter){
.iter_type = ITER_PIPE,
.data_source = false,
.pipe = pipe,
.head = pipe->head,
.start_head = pipe->head,
.last_offset = 0,
.count = count
};
}
EXPORT_SYMBOL(iov_iter_pipe);
/**
* iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
* @i: The iterator to initialise.
* @direction: The direction of the transfer.
* @xarray: The xarray to access.
* @start: The start file position.
* @count: The size of the I/O buffer in bytes.
*
* Set up an I/O iterator to either draw data out of the pages attached to an
* inode or to inject data into those pages. The pages *must* be prevented
* from evaporation, either by taking a ref on them or locking them by the
* caller.
*/
void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
struct xarray *xarray, loff_t start, size_t count)
{
BUG_ON(direction & ~1);
*i = (struct iov_iter) {
.iter_type = ITER_XARRAY,
.copy_mc = false,
.data_source = direction,
.xarray = xarray,
.xarray_start = start,
.count = count,
.iov_offset = 0
};
}
EXPORT_SYMBOL(iov_iter_xarray);
/**
* iov_iter_discard - Initialise an I/O iterator that discards data
* @i: The iterator to initialise.
* @direction: The direction of the transfer.
* @count: The size of the I/O buffer in bytes.
*
* Set up an I/O iterator that just discards everything that's written to it.
* It's only available as a READ iterator.
*/
void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
{
BUG_ON(direction != READ);
*i = (struct iov_iter){
.iter_type = ITER_DISCARD,
.copy_mc = false,
.data_source = false,
.count = count,
.iov_offset = 0
};
}
EXPORT_SYMBOL(iov_iter_discard);
static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
unsigned len_mask)
{
size_t size = i->count;
size_t skip = i->iov_offset;
unsigned k;
for (k = 0; k < i->nr_segs; k++, skip = 0) {
const struct iovec *iov = iter_iov(i) + k;
size_t len = iov->iov_len - skip;
if (len > size)
len = size;
if (len & len_mask)
return false;
if ((unsigned long)(iov->iov_base + skip) & addr_mask)
return false;
size -= len;
if (!size)
break;
}
return true;
}
static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
unsigned len_mask)
{
size_t size = i->count;
unsigned skip = i->iov_offset;
unsigned k;
for (k = 0; k < i->nr_segs; k++, skip = 0) {
size_t len = i->bvec[k].bv_len - skip;
if (len > size)
len = size;
if (len & len_mask)
return false;
if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
return false;
size -= len;
if (!size)
break;
}
return true;
}
/**
* iov_iter_is_aligned() - Check if the addresses and lengths of each segments
* are aligned to the parameters.
*
* @i: &struct iov_iter to restore
* @addr_mask: bit mask to check against the iov element's addresses
* @len_mask: bit mask to check against the iov element's lengths
*
* Return: false if any addresses or lengths intersect with the provided masks
*/
bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
unsigned len_mask)
{
if (likely(iter_is_ubuf(i))) {
if (i->count & len_mask)
return false;
if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
return false;
return true;
}
if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
return iov_iter_aligned_iovec(i, addr_mask, len_mask);
if (iov_iter_is_bvec(i))
return iov_iter_aligned_bvec(i, addr_mask, len_mask);
if (iov_iter_is_pipe(i)) {
size_t size = i->count;
if (size & len_mask)
return false;
if (size && i->last_offset > 0) {
if (i->last_offset & addr_mask)
return false;
}
return true;
}
if (iov_iter_is_xarray(i)) {
if (i->count & len_mask)
return false;
if ((i->xarray_start + i->iov_offset) & addr_mask)
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
{
unsigned long res = 0;
size_t size = i->count;
size_t skip = i->iov_offset;
unsigned k;
for (k = 0; k < i->nr_segs; k++, skip = 0) {
const struct iovec *iov = iter_iov(i) + k;
size_t len = iov->iov_len - skip;
if (len) {
res |= (unsigned long)iov->iov_base + skip;
if (len > size)
len = size;
res |= len;
size -= len;
if (!size)
break;
}
}
return res;
}
static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
{
unsigned res = 0;
size_t size = i->count;
unsigned skip = i->iov_offset;
unsigned k;
for (k = 0; k < i->nr_segs; k++, skip = 0) {
size_t len = i->bvec[k].bv_len - skip;
res |= (unsigned long)i->bvec[k].bv_offset + skip;
if (len > size)
len = size;
res |= len;
size -= len;
if (!size)
break;
}
return res;
}
unsigned long iov_iter_alignment(const struct iov_iter *i)
{
if (likely(iter_is_ubuf(i))) {
size_t size = i->count;
if (size)
return ((unsigned long)i->ubuf + i->iov_offset) | size;
return 0;
}
/* iovec and kvec have identical layouts */
if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
return iov_iter_alignment_iovec(i);
if (iov_iter_is_bvec(i))
return iov_iter_alignment_bvec(i);
if (iov_iter_is_pipe(i)) {
size_t size = i->count;
if (size && i->last_offset > 0)
return size | i->last_offset;
return size;
}
if (iov_iter_is_xarray(i))
return (i->xarray_start + i->iov_offset) | i->count;
return 0;
}
EXPORT_SYMBOL(iov_iter_alignment);
unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
{
unsigned long res = 0;
unsigned long v = 0;
size_t size = i->count;
unsigned k;
if (iter_is_ubuf(i))
return 0;
if (WARN_ON(!iter_is_iovec(i)))
return ~0U;
for (k = 0; k < i->nr_segs; k++) {
const struct iovec *iov = iter_iov(i) + k;
if (iov->iov_len) {
unsigned long base = (unsigned long)iov->iov_base;
if (v) // if not the first one
res |= base | v; // this start | previous end
v = base + iov->iov_len;
if (size <= iov->iov_len)
break;
size -= iov->iov_len;
}
}
return res;
}
EXPORT_SYMBOL(iov_iter_gap_alignment);
static int want_pages_array(struct page ***res, size_t size,
size_t start, unsigned int maxpages)
{
unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
if (count > maxpages)
count = maxpages;
WARN_ON(!count); // caller should've prevented that
if (!*res) {
*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
if (!*res)
return 0;
}
return count;
}
static ssize_t pipe_get_pages(struct iov_iter *i,
struct page ***pages, size_t maxsize, unsigned maxpages,
size_t *start)
{
unsigned int npages, count, off, chunk;
struct page **p;
size_t left;
if (!sanity(i))
return -EFAULT;
*start = off = pipe_npages(i, &npages);
if (!npages)
return -EFAULT;
count = want_pages_array(pages, maxsize, off, min(npages, maxpages));
if (!count)
return -ENOMEM;
p = *pages;
for (npages = 0, left = maxsize ; npages < count; npages++, left -= chunk) {
struct page *page = append_pipe(i, left, &off);
if (!page)
break;
chunk = min_t(size_t, left, PAGE_SIZE - off);
get_page(*p++ = page);
}
if (!npages)
return -EFAULT;
return maxsize - left;
}
static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
pgoff_t index, unsigned int nr_pages)
{
XA_STATE(xas, xa, index);
struct page *page;
unsigned int ret = 0;
rcu_read_lock();
for (page = xas_load(&xas); page; page = xas_next(&xas)) {
if (xas_retry(&xas, page))
continue;
/* Has the page moved or been split? */
if (unlikely(page != xas_reload(&xas))) {
xas_reset(&xas);
continue;
}
pages[ret] = find_subpage(page, xas.xa_index);
get_page(pages[ret]);
if (++ret == nr_pages)
break;
}
rcu_read_unlock();
return ret;
}
static ssize_t iter_xarray_get_pages(struct iov_iter *i,
struct page ***pages, size_t maxsize,
unsigned maxpages, size_t *_start_offset)
{
unsigned nr, offset, count;
pgoff_t index;
loff_t pos;
pos = i->xarray_start + i->iov_offset;
index = pos >> PAGE_SHIFT;
offset = pos & ~PAGE_MASK;
*_start_offset = offset;
count = want_pages_array(pages, maxsize, offset, maxpages);
if (!count)
return -ENOMEM;
nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
if (nr == 0)
return 0;
maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
i->iov_offset += maxsize;
i->count -= maxsize;
return maxsize;
}
/* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
{
size_t skip;
long k;
if (iter_is_ubuf(i))
return (unsigned long)i->ubuf + i->iov_offset;
for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
const struct iovec *iov = iter_iov(i) + k;
size_t len = iov->iov_len - skip;
if (unlikely(!len))
continue;
if (*size > len)
*size = len;
return (unsigned long)iov->iov_base + skip;
}
BUG(); // if it had been empty, we wouldn't get called
}
/* must be done on non-empty ITER_BVEC one */
static struct page *first_bvec_segment(const struct iov_iter *i,
size_t *size, size_t *start)
{
struct page *page;
size_t skip = i->iov_offset, len;
len = i->bvec->bv_len - skip;
if (*size > len)
*size = len;
skip += i->bvec->bv_offset;
page = i->bvec->bv_page + skip / PAGE_SIZE;
*start = skip % PAGE_SIZE;
return page;
}
static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
struct page ***pages, size_t maxsize,
unsigned int maxpages, size_t *start,
iov_iter_extraction_t extraction_flags)
{
unsigned int n, gup_flags = 0;
if (maxsize > i->count)
maxsize = i->count;
if (!maxsize)
return 0;
if (maxsize > MAX_RW_COUNT)
maxsize = MAX_RW_COUNT;
if (extraction_flags & ITER_ALLOW_P2PDMA)
gup_flags |= FOLL_PCI_P2PDMA;
if (likely(user_backed_iter(i))) {
unsigned long addr;
int res;
if (iov_iter_rw(i) != WRITE)
gup_flags |= FOLL_WRITE;
if (i->nofault)
gup_flags |= FOLL_NOFAULT;
addr = first_iovec_segment(i, &maxsize);
*start = addr % PAGE_SIZE;
addr &= PAGE_MASK;
n = want_pages_array(pages, maxsize, *start, maxpages);
if (!n)
return -ENOMEM;
res = get_user_pages_fast(addr, n, gup_flags, *pages);
if (unlikely(res <= 0))
return res;
maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
iov_iter_advance(i, maxsize);
return maxsize;
}
if (iov_iter_is_bvec(i)) {
struct page **p;
struct page *page;
page = first_bvec_segment(i, &maxsize, start);
n = want_pages_array(pages, maxsize, *start, maxpages);
if (!n)
return -ENOMEM;
p = *pages;
for (int k = 0; k < n; k++)
get_page(p[k] = page + k);
maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
i->count -= maxsize;
i->iov_offset += maxsize;
if (i->iov_offset == i->bvec->bv_len) {
i->iov_offset = 0;
i->bvec++;
i->nr_segs--;
}
return maxsize;
}
if (iov_iter_is_pipe(i))
return pipe_get_pages(i, pages, maxsize, maxpages, start);
if (iov_iter_is_xarray(i))
return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
return -EFAULT;
}
ssize_t iov_iter_get_pages(struct iov_iter *i,
struct page **pages, size_t maxsize, unsigned maxpages,
size_t *start, iov_iter_extraction_t extraction_flags)
{
if (!maxpages)
return 0;
BUG_ON(!pages);
return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages,
start, extraction_flags);
}
EXPORT_SYMBOL_GPL(iov_iter_get_pages);
ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
size_t maxsize, unsigned maxpages, size_t *start)
{
return iov_iter_get_pages(i, pages, maxsize, maxpages, start, 0);
}
EXPORT_SYMBOL(iov_iter_get_pages2);
ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
struct page ***pages, size_t maxsize,
size_t *start, iov_iter_extraction_t extraction_flags)
{
ssize_t len;
*pages = NULL;
len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start,
extraction_flags);
if (len <= 0) {
kvfree(*pages);
*pages = NULL;
}
return len;
}
EXPORT_SYMBOL_GPL(iov_iter_get_pages_alloc);
ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
struct page ***pages, size_t maxsize, size_t *start)
{
return iov_iter_get_pages_alloc(i, pages, maxsize, start, 0);
}
EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
struct iov_iter *i)
{
__wsum sum, next;
sum = *csum;
if (WARN_ON_ONCE(!i->data_source))
return 0;
iterate_and_advance(i, bytes, base, len, off, ({
next = csum_and_copy_from_user(base, addr + off, len);
sum = csum_block_add(sum, next, off);
next ? 0 : len;
}), ({
sum = csum_and_memcpy(addr + off, base, len, sum, off);
})
)
*csum = sum;
return bytes;
}
EXPORT_SYMBOL(csum_and_copy_from_iter);
size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
struct iov_iter *i)
{
struct csum_state *csstate = _csstate;
__wsum sum, next;
if (WARN_ON_ONCE(i->data_source))
return 0;
if (unlikely(iov_iter_is_discard(i))) {
// can't use csum_memcpy() for that one - data is not copied
csstate->csum = csum_block_add(csstate->csum,
csum_partial(addr, bytes, 0),
csstate->off);
csstate->off += bytes;
return bytes;
}
sum = csum_shift(csstate->csum, csstate->off);
if (unlikely(iov_iter_is_pipe(i)))
bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
else iterate_and_advance(i, bytes, base, len, off, ({
next = csum_and_copy_to_user(addr + off, base, len);
sum = csum_block_add(sum, next, off);
next ? 0 : len;
}), ({
sum = csum_and_memcpy(base, addr + off, len, sum, off);
})
)
csstate->csum = csum_shift(sum, csstate->off);
csstate->off += bytes;
return bytes;
}
EXPORT_SYMBOL(csum_and_copy_to_iter);
size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
struct iov_iter *i)
{
#ifdef CONFIG_CRYPTO_HASH
struct ahash_request *hash = hashp;
struct scatterlist sg;
size_t copied;
copied = copy_to_iter(addr, bytes, i);
sg_init_one(&sg, addr, copied);
ahash_request_set_crypt(hash, &sg, NULL, copied);
crypto_ahash_update(hash);
return copied;
#else
return 0;
#endif
}
EXPORT_SYMBOL(hash_and_copy_to_iter);
static int iov_npages(const struct iov_iter *i, int maxpages)
{
size_t skip = i->iov_offset, size = i->count;
const struct iovec *p;
int npages = 0;
for (p = iter_iov(i); size; skip = 0, p++) {
unsigned offs = offset_in_page(p->iov_base + skip);
size_t len = min(p->iov_len - skip, size);
if (len) {
size -= len;
npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
if (unlikely(npages > maxpages))
return maxpages;
}
}
return npages;
}
static int bvec_npages(const struct iov_iter *i, int maxpages)
{
size_t skip = i->iov_offset, size = i->count;
const struct bio_vec *p;
int npages = 0;
for (p = i->bvec; size; skip = 0, p++) {
unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
size_t len = min(p->bv_len - skip, size);
size -= len;
npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
if (unlikely(npages > maxpages))
return maxpages;
}
return npages;
}
int iov_iter_npages(const struct iov_iter *i, int maxpages)
{
if (unlikely(!i->count))
return 0;
if (likely(iter_is_ubuf(i))) {
unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
return min(npages, maxpages);
}
/* iovec and kvec have identical layouts */
if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
return iov_npages(i, maxpages);
if (iov_iter_is_bvec(i))
return bvec_npages(i, maxpages);
if (iov_iter_is_pipe(i)) {
int npages;
if (!sanity(i))
return 0;
pipe_npages(i, &npages);
return min(npages, maxpages);
}
if (iov_iter_is_xarray(i)) {
unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
return min(npages, maxpages);
}
return 0;
}
EXPORT_SYMBOL(iov_iter_npages);
const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
{
*new = *old;
if (unlikely(iov_iter_is_pipe(new))) {
WARN_ON(1);
return NULL;
}
if (iov_iter_is_bvec(new))
return new->bvec = kmemdup(new->bvec,
new->nr_segs * sizeof(struct bio_vec),
flags);
else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
/* iovec and kvec have identical layout */
return new->__iov = kmemdup(new->__iov,
new->nr_segs * sizeof(struct iovec),
flags);
return NULL;
}
EXPORT_SYMBOL(dup_iter);
static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
const struct iovec __user *uvec, unsigned long nr_segs)
{
const struct compat_iovec __user *uiov =
(const struct compat_iovec __user *)uvec;
int ret = -EFAULT, i;
if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
return -EFAULT;
for (i = 0; i < nr_segs; i++) {
compat_uptr_t buf;
compat_ssize_t len;
unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
/* check for compat_size_t not fitting in compat_ssize_t .. */
if (len < 0) {
ret = -EINVAL;
goto uaccess_end;
}
iov[i].iov_base = compat_ptr(buf);
iov[i].iov_len = len;
}
ret = 0;
uaccess_end:
user_access_end();
return ret;
}
static int copy_iovec_from_user(struct iovec *iov,
const struct iovec __user *uiov, unsigned long nr_segs)
{
int ret = -EFAULT;
if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
return -EFAULT;
do {
void __user *buf;
ssize_t len;
unsafe_get_user(len, &uiov->iov_len, uaccess_end);
unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
/* check for size_t not fitting in ssize_t .. */
if (unlikely(len < 0)) {
ret = -EINVAL;
goto uaccess_end;
}
iov->iov_base = buf;
iov->iov_len = len;
uiov++; iov++;
} while (--nr_segs);
ret = 0;
uaccess_end:
user_access_end();
return ret;
}
struct iovec *iovec_from_user(const struct iovec __user *uvec,
unsigned long nr_segs, unsigned long fast_segs,
struct iovec *fast_iov, bool compat)
{
struct iovec *iov = fast_iov;
int ret;
/*
* SuS says "The readv() function *may* fail if the iovcnt argument was
* less than or equal to 0, or greater than {IOV_MAX}. Linux has
* traditionally returned zero for zero segments, so...
*/
if (nr_segs == 0)
return iov;
if (nr_segs > UIO_MAXIOV)
return ERR_PTR(-EINVAL);
if (nr_segs > fast_segs) {
iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
if (!iov)
return ERR_PTR(-ENOMEM);
}
if (unlikely(compat))
ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
else
ret = copy_iovec_from_user(iov, uvec, nr_segs);
if (ret) {
if (iov != fast_iov)
kfree(iov);
return ERR_PTR(ret);
}
return iov;
}
/*
* Single segment iovec supplied by the user, import it as ITER_UBUF.
*/
static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
struct iovec **iovp, struct iov_iter *i,
bool compat)
{
struct iovec *iov = *iovp;
ssize_t ret;
if (compat)
ret = copy_compat_iovec_from_user(iov, uvec, 1);
else
ret = copy_iovec_from_user(iov, uvec, 1);
if (unlikely(ret))
return ret;
ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
if (unlikely(ret))
return ret;
*iovp = NULL;
return i->count;
}
ssize_t __import_iovec(int type, const struct iovec __user *uvec,
unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
struct iov_iter *i, bool compat)
{
ssize_t total_len = 0;
unsigned long seg;
struct iovec *iov;
if (nr_segs == 1)
return __import_iovec_ubuf(type, uvec, iovp, i, compat);
iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
if (IS_ERR(iov)) {
*iovp = NULL;
return PTR_ERR(iov);
}
/*
* According to the Single Unix Specification we should return EINVAL if
* an element length is < 0 when cast to ssize_t or if the total length
* would overflow the ssize_t return value of the system call.
*
* Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
* overflow case.
*/
for (seg = 0; seg < nr_segs; seg++) {
ssize_t len = (ssize_t)iov[seg].iov_len;
if (!access_ok(iov[seg].iov_base, len)) {
if (iov != *iovp)
kfree(iov);
*iovp = NULL;
return -EFAULT;
}
if (len > MAX_RW_COUNT - total_len) {
len = MAX_RW_COUNT - total_len;
iov[seg].iov_len = len;
}
total_len += len;
}
iov_iter_init(i, type, iov, nr_segs, total_len);
if (iov == *iovp)
*iovp = NULL;
else
*iovp = iov;
return total_len;
}
/**
* import_iovec() - Copy an array of &struct iovec from userspace
* into the kernel, check that it is valid, and initialize a new
* &struct iov_iter iterator to access it.
*
* @type: One of %READ or %WRITE.
* @uvec: Pointer to the userspace array.
* @nr_segs: Number of elements in userspace array.
* @fast_segs: Number of elements in @iov.
* @iovp: (input and output parameter) Pointer to pointer to (usually small
* on-stack) kernel array.
* @i: Pointer to iterator that will be initialized on success.
*
* If the array pointed to by *@iov is large enough to hold all @nr_segs,
* then this function places %NULL in *@iov on return. Otherwise, a new
* array will be allocated and the result placed in *@iov. This means that
* the caller may call kfree() on *@iov regardless of whether the small
* on-stack array was used or not (and regardless of whether this function
* returns an error or not).
*
* Return: Negative error code on error, bytes imported on success
*/
ssize_t import_iovec(int type, const struct iovec __user *uvec,
unsigned nr_segs, unsigned fast_segs,
struct iovec **iovp, struct iov_iter *i)
{
return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
in_compat_syscall());
}
EXPORT_SYMBOL(import_iovec);
int import_single_range(int rw, void __user *buf, size_t len,
struct iovec *iov, struct iov_iter *i)
{
if (len > MAX_RW_COUNT)
len = MAX_RW_COUNT;
if (unlikely(!access_ok(buf, len)))
return -EFAULT;
iov_iter_ubuf(i, rw, buf, len);
return 0;
}
EXPORT_SYMBOL(import_single_range);
int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
{
if (len > MAX_RW_COUNT)
len = MAX_RW_COUNT;
if (unlikely(!access_ok(buf, len)))
return -EFAULT;
iov_iter_ubuf(i, rw, buf, len);
return 0;
}
/**
* iov_iter_restore() - Restore a &struct iov_iter to the same state as when
* iov_iter_save_state() was called.
*
* @i: &struct iov_iter to restore
* @state: state to restore from
*
* Used after iov_iter_save_state() to bring restore @i, if operations may
* have advanced it.
*
* Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
*/
void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
{
if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
!iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
return;
i->iov_offset = state->iov_offset;
i->count = state->count;
if (iter_is_ubuf(i))
return;
/*
* For the *vec iters, nr_segs + iov is constant - if we increment
* the vec, then we also decrement the nr_segs count. Hence we don't
* need to track both of these, just one is enough and we can deduct
* the other from that. ITER_KVEC and ITER_IOVEC are the same struct
* size, so we can just increment the iov pointer as they are unionzed.
* ITER_BVEC _may_ be the same size on some archs, but on others it is
* not. Be safe and handle it separately.
*/
BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
if (iov_iter_is_bvec(i))
i->bvec -= state->nr_segs - i->nr_segs;
else
i->__iov -= state->nr_segs - i->nr_segs;
i->nr_segs = state->nr_segs;
}
/*
* Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not
* get references on the pages, nor does it get a pin on them.
*/
static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
struct page ***pages, size_t maxsize,
unsigned int maxpages,
iov_iter_extraction_t extraction_flags,
size_t *offset0)
{
struct page *page, **p;
unsigned int nr = 0, offset;
loff_t pos = i->xarray_start + i->iov_offset;
pgoff_t index = pos >> PAGE_SHIFT;
XA_STATE(xas, i->xarray, index);
offset = pos & ~PAGE_MASK;
*offset0 = offset;
maxpages = want_pages_array(pages, maxsize, offset, maxpages);
if (!maxpages)
return -ENOMEM;
p = *pages;
rcu_read_lock();
for (page = xas_load(&xas); page; page = xas_next(&xas)) {
if (xas_retry(&xas, page))
continue;
/* Has the page moved or been split? */
if (unlikely(page != xas_reload(&xas))) {
xas_reset(&xas);
continue;
}
p[nr++] = find_subpage(page, xas.xa_index);
if (nr == maxpages)
break;
}
rcu_read_unlock();
maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
iov_iter_advance(i, maxsize);
return maxsize;
}
/*
* Extract a list of contiguous pages from an ITER_BVEC iterator. This does
* not get references on the pages, nor does it get a pin on them.
*/
static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
struct page ***pages, size_t maxsize,
unsigned int maxpages,
iov_iter_extraction_t extraction_flags,
size_t *offset0)
{
struct page **p, *page;
size_t skip = i->iov_offset, offset;
int k;
for (;;) {
if (i->nr_segs == 0)
return 0;
maxsize = min(maxsize, i->bvec->bv_len - skip);
if (maxsize)
break;
i->iov_offset = 0;
i->nr_segs--;
i->bvec++;
skip = 0;
}
skip += i->bvec->bv_offset;
page = i->bvec->bv_page + skip / PAGE_SIZE;
offset = skip % PAGE_SIZE;
*offset0 = offset;
maxpages = want_pages_array(pages, maxsize, offset, maxpages);
if (!maxpages)
return -ENOMEM;
p = *pages;
for (k = 0; k < maxpages; k++)
p[k] = page + k;
maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
iov_iter_advance(i, maxsize);
return maxsize;
}
/*
* Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
* This does not get references on the pages, nor does it get a pin on them.
*/
static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
struct page ***pages, size_t maxsize,
unsigned int maxpages,
iov_iter_extraction_t extraction_flags,
size_t *offset0)
{
struct page **p, *page;
const void *kaddr;
size_t skip = i->iov_offset, offset, len;
int k;
for (;;) {
if (i->nr_segs == 0)
return 0;
maxsize = min(maxsize, i->kvec->iov_len - skip);
if (maxsize)
break;
i->iov_offset = 0;
i->nr_segs--;
i->kvec++;
skip = 0;
}
kaddr = i->kvec->iov_base + skip;
offset = (unsigned long)kaddr & ~PAGE_MASK;
*offset0 = offset;
maxpages = want_pages_array(pages, maxsize, offset, maxpages);
if (!maxpages)
return -ENOMEM;
p = *pages;
kaddr -= offset;
len = offset + maxsize;
for (k = 0; k < maxpages; k++) {
size_t seg = min_t(size_t, len, PAGE_SIZE);
if (is_vmalloc_or_module_addr(kaddr))
page = vmalloc_to_page(kaddr);
else
page = virt_to_page(kaddr);
p[k] = page;
len -= seg;
kaddr += PAGE_SIZE;
}
maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
iov_iter_advance(i, maxsize);
return maxsize;
}
/*
* Extract a list of contiguous pages from a user iterator and get a pin on
* each of them. This should only be used if the iterator is user-backed
* (IOBUF/UBUF).
*
* It does not get refs on the pages, but the pages must be unpinned by the
* caller once the transfer is complete.
*
* This is safe to be used where background IO/DMA *is* going to be modifying
* the buffer; using a pin rather than a ref makes forces fork() to give the
* child a copy of the page.
*/
static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
struct page ***pages,
size_t maxsize,
unsigned int maxpages,
iov_iter_extraction_t extraction_flags,
size_t *offset0)
{
unsigned long addr;
unsigned int gup_flags = 0;
size_t offset;
int res;
if (i->data_source == ITER_DEST)
gup_flags |= FOLL_WRITE;
if (extraction_flags & ITER_ALLOW_P2PDMA)
gup_flags |= FOLL_PCI_P2PDMA;
if (i->nofault)
gup_flags |= FOLL_NOFAULT;
addr = first_iovec_segment(i, &maxsize);
*offset0 = offset = addr % PAGE_SIZE;
addr &= PAGE_MASK;
maxpages = want_pages_array(pages, maxsize, offset, maxpages);
if (!maxpages)
return -ENOMEM;
res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
if (unlikely(res <= 0))
return res;
maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
iov_iter_advance(i, maxsize);
return maxsize;
}
/**
* iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
* @i: The iterator to extract from
* @pages: Where to return the list of pages
* @maxsize: The maximum amount of iterator to extract
* @maxpages: The maximum size of the list of pages
* @extraction_flags: Flags to qualify request
* @offset0: Where to return the starting offset into (*@pages)[0]
*
* Extract a list of contiguous pages from the current point of the iterator,
* advancing the iterator. The maximum number of pages and the maximum amount
* of page contents can be set.
*
* If *@pages is NULL, a page list will be allocated to the required size and
* *@pages will be set to its base. If *@pages is not NULL, it will be assumed
* that the caller allocated a page list at least @maxpages in size and this
* will be filled in.
*
* @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
* be allowed on the pages extracted.
*
* The iov_iter_extract_will_pin() function can be used to query how cleanup
* should be performed.
*
* Extra refs or pins on the pages may be obtained as follows:
*
* (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
* added to the pages, but refs will not be taken.
* iov_iter_extract_will_pin() will return true.
*
* (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
* merely listed; no extra refs or pins are obtained.
* iov_iter_extract_will_pin() will return 0.
*
* Note also:
*
* (*) Use with ITER_DISCARD is not supported as that has no content.
*
* On success, the function sets *@pages to the new pagelist, if allocated, and
* sets *offset0 to the offset into the first page.
*
* It may also return -ENOMEM and -EFAULT.
*/
ssize_t iov_iter_extract_pages(struct iov_iter *i,
struct page ***pages,
size_t maxsize,
unsigned int maxpages,
iov_iter_extraction_t extraction_flags,
size_t *offset0)
{
maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
if (!maxsize)
return 0;
if (likely(user_backed_iter(i)))
return iov_iter_extract_user_pages(i, pages, maxsize,
maxpages, extraction_flags,
offset0);
if (iov_iter_is_kvec(i))
return iov_iter_extract_kvec_pages(i, pages, maxsize,
maxpages, extraction_flags,
offset0);
if (iov_iter_is_bvec(i))
return iov_iter_extract_bvec_pages(i, pages, maxsize,
maxpages, extraction_flags,
offset0);
if (iov_iter_is_xarray(i))
return iov_iter_extract_xarray_pages(i, pages, maxsize,
maxpages, extraction_flags,
offset0);
return -EFAULT;
}
EXPORT_SYMBOL_GPL(iov_iter_extract_pages);