linux-next/arch/arm/mm/pv-fixup-asm.S
Linus Walleij a9ff696160 ARM: mm: Make virt_to_pfn() a static inline
Making virt_to_pfn() a static inline taking a strongly typed
(const void *) makes the contract of a passing a pointer of that
type to the function explicit and exposes any misuse of the
macro virt_to_pfn() acting polymorphic and accepting many types
such as (void *), (unitptr_t) or (unsigned long) as arguments
without warnings.

Doing this is a bit intrusive: virt_to_pfn() requires
PHYS_PFN_OFFSET and PAGE_SHIFT to be defined, and this is defined in
<asm/page.h>, so this must be included *before* <asm/memory.h>.

The use of macros were obscuring the unclear inclusion order here,
as the macros would eventually be resolved, but a static inline
like this cannot be compiled with unresolved macros.

The naive solution to include <asm/page.h> at the top of
<asm/memory.h> does not work, because <asm/memory.h> sometimes
includes <asm/page.h> at the end of itself, which would create a
confusing inclusion loop. So instead, take the approach to always
unconditionally include <asm/page.h> at the end of <asm/memory.h>

arch/arm uses <asm/memory.h> explicitly in a lot of places,
however it turns out that if we just unconditionally include
<asm/memory.h> into <asm/page.h> and switch all inclusions of
<asm/memory.h> to <asm/page.h> instead, we enforce the right
order and <asm/memory.h> will always have access to the
definitions.

Put an inclusion guard in place making it impossible to include
<asm/memory.h> explicitly.

Link: https://lore.kernel.org/linux-mm/20220701160004.2ffff4e5ab59a55499f4c736@linux-foundation.org/
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2023-05-29 11:27:08 +02:00

86 lines
1.8 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2015 Russell King
*
* This assembly is required to safely remap the physical address space
* for Keystone 2
*/
#include <linux/linkage.h>
#include <linux/pgtable.h>
#include <asm/asm-offsets.h>
#include <asm/cp15.h>
#include <asm/page.h>
.section ".idmap.text", "ax"
#define L1_ORDER 3
#define L2_ORDER 3
ENTRY(lpae_pgtables_remap_asm)
stmfd sp!, {r4-r8, lr}
mrc p15, 0, r8, c1, c0, 0 @ read control reg
bic ip, r8, #CR_M @ disable caches and MMU
mcr p15, 0, ip, c1, c0, 0
dsb
isb
/* Update level 2 entries covering the kernel */
ldr r6, =(_end - 1)
add r7, r2, #0x1000
add r6, r7, r6, lsr #SECTION_SHIFT - L2_ORDER
add r7, r7, #KERNEL_OFFSET >> (SECTION_SHIFT - L2_ORDER)
1: ldrd r4, r5, [r7]
adds r4, r4, r0
adc r5, r5, r1
strd r4, r5, [r7], #1 << L2_ORDER
cmp r7, r6
bls 1b
/* Update level 2 entries for the boot data */
add r7, r2, #0x1000
movw r3, #FDT_FIXED_BASE >> (SECTION_SHIFT - L2_ORDER)
add r7, r7, r3
ldrd r4, r5, [r7]
adds r4, r4, r0
adc r5, r5, r1
strd r4, r5, [r7], #1 << L2_ORDER
ldrd r4, r5, [r7]
adds r4, r4, r0
adc r5, r5, r1
strd r4, r5, [r7]
/* Update level 1 entries */
mov r6, #4
mov r7, r2
2: ldrd r4, r5, [r7]
adds r4, r4, r0
adc r5, r5, r1
strd r4, r5, [r7], #1 << L1_ORDER
subs r6, r6, #1
bne 2b
mrrc p15, 0, r4, r5, c2 @ read TTBR0
adds r4, r4, r0 @ update physical address
adc r5, r5, r1
mcrr p15, 0, r4, r5, c2 @ write back TTBR0
mrrc p15, 1, r4, r5, c2 @ read TTBR1
adds r4, r4, r0 @ update physical address
adc r5, r5, r1
mcrr p15, 1, r4, r5, c2 @ write back TTBR1
dsb
mov ip, #0
mcr p15, 0, ip, c7, c5, 0 @ I+BTB cache invalidate
mcr p15, 0, ip, c8, c7, 0 @ local_flush_tlb_all()
dsb
isb
mcr p15, 0, r8, c1, c0, 0 @ re-enable MMU
dsb
isb
ldmfd sp!, {r4-r8, pc}
ENDPROC(lpae_pgtables_remap_asm)