Andrii Nakryiko 0af3aace5b selftests/bpf: Don't truncate #test/subtest field
We currently expect up to a three-digit number of tests and subtests, so:

  #999/999: some_test/some_subtest: ...

Is the largest test/subtest we can see. If we happen to cross into
1000s, current logic will just truncate everything after 7th character.
This patch fixes this truncate and allows to go way higher (up to 31
characters in total). We still nicely align test numbers:

  #60/66   core_reloc_btfgen/type_based___incompat:OK
  #60/67   core_reloc_btfgen/type_based___fn_wrong_args:OK
  #60/68   core_reloc_btfgen/type_id:OK
  #60/69   core_reloc_btfgen/type_id___missing_targets:OK
  #60/70   core_reloc_btfgen/enumval:OK

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20231006175744.3136675-3-andrii@kernel.org
2023-10-06 20:17:28 +02:00

1775 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2017 Facebook
*/
#define _GNU_SOURCE
#include "test_progs.h"
#include "testing_helpers.h"
#include "cgroup_helpers.h"
#include <argp.h>
#include <pthread.h>
#include <sched.h>
#include <signal.h>
#include <string.h>
#include <execinfo.h> /* backtrace */
#include <sys/sysinfo.h> /* get_nprocs */
#include <netinet/in.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <bpf/btf.h>
#include "json_writer.h"
static bool verbose(void)
{
return env.verbosity > VERBOSE_NONE;
}
static void stdio_hijack_init(char **log_buf, size_t *log_cnt)
{
#ifdef __GLIBC__
if (verbose() && env.worker_id == -1) {
/* nothing to do, output to stdout by default */
return;
}
fflush(stdout);
fflush(stderr);
stdout = open_memstream(log_buf, log_cnt);
if (!stdout) {
stdout = env.stdout;
perror("open_memstream");
return;
}
if (env.subtest_state)
env.subtest_state->stdout = stdout;
else
env.test_state->stdout = stdout;
stderr = stdout;
#endif
}
static void stdio_hijack(char **log_buf, size_t *log_cnt)
{
#ifdef __GLIBC__
if (verbose() && env.worker_id == -1) {
/* nothing to do, output to stdout by default */
return;
}
env.stdout = stdout;
env.stderr = stderr;
stdio_hijack_init(log_buf, log_cnt);
#endif
}
static void stdio_restore_cleanup(void)
{
#ifdef __GLIBC__
if (verbose() && env.worker_id == -1) {
/* nothing to do, output to stdout by default */
return;
}
fflush(stdout);
if (env.subtest_state) {
fclose(env.subtest_state->stdout);
env.subtest_state->stdout = NULL;
stdout = env.test_state->stdout;
stderr = env.test_state->stdout;
} else {
fclose(env.test_state->stdout);
env.test_state->stdout = NULL;
}
#endif
}
static void stdio_restore(void)
{
#ifdef __GLIBC__
if (verbose() && env.worker_id == -1) {
/* nothing to do, output to stdout by default */
return;
}
if (stdout == env.stdout)
return;
stdio_restore_cleanup();
stdout = env.stdout;
stderr = env.stderr;
#endif
}
/* Adapted from perf/util/string.c */
static bool glob_match(const char *str, const char *pat)
{
while (*str && *pat && *pat != '*') {
if (*str != *pat)
return false;
str++;
pat++;
}
/* Check wild card */
if (*pat == '*') {
while (*pat == '*')
pat++;
if (!*pat) /* Tail wild card matches all */
return true;
while (*str)
if (glob_match(str++, pat))
return true;
}
return !*str && !*pat;
}
#define EXIT_NO_TEST 2
#define EXIT_ERR_SETUP_INFRA 3
/* defined in test_progs.h */
struct test_env env = {};
struct prog_test_def {
const char *test_name;
int test_num;
void (*run_test)(void);
void (*run_serial_test)(void);
bool should_run;
bool need_cgroup_cleanup;
};
/* Override C runtime library's usleep() implementation to ensure nanosleep()
* is always called. Usleep is frequently used in selftests as a way to
* trigger kprobe and tracepoints.
*/
int usleep(useconds_t usec)
{
struct timespec ts = {
.tv_sec = usec / 1000000,
.tv_nsec = (usec % 1000000) * 1000,
};
return syscall(__NR_nanosleep, &ts, NULL);
}
static bool should_run(struct test_selector *sel, int num, const char *name)
{
int i;
for (i = 0; i < sel->blacklist.cnt; i++) {
if (glob_match(name, sel->blacklist.tests[i].name) &&
!sel->blacklist.tests[i].subtest_cnt)
return false;
}
for (i = 0; i < sel->whitelist.cnt; i++) {
if (glob_match(name, sel->whitelist.tests[i].name))
return true;
}
if (!sel->whitelist.cnt && !sel->num_set)
return true;
return num < sel->num_set_len && sel->num_set[num];
}
static bool should_run_subtest(struct test_selector *sel,
struct test_selector *subtest_sel,
int subtest_num,
const char *test_name,
const char *subtest_name)
{
int i, j;
for (i = 0; i < sel->blacklist.cnt; i++) {
if (glob_match(test_name, sel->blacklist.tests[i].name)) {
if (!sel->blacklist.tests[i].subtest_cnt)
return false;
for (j = 0; j < sel->blacklist.tests[i].subtest_cnt; j++) {
if (glob_match(subtest_name,
sel->blacklist.tests[i].subtests[j]))
return false;
}
}
}
for (i = 0; i < sel->whitelist.cnt; i++) {
if (glob_match(test_name, sel->whitelist.tests[i].name)) {
if (!sel->whitelist.tests[i].subtest_cnt)
return true;
for (j = 0; j < sel->whitelist.tests[i].subtest_cnt; j++) {
if (glob_match(subtest_name,
sel->whitelist.tests[i].subtests[j]))
return true;
}
}
}
if (!sel->whitelist.cnt && !subtest_sel->num_set)
return true;
return subtest_num < subtest_sel->num_set_len && subtest_sel->num_set[subtest_num];
}
static char *test_result(bool failed, bool skipped)
{
return failed ? "FAIL" : (skipped ? "SKIP" : "OK");
}
#define TEST_NUM_WIDTH 7
static void print_test_result(const struct prog_test_def *test, const struct test_state *test_state)
{
int skipped_cnt = test_state->skip_cnt;
int subtests_cnt = test_state->subtest_num;
fprintf(env.stdout, "#%-*d %s:", TEST_NUM_WIDTH, test->test_num, test->test_name);
if (test_state->error_cnt)
fprintf(env.stdout, "FAIL");
else if (!skipped_cnt)
fprintf(env.stdout, "OK");
else if (skipped_cnt == subtests_cnt || !subtests_cnt)
fprintf(env.stdout, "SKIP");
else
fprintf(env.stdout, "OK (SKIP: %d/%d)", skipped_cnt, subtests_cnt);
fprintf(env.stdout, "\n");
}
static void print_test_log(char *log_buf, size_t log_cnt)
{
log_buf[log_cnt] = '\0';
fprintf(env.stdout, "%s", log_buf);
if (log_buf[log_cnt - 1] != '\n')
fprintf(env.stdout, "\n");
}
static void print_subtest_name(int test_num, int subtest_num,
const char *test_name, char *subtest_name,
char *result)
{
char test_num_str[32];
snprintf(test_num_str, sizeof(test_num_str), "%d/%d", test_num, subtest_num);
fprintf(env.stdout, "#%-*s %s/%s",
TEST_NUM_WIDTH, test_num_str,
test_name, subtest_name);
if (result)
fprintf(env.stdout, ":%s", result);
fprintf(env.stdout, "\n");
}
static void jsonw_write_log_message(json_writer_t *w, char *log_buf, size_t log_cnt)
{
/* open_memstream (from stdio_hijack_init) ensures that log_bug is terminated by a
* null byte. Yet in parallel mode, log_buf will be NULL if there is no message.
*/
if (log_cnt) {
jsonw_string_field(w, "message", log_buf);
} else {
jsonw_string_field(w, "message", "");
}
}
static void dump_test_log(const struct prog_test_def *test,
const struct test_state *test_state,
bool skip_ok_subtests,
bool par_exec_result,
json_writer_t *w)
{
bool test_failed = test_state->error_cnt > 0;
bool force_log = test_state->force_log;
bool print_test = verbose() || force_log || test_failed;
int i;
struct subtest_state *subtest_state;
bool subtest_failed;
bool subtest_filtered;
bool print_subtest;
/* we do not print anything in the worker thread */
if (env.worker_id != -1)
return;
/* there is nothing to print when verbose log is used and execution
* is not in parallel mode
*/
if (verbose() && !par_exec_result)
return;
if (test_state->log_cnt && print_test)
print_test_log(test_state->log_buf, test_state->log_cnt);
if (w && print_test) {
jsonw_start_object(w);
jsonw_string_field(w, "name", test->test_name);
jsonw_uint_field(w, "number", test->test_num);
jsonw_write_log_message(w, test_state->log_buf, test_state->log_cnt);
jsonw_bool_field(w, "failed", test_failed);
jsonw_name(w, "subtests");
jsonw_start_array(w);
}
for (i = 0; i < test_state->subtest_num; i++) {
subtest_state = &test_state->subtest_states[i];
subtest_failed = subtest_state->error_cnt;
subtest_filtered = subtest_state->filtered;
print_subtest = verbose() || force_log || subtest_failed;
if ((skip_ok_subtests && !subtest_failed) || subtest_filtered)
continue;
if (subtest_state->log_cnt && print_subtest) {
print_test_log(subtest_state->log_buf,
subtest_state->log_cnt);
}
print_subtest_name(test->test_num, i + 1,
test->test_name, subtest_state->name,
test_result(subtest_state->error_cnt,
subtest_state->skipped));
if (w && print_subtest) {
jsonw_start_object(w);
jsonw_string_field(w, "name", subtest_state->name);
jsonw_uint_field(w, "number", i+1);
jsonw_write_log_message(w, subtest_state->log_buf, subtest_state->log_cnt);
jsonw_bool_field(w, "failed", subtest_failed);
jsonw_end_object(w);
}
}
if (w && print_test) {
jsonw_end_array(w);
jsonw_end_object(w);
}
print_test_result(test, test_state);
}
static void stdio_restore(void);
/* A bunch of tests set custom affinity per-thread and/or per-process. Reset
* it after each test/sub-test.
*/
static void reset_affinity(void)
{
cpu_set_t cpuset;
int i, err;
CPU_ZERO(&cpuset);
for (i = 0; i < env.nr_cpus; i++)
CPU_SET(i, &cpuset);
err = sched_setaffinity(0, sizeof(cpuset), &cpuset);
if (err < 0) {
stdio_restore();
fprintf(stderr, "Failed to reset process affinity: %d!\n", err);
exit(EXIT_ERR_SETUP_INFRA);
}
err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
if (err < 0) {
stdio_restore();
fprintf(stderr, "Failed to reset thread affinity: %d!\n", err);
exit(EXIT_ERR_SETUP_INFRA);
}
}
static void save_netns(void)
{
env.saved_netns_fd = open("/proc/self/ns/net", O_RDONLY);
if (env.saved_netns_fd == -1) {
perror("open(/proc/self/ns/net)");
exit(EXIT_ERR_SETUP_INFRA);
}
}
static void restore_netns(void)
{
if (setns(env.saved_netns_fd, CLONE_NEWNET) == -1) {
stdio_restore();
perror("setns(CLONE_NEWNS)");
exit(EXIT_ERR_SETUP_INFRA);
}
}
void test__end_subtest(void)
{
struct prog_test_def *test = env.test;
struct test_state *test_state = env.test_state;
struct subtest_state *subtest_state = env.subtest_state;
if (subtest_state->error_cnt) {
test_state->error_cnt++;
} else {
if (!subtest_state->skipped)
test_state->sub_succ_cnt++;
else
test_state->skip_cnt++;
}
if (verbose() && !env.workers)
print_subtest_name(test->test_num, test_state->subtest_num,
test->test_name, subtest_state->name,
test_result(subtest_state->error_cnt,
subtest_state->skipped));
stdio_restore_cleanup();
env.subtest_state = NULL;
}
bool test__start_subtest(const char *subtest_name)
{
struct prog_test_def *test = env.test;
struct test_state *state = env.test_state;
struct subtest_state *subtest_state;
size_t sub_state_size = sizeof(*subtest_state);
if (env.subtest_state)
test__end_subtest();
state->subtest_num++;
state->subtest_states =
realloc(state->subtest_states,
state->subtest_num * sub_state_size);
if (!state->subtest_states) {
fprintf(stderr, "Not enough memory to allocate subtest result\n");
return false;
}
subtest_state = &state->subtest_states[state->subtest_num - 1];
memset(subtest_state, 0, sub_state_size);
if (!subtest_name || !subtest_name[0]) {
fprintf(env.stderr,
"Subtest #%d didn't provide sub-test name!\n",
state->subtest_num);
return false;
}
subtest_state->name = strdup(subtest_name);
if (!subtest_state->name) {
fprintf(env.stderr,
"Subtest #%d: failed to copy subtest name!\n",
state->subtest_num);
return false;
}
if (!should_run_subtest(&env.test_selector,
&env.subtest_selector,
state->subtest_num,
test->test_name,
subtest_name)) {
subtest_state->filtered = true;
return false;
}
env.subtest_state = subtest_state;
stdio_hijack_init(&subtest_state->log_buf, &subtest_state->log_cnt);
return true;
}
void test__force_log(void)
{
env.test_state->force_log = true;
}
void test__skip(void)
{
if (env.subtest_state)
env.subtest_state->skipped = true;
else
env.test_state->skip_cnt++;
}
void test__fail(void)
{
if (env.subtest_state)
env.subtest_state->error_cnt++;
else
env.test_state->error_cnt++;
}
int test__join_cgroup(const char *path)
{
int fd;
if (!env.test->need_cgroup_cleanup) {
if (setup_cgroup_environment()) {
fprintf(stderr,
"#%d %s: Failed to setup cgroup environment\n",
env.test->test_num, env.test->test_name);
return -1;
}
env.test->need_cgroup_cleanup = true;
}
fd = create_and_get_cgroup(path);
if (fd < 0) {
fprintf(stderr,
"#%d %s: Failed to create cgroup '%s' (errno=%d)\n",
env.test->test_num, env.test->test_name, path, errno);
return fd;
}
if (join_cgroup(path)) {
fprintf(stderr,
"#%d %s: Failed to join cgroup '%s' (errno=%d)\n",
env.test->test_num, env.test->test_name, path, errno);
return -1;
}
return fd;
}
int bpf_find_map(const char *test, struct bpf_object *obj, const char *name)
{
struct bpf_map *map;
map = bpf_object__find_map_by_name(obj, name);
if (!map) {
fprintf(stdout, "%s:FAIL:map '%s' not found\n", test, name);
test__fail();
return -1;
}
return bpf_map__fd(map);
}
static bool is_jit_enabled(void)
{
const char *jit_sysctl = "/proc/sys/net/core/bpf_jit_enable";
bool enabled = false;
int sysctl_fd;
sysctl_fd = open(jit_sysctl, 0, O_RDONLY);
if (sysctl_fd != -1) {
char tmpc;
if (read(sysctl_fd, &tmpc, sizeof(tmpc)) == 1)
enabled = (tmpc != '0');
close(sysctl_fd);
}
return enabled;
}
int compare_map_keys(int map1_fd, int map2_fd)
{
__u32 key, next_key;
char val_buf[PERF_MAX_STACK_DEPTH *
sizeof(struct bpf_stack_build_id)];
int err;
err = bpf_map_get_next_key(map1_fd, NULL, &key);
if (err)
return err;
err = bpf_map_lookup_elem(map2_fd, &key, val_buf);
if (err)
return err;
while (bpf_map_get_next_key(map1_fd, &key, &next_key) == 0) {
err = bpf_map_lookup_elem(map2_fd, &next_key, val_buf);
if (err)
return err;
key = next_key;
}
if (errno != ENOENT)
return -1;
return 0;
}
int compare_stack_ips(int smap_fd, int amap_fd, int stack_trace_len)
{
__u32 key, next_key, *cur_key_p, *next_key_p;
char *val_buf1, *val_buf2;
int i, err = 0;
val_buf1 = malloc(stack_trace_len);
val_buf2 = malloc(stack_trace_len);
cur_key_p = NULL;
next_key_p = &key;
while (bpf_map_get_next_key(smap_fd, cur_key_p, next_key_p) == 0) {
err = bpf_map_lookup_elem(smap_fd, next_key_p, val_buf1);
if (err)
goto out;
err = bpf_map_lookup_elem(amap_fd, next_key_p, val_buf2);
if (err)
goto out;
for (i = 0; i < stack_trace_len; i++) {
if (val_buf1[i] != val_buf2[i]) {
err = -1;
goto out;
}
}
key = *next_key_p;
cur_key_p = &key;
next_key_p = &next_key;
}
if (errno != ENOENT)
err = -1;
out:
free(val_buf1);
free(val_buf2);
return err;
}
/* extern declarations for test funcs */
#define DEFINE_TEST(name) \
extern void test_##name(void) __weak; \
extern void serial_test_##name(void) __weak;
#include <prog_tests/tests.h>
#undef DEFINE_TEST
static struct prog_test_def prog_test_defs[] = {
#define DEFINE_TEST(name) { \
.test_name = #name, \
.run_test = &test_##name, \
.run_serial_test = &serial_test_##name, \
},
#include <prog_tests/tests.h>
#undef DEFINE_TEST
};
static const int prog_test_cnt = ARRAY_SIZE(prog_test_defs);
static struct test_state test_states[ARRAY_SIZE(prog_test_defs)];
const char *argp_program_version = "test_progs 0.1";
const char *argp_program_bug_address = "<bpf@vger.kernel.org>";
static const char argp_program_doc[] =
"BPF selftests test runner\v"
"Options accepting the NAMES parameter take either a comma-separated list\n"
"of test names, or a filename prefixed with @. The file contains one name\n"
"(or wildcard pattern) per line, and comments beginning with # are ignored.\n"
"\n"
"These options can be passed repeatedly to read multiple files.\n";
enum ARG_KEYS {
ARG_TEST_NUM = 'n',
ARG_TEST_NAME = 't',
ARG_TEST_NAME_BLACKLIST = 'b',
ARG_VERIFIER_STATS = 's',
ARG_VERBOSE = 'v',
ARG_GET_TEST_CNT = 'c',
ARG_LIST_TEST_NAMES = 'l',
ARG_TEST_NAME_GLOB_ALLOWLIST = 'a',
ARG_TEST_NAME_GLOB_DENYLIST = 'd',
ARG_NUM_WORKERS = 'j',
ARG_DEBUG = -1,
ARG_JSON_SUMMARY = 'J'
};
static const struct argp_option opts[] = {
{ "num", ARG_TEST_NUM, "NUM", 0,
"Run test number NUM only " },
{ "name", ARG_TEST_NAME, "NAMES", 0,
"Run tests with names containing any string from NAMES list" },
{ "name-blacklist", ARG_TEST_NAME_BLACKLIST, "NAMES", 0,
"Don't run tests with names containing any string from NAMES list" },
{ "verifier-stats", ARG_VERIFIER_STATS, NULL, 0,
"Output verifier statistics", },
{ "verbose", ARG_VERBOSE, "LEVEL", OPTION_ARG_OPTIONAL,
"Verbose output (use -vv or -vvv for progressively verbose output)" },
{ "count", ARG_GET_TEST_CNT, NULL, 0,
"Get number of selected top-level tests " },
{ "list", ARG_LIST_TEST_NAMES, NULL, 0,
"List test names that would run (without running them) " },
{ "allow", ARG_TEST_NAME_GLOB_ALLOWLIST, "NAMES", 0,
"Run tests with name matching the pattern (supports '*' wildcard)." },
{ "deny", ARG_TEST_NAME_GLOB_DENYLIST, "NAMES", 0,
"Don't run tests with name matching the pattern (supports '*' wildcard)." },
{ "workers", ARG_NUM_WORKERS, "WORKERS", OPTION_ARG_OPTIONAL,
"Number of workers to run in parallel, default to number of cpus." },
{ "debug", ARG_DEBUG, NULL, 0,
"print extra debug information for test_progs." },
{ "json-summary", ARG_JSON_SUMMARY, "FILE", 0, "Write report in json format to this file."},
{},
};
static int libbpf_print_fn(enum libbpf_print_level level,
const char *format, va_list args)
{
if (env.verbosity < VERBOSE_VERY && level == LIBBPF_DEBUG)
return 0;
vfprintf(stdout, format, args);
return 0;
}
static void free_test_filter_set(const struct test_filter_set *set)
{
int i, j;
if (!set)
return;
for (i = 0; i < set->cnt; i++) {
free((void *)set->tests[i].name);
for (j = 0; j < set->tests[i].subtest_cnt; j++)
free((void *)set->tests[i].subtests[j]);
free((void *)set->tests[i].subtests);
}
free((void *)set->tests);
}
static void free_test_selector(struct test_selector *test_selector)
{
free_test_filter_set(&test_selector->blacklist);
free_test_filter_set(&test_selector->whitelist);
free(test_selector->num_set);
}
extern int extra_prog_load_log_flags;
static error_t parse_arg(int key, char *arg, struct argp_state *state)
{
struct test_env *env = state->input;
int err = 0;
switch (key) {
case ARG_TEST_NUM: {
char *subtest_str = strchr(arg, '/');
if (subtest_str) {
*subtest_str = '\0';
if (parse_num_list(subtest_str + 1,
&env->subtest_selector.num_set,
&env->subtest_selector.num_set_len)) {
fprintf(stderr,
"Failed to parse subtest numbers.\n");
return -EINVAL;
}
}
if (parse_num_list(arg, &env->test_selector.num_set,
&env->test_selector.num_set_len)) {
fprintf(stderr, "Failed to parse test numbers.\n");
return -EINVAL;
}
break;
}
case ARG_TEST_NAME_GLOB_ALLOWLIST:
case ARG_TEST_NAME: {
if (arg[0] == '@')
err = parse_test_list_file(arg + 1,
&env->test_selector.whitelist,
key == ARG_TEST_NAME_GLOB_ALLOWLIST);
else
err = parse_test_list(arg,
&env->test_selector.whitelist,
key == ARG_TEST_NAME_GLOB_ALLOWLIST);
break;
}
case ARG_TEST_NAME_GLOB_DENYLIST:
case ARG_TEST_NAME_BLACKLIST: {
if (arg[0] == '@')
err = parse_test_list_file(arg + 1,
&env->test_selector.blacklist,
key == ARG_TEST_NAME_GLOB_DENYLIST);
else
err = parse_test_list(arg,
&env->test_selector.blacklist,
key == ARG_TEST_NAME_GLOB_DENYLIST);
break;
}
case ARG_VERIFIER_STATS:
env->verifier_stats = true;
break;
case ARG_VERBOSE:
env->verbosity = VERBOSE_NORMAL;
if (arg) {
if (strcmp(arg, "v") == 0) {
env->verbosity = VERBOSE_VERY;
extra_prog_load_log_flags = 1;
} else if (strcmp(arg, "vv") == 0) {
env->verbosity = VERBOSE_SUPER;
extra_prog_load_log_flags = 2;
} else {
fprintf(stderr,
"Unrecognized verbosity setting ('%s'), only -v and -vv are supported\n",
arg);
return -EINVAL;
}
}
if (verbose()) {
if (setenv("SELFTESTS_VERBOSE", "1", 1) == -1) {
fprintf(stderr,
"Unable to setenv SELFTESTS_VERBOSE=1 (errno=%d)",
errno);
return -EINVAL;
}
}
break;
case ARG_GET_TEST_CNT:
env->get_test_cnt = true;
break;
case ARG_LIST_TEST_NAMES:
env->list_test_names = true;
break;
case ARG_NUM_WORKERS:
if (arg) {
env->workers = atoi(arg);
if (!env->workers) {
fprintf(stderr, "Invalid number of worker: %s.", arg);
return -EINVAL;
}
} else {
env->workers = get_nprocs();
}
break;
case ARG_DEBUG:
env->debug = true;
break;
case ARG_JSON_SUMMARY:
env->json = fopen(arg, "w");
if (env->json == NULL) {
perror("Failed to open json summary file");
return -errno;
}
break;
case ARGP_KEY_ARG:
argp_usage(state);
break;
case ARGP_KEY_END:
break;
default:
return ARGP_ERR_UNKNOWN;
}
return err;
}
/*
* Determine if test_progs is running as a "flavored" test runner and switch
* into corresponding sub-directory to load correct BPF objects.
*
* This is done by looking at executable name. If it contains "-flavor"
* suffix, then we are running as a flavored test runner.
*/
int cd_flavor_subdir(const char *exec_name)
{
/* General form of argv[0] passed here is:
* some/path/to/test_progs[-flavor], where -flavor part is optional.
* First cut out "test_progs[-flavor]" part, then extract "flavor"
* part, if it's there.
*/
const char *flavor = strrchr(exec_name, '/');
if (!flavor)
flavor = exec_name;
else
flavor++;
flavor = strrchr(flavor, '-');
if (!flavor)
return 0;
flavor++;
if (verbose())
fprintf(stdout, "Switching to flavor '%s' subdirectory...\n", flavor);
return chdir(flavor);
}
int trigger_module_test_read(int read_sz)
{
int fd, err;
fd = open(BPF_TESTMOD_TEST_FILE, O_RDONLY);
err = -errno;
if (!ASSERT_GE(fd, 0, "testmod_file_open"))
return err;
read(fd, NULL, read_sz);
close(fd);
return 0;
}
int trigger_module_test_write(int write_sz)
{
int fd, err;
char *buf = malloc(write_sz);
if (!buf)
return -ENOMEM;
memset(buf, 'a', write_sz);
buf[write_sz-1] = '\0';
fd = open(BPF_TESTMOD_TEST_FILE, O_WRONLY);
err = -errno;
if (!ASSERT_GE(fd, 0, "testmod_file_open")) {
free(buf);
return err;
}
write(fd, buf, write_sz);
close(fd);
free(buf);
return 0;
}
int write_sysctl(const char *sysctl, const char *value)
{
int fd, err, len;
fd = open(sysctl, O_WRONLY);
if (!ASSERT_NEQ(fd, -1, "open sysctl"))
return -1;
len = strlen(value);
err = write(fd, value, len);
close(fd);
if (!ASSERT_EQ(err, len, "write sysctl"))
return -1;
return 0;
}
int get_bpf_max_tramp_links_from(struct btf *btf)
{
const struct btf_enum *e;
const struct btf_type *t;
__u32 i, type_cnt;
const char *name;
__u16 j, vlen;
for (i = 1, type_cnt = btf__type_cnt(btf); i < type_cnt; i++) {
t = btf__type_by_id(btf, i);
if (!t || !btf_is_enum(t) || t->name_off)
continue;
e = btf_enum(t);
for (j = 0, vlen = btf_vlen(t); j < vlen; j++, e++) {
name = btf__str_by_offset(btf, e->name_off);
if (name && !strcmp(name, "BPF_MAX_TRAMP_LINKS"))
return e->val;
}
}
return -1;
}
int get_bpf_max_tramp_links(void)
{
struct btf *vmlinux_btf;
int ret;
vmlinux_btf = btf__load_vmlinux_btf();
if (!ASSERT_OK_PTR(vmlinux_btf, "vmlinux btf"))
return -1;
ret = get_bpf_max_tramp_links_from(vmlinux_btf);
btf__free(vmlinux_btf);
return ret;
}
#define MAX_BACKTRACE_SZ 128
void crash_handler(int signum)
{
void *bt[MAX_BACKTRACE_SZ];
size_t sz;
sz = backtrace(bt, ARRAY_SIZE(bt));
if (env.stdout)
stdio_restore();
if (env.test) {
env.test_state->error_cnt++;
dump_test_log(env.test, env.test_state, true, false, NULL);
}
if (env.worker_id != -1)
fprintf(stderr, "[%d]: ", env.worker_id);
fprintf(stderr, "Caught signal #%d!\nStack trace:\n", signum);
backtrace_symbols_fd(bt, sz, STDERR_FILENO);
}
static void sigint_handler(int signum)
{
int i;
for (i = 0; i < env.workers; i++)
if (env.worker_socks[i] > 0)
close(env.worker_socks[i]);
}
static int current_test_idx;
static pthread_mutex_t current_test_lock;
static pthread_mutex_t stdout_output_lock;
static inline const char *str_msg(const struct msg *msg, char *buf)
{
switch (msg->type) {
case MSG_DO_TEST:
sprintf(buf, "MSG_DO_TEST %d", msg->do_test.num);
break;
case MSG_TEST_DONE:
sprintf(buf, "MSG_TEST_DONE %d (log: %d)",
msg->test_done.num,
msg->test_done.have_log);
break;
case MSG_SUBTEST_DONE:
sprintf(buf, "MSG_SUBTEST_DONE %d (log: %d)",
msg->subtest_done.num,
msg->subtest_done.have_log);
break;
case MSG_TEST_LOG:
sprintf(buf, "MSG_TEST_LOG (cnt: %zu, last: %d)",
strlen(msg->test_log.log_buf),
msg->test_log.is_last);
break;
case MSG_EXIT:
sprintf(buf, "MSG_EXIT");
break;
default:
sprintf(buf, "UNKNOWN");
break;
}
return buf;
}
static int send_message(int sock, const struct msg *msg)
{
char buf[256];
if (env.debug)
fprintf(stderr, "Sending msg: %s\n", str_msg(msg, buf));
return send(sock, msg, sizeof(*msg), 0);
}
static int recv_message(int sock, struct msg *msg)
{
int ret;
char buf[256];
memset(msg, 0, sizeof(*msg));
ret = recv(sock, msg, sizeof(*msg), 0);
if (ret >= 0) {
if (env.debug)
fprintf(stderr, "Received msg: %s\n", str_msg(msg, buf));
}
return ret;
}
static void run_one_test(int test_num)
{
struct prog_test_def *test = &prog_test_defs[test_num];
struct test_state *state = &test_states[test_num];
env.test = test;
env.test_state = state;
stdio_hijack(&state->log_buf, &state->log_cnt);
if (test->run_test)
test->run_test();
else if (test->run_serial_test)
test->run_serial_test();
/* ensure last sub-test is finalized properly */
if (env.subtest_state)
test__end_subtest();
state->tested = true;
if (verbose() && env.worker_id == -1)
print_test_result(test, state);
reset_affinity();
restore_netns();
if (test->need_cgroup_cleanup)
cleanup_cgroup_environment();
stdio_restore();
dump_test_log(test, state, false, false, NULL);
}
struct dispatch_data {
int worker_id;
int sock_fd;
};
static int read_prog_test_msg(int sock_fd, struct msg *msg, enum msg_type type)
{
if (recv_message(sock_fd, msg) < 0)
return 1;
if (msg->type != type) {
printf("%s: unexpected message type %d. expected %d\n", __func__, msg->type, type);
return 1;
}
return 0;
}
static int dispatch_thread_read_log(int sock_fd, char **log_buf, size_t *log_cnt)
{
FILE *log_fp = NULL;
int result = 0;
log_fp = open_memstream(log_buf, log_cnt);
if (!log_fp)
return 1;
while (true) {
struct msg msg;
if (read_prog_test_msg(sock_fd, &msg, MSG_TEST_LOG)) {
result = 1;
goto out;
}
fprintf(log_fp, "%s", msg.test_log.log_buf);
if (msg.test_log.is_last)
break;
}
out:
fclose(log_fp);
log_fp = NULL;
return result;
}
static int dispatch_thread_send_subtests(int sock_fd, struct test_state *state)
{
struct msg msg;
struct subtest_state *subtest_state;
int subtest_num = state->subtest_num;
state->subtest_states = malloc(subtest_num * sizeof(*subtest_state));
for (int i = 0; i < subtest_num; i++) {
subtest_state = &state->subtest_states[i];
memset(subtest_state, 0, sizeof(*subtest_state));
if (read_prog_test_msg(sock_fd, &msg, MSG_SUBTEST_DONE))
return 1;
subtest_state->name = strdup(msg.subtest_done.name);
subtest_state->error_cnt = msg.subtest_done.error_cnt;
subtest_state->skipped = msg.subtest_done.skipped;
subtest_state->filtered = msg.subtest_done.filtered;
/* collect all logs */
if (msg.subtest_done.have_log)
if (dispatch_thread_read_log(sock_fd,
&subtest_state->log_buf,
&subtest_state->log_cnt))
return 1;
}
return 0;
}
static void *dispatch_thread(void *ctx)
{
struct dispatch_data *data = ctx;
int sock_fd;
sock_fd = data->sock_fd;
while (true) {
int test_to_run = -1;
struct prog_test_def *test;
struct test_state *state;
/* grab a test */
{
pthread_mutex_lock(&current_test_lock);
if (current_test_idx >= prog_test_cnt) {
pthread_mutex_unlock(&current_test_lock);
goto done;
}
test = &prog_test_defs[current_test_idx];
test_to_run = current_test_idx;
current_test_idx++;
pthread_mutex_unlock(&current_test_lock);
}
if (!test->should_run || test->run_serial_test)
continue;
/* run test through worker */
{
struct msg msg_do_test;
memset(&msg_do_test, 0, sizeof(msg_do_test));
msg_do_test.type = MSG_DO_TEST;
msg_do_test.do_test.num = test_to_run;
if (send_message(sock_fd, &msg_do_test) < 0) {
perror("Fail to send command");
goto done;
}
env.worker_current_test[data->worker_id] = test_to_run;
}
/* wait for test done */
do {
struct msg msg;
if (read_prog_test_msg(sock_fd, &msg, MSG_TEST_DONE))
goto error;
if (test_to_run != msg.test_done.num)
goto error;
state = &test_states[test_to_run];
state->tested = true;
state->error_cnt = msg.test_done.error_cnt;
state->skip_cnt = msg.test_done.skip_cnt;
state->sub_succ_cnt = msg.test_done.sub_succ_cnt;
state->subtest_num = msg.test_done.subtest_num;
/* collect all logs */
if (msg.test_done.have_log) {
if (dispatch_thread_read_log(sock_fd,
&state->log_buf,
&state->log_cnt))
goto error;
}
/* collect all subtests and subtest logs */
if (!state->subtest_num)
break;
if (dispatch_thread_send_subtests(sock_fd, state))
goto error;
} while (false);
pthread_mutex_lock(&stdout_output_lock);
dump_test_log(test, state, false, true, NULL);
pthread_mutex_unlock(&stdout_output_lock);
} /* while (true) */
error:
if (env.debug)
fprintf(stderr, "[%d]: Protocol/IO error: %s.\n", data->worker_id, strerror(errno));
done:
{
struct msg msg_exit;
msg_exit.type = MSG_EXIT;
if (send_message(sock_fd, &msg_exit) < 0) {
if (env.debug)
fprintf(stderr, "[%d]: send_message msg_exit: %s.\n",
data->worker_id, strerror(errno));
}
}
return NULL;
}
static void calculate_summary_and_print_errors(struct test_env *env)
{
int i;
int succ_cnt = 0, fail_cnt = 0, sub_succ_cnt = 0, skip_cnt = 0;
json_writer_t *w = NULL;
for (i = 0; i < prog_test_cnt; i++) {
struct test_state *state = &test_states[i];
if (!state->tested)
continue;
sub_succ_cnt += state->sub_succ_cnt;
skip_cnt += state->skip_cnt;
if (state->error_cnt)
fail_cnt++;
else
succ_cnt++;
}
if (env->json) {
w = jsonw_new(env->json);
if (!w)
fprintf(env->stderr, "Failed to create new JSON stream.");
}
if (w) {
jsonw_start_object(w);
jsonw_uint_field(w, "success", succ_cnt);
jsonw_uint_field(w, "success_subtest", sub_succ_cnt);
jsonw_uint_field(w, "skipped", skip_cnt);
jsonw_uint_field(w, "failed", fail_cnt);
jsonw_name(w, "results");
jsonw_start_array(w);
}
/*
* We only print error logs summary when there are failed tests and
* verbose mode is not enabled. Otherwise, results may be incosistent.
*
*/
if (!verbose() && fail_cnt) {
printf("\nAll error logs:\n");
/* print error logs again */
for (i = 0; i < prog_test_cnt; i++) {
struct prog_test_def *test = &prog_test_defs[i];
struct test_state *state = &test_states[i];
if (!state->tested || !state->error_cnt)
continue;
dump_test_log(test, state, true, true, w);
}
}
if (w) {
jsonw_end_array(w);
jsonw_end_object(w);
jsonw_destroy(&w);
}
if (env->json)
fclose(env->json);
printf("Summary: %d/%d PASSED, %d SKIPPED, %d FAILED\n",
succ_cnt, sub_succ_cnt, skip_cnt, fail_cnt);
env->succ_cnt = succ_cnt;
env->sub_succ_cnt = sub_succ_cnt;
env->fail_cnt = fail_cnt;
env->skip_cnt = skip_cnt;
}
static void server_main(void)
{
pthread_t *dispatcher_threads;
struct dispatch_data *data;
struct sigaction sigact_int = {
.sa_handler = sigint_handler,
.sa_flags = SA_RESETHAND,
};
int i;
sigaction(SIGINT, &sigact_int, NULL);
dispatcher_threads = calloc(sizeof(pthread_t), env.workers);
data = calloc(sizeof(struct dispatch_data), env.workers);
env.worker_current_test = calloc(sizeof(int), env.workers);
for (i = 0; i < env.workers; i++) {
int rc;
data[i].worker_id = i;
data[i].sock_fd = env.worker_socks[i];
rc = pthread_create(&dispatcher_threads[i], NULL, dispatch_thread, &data[i]);
if (rc < 0) {
perror("Failed to launch dispatcher thread");
exit(EXIT_ERR_SETUP_INFRA);
}
}
/* wait for all dispatcher to finish */
for (i = 0; i < env.workers; i++) {
while (true) {
int ret = pthread_tryjoin_np(dispatcher_threads[i], NULL);
if (!ret) {
break;
} else if (ret == EBUSY) {
if (env.debug)
fprintf(stderr, "Still waiting for thread %d (test %d).\n",
i, env.worker_current_test[i] + 1);
usleep(1000 * 1000);
continue;
} else {
fprintf(stderr, "Unexpected error joining dispatcher thread: %d", ret);
break;
}
}
}
free(dispatcher_threads);
free(env.worker_current_test);
free(data);
/* run serial tests */
save_netns();
for (int i = 0; i < prog_test_cnt; i++) {
struct prog_test_def *test = &prog_test_defs[i];
if (!test->should_run || !test->run_serial_test)
continue;
run_one_test(i);
}
/* generate summary */
fflush(stderr);
fflush(stdout);
calculate_summary_and_print_errors(&env);
/* reap all workers */
for (i = 0; i < env.workers; i++) {
int wstatus, pid;
pid = waitpid(env.worker_pids[i], &wstatus, 0);
if (pid != env.worker_pids[i])
perror("Unable to reap worker");
}
}
static void worker_main_send_log(int sock, char *log_buf, size_t log_cnt)
{
char *src;
size_t slen;
src = log_buf;
slen = log_cnt;
while (slen) {
struct msg msg_log;
char *dest;
size_t len;
memset(&msg_log, 0, sizeof(msg_log));
msg_log.type = MSG_TEST_LOG;
dest = msg_log.test_log.log_buf;
len = slen >= MAX_LOG_TRUNK_SIZE ? MAX_LOG_TRUNK_SIZE : slen;
memcpy(dest, src, len);
src += len;
slen -= len;
if (!slen)
msg_log.test_log.is_last = true;
assert(send_message(sock, &msg_log) >= 0);
}
}
static void free_subtest_state(struct subtest_state *state)
{
if (state->log_buf) {
free(state->log_buf);
state->log_buf = NULL;
state->log_cnt = 0;
}
free(state->name);
state->name = NULL;
}
static int worker_main_send_subtests(int sock, struct test_state *state)
{
int i, result = 0;
struct msg msg;
struct subtest_state *subtest_state;
memset(&msg, 0, sizeof(msg));
msg.type = MSG_SUBTEST_DONE;
for (i = 0; i < state->subtest_num; i++) {
subtest_state = &state->subtest_states[i];
msg.subtest_done.num = i;
strncpy(msg.subtest_done.name, subtest_state->name, MAX_SUBTEST_NAME);
msg.subtest_done.error_cnt = subtest_state->error_cnt;
msg.subtest_done.skipped = subtest_state->skipped;
msg.subtest_done.filtered = subtest_state->filtered;
msg.subtest_done.have_log = false;
if (verbose() || state->force_log || subtest_state->error_cnt) {
if (subtest_state->log_cnt)
msg.subtest_done.have_log = true;
}
if (send_message(sock, &msg) < 0) {
perror("Fail to send message done");
result = 1;
goto out;
}
/* send logs */
if (msg.subtest_done.have_log)
worker_main_send_log(sock, subtest_state->log_buf, subtest_state->log_cnt);
free_subtest_state(subtest_state);
free(subtest_state->name);
}
out:
for (; i < state->subtest_num; i++)
free_subtest_state(&state->subtest_states[i]);
free(state->subtest_states);
return result;
}
static int worker_main(int sock)
{
save_netns();
while (true) {
/* receive command */
struct msg msg;
if (recv_message(sock, &msg) < 0)
goto out;
switch (msg.type) {
case MSG_EXIT:
if (env.debug)
fprintf(stderr, "[%d]: worker exit.\n",
env.worker_id);
goto out;
case MSG_DO_TEST: {
int test_to_run = msg.do_test.num;
struct prog_test_def *test = &prog_test_defs[test_to_run];
struct test_state *state = &test_states[test_to_run];
struct msg msg;
if (env.debug)
fprintf(stderr, "[%d]: #%d:%s running.\n",
env.worker_id,
test_to_run + 1,
test->test_name);
run_one_test(test_to_run);
memset(&msg, 0, sizeof(msg));
msg.type = MSG_TEST_DONE;
msg.test_done.num = test_to_run;
msg.test_done.error_cnt = state->error_cnt;
msg.test_done.skip_cnt = state->skip_cnt;
msg.test_done.sub_succ_cnt = state->sub_succ_cnt;
msg.test_done.subtest_num = state->subtest_num;
msg.test_done.have_log = false;
if (verbose() || state->force_log || state->error_cnt) {
if (state->log_cnt)
msg.test_done.have_log = true;
}
if (send_message(sock, &msg) < 0) {
perror("Fail to send message done");
goto out;
}
/* send logs */
if (msg.test_done.have_log)
worker_main_send_log(sock, state->log_buf, state->log_cnt);
if (state->log_buf) {
free(state->log_buf);
state->log_buf = NULL;
state->log_cnt = 0;
}
if (state->subtest_num)
if (worker_main_send_subtests(sock, state))
goto out;
if (env.debug)
fprintf(stderr, "[%d]: #%d:%s done.\n",
env.worker_id,
test_to_run + 1,
test->test_name);
break;
} /* case MSG_DO_TEST */
default:
if (env.debug)
fprintf(stderr, "[%d]: unknown message.\n", env.worker_id);
return -1;
}
}
out:
return 0;
}
static void free_test_states(void)
{
int i, j;
for (i = 0; i < ARRAY_SIZE(prog_test_defs); i++) {
struct test_state *test_state = &test_states[i];
for (j = 0; j < test_state->subtest_num; j++)
free_subtest_state(&test_state->subtest_states[j]);
free(test_state->subtest_states);
free(test_state->log_buf);
test_state->subtest_states = NULL;
test_state->log_buf = NULL;
}
}
int main(int argc, char **argv)
{
static const struct argp argp = {
.options = opts,
.parser = parse_arg,
.doc = argp_program_doc,
};
struct sigaction sigact = {
.sa_handler = crash_handler,
.sa_flags = SA_RESETHAND,
};
int err, i;
sigaction(SIGSEGV, &sigact, NULL);
err = argp_parse(&argp, argc, argv, 0, NULL, &env);
if (err)
return err;
err = cd_flavor_subdir(argv[0]);
if (err)
return err;
/* Use libbpf 1.0 API mode */
libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
libbpf_set_print(libbpf_print_fn);
srand(time(NULL));
env.jit_enabled = is_jit_enabled();
env.nr_cpus = libbpf_num_possible_cpus();
if (env.nr_cpus < 0) {
fprintf(stderr, "Failed to get number of CPUs: %d!\n",
env.nr_cpus);
return -1;
}
env.stdout = stdout;
env.stderr = stderr;
env.has_testmod = true;
if (!env.list_test_names) {
/* ensure previous instance of the module is unloaded */
unload_bpf_testmod(verbose());
if (load_bpf_testmod(verbose())) {
fprintf(env.stderr, "WARNING! Selftests relying on bpf_testmod.ko will be skipped.\n");
env.has_testmod = false;
}
}
/* initializing tests */
for (i = 0; i < prog_test_cnt; i++) {
struct prog_test_def *test = &prog_test_defs[i];
test->test_num = i + 1;
test->should_run = should_run(&env.test_selector,
test->test_num, test->test_name);
if ((test->run_test == NULL && test->run_serial_test == NULL) ||
(test->run_test != NULL && test->run_serial_test != NULL)) {
fprintf(stderr, "Test %d:%s must have either test_%s() or serial_test_%sl() defined.\n",
test->test_num, test->test_name, test->test_name, test->test_name);
exit(EXIT_ERR_SETUP_INFRA);
}
}
/* ignore workers if we are just listing */
if (env.get_test_cnt || env.list_test_names)
env.workers = 0;
/* launch workers if requested */
env.worker_id = -1; /* main process */
if (env.workers) {
env.worker_pids = calloc(sizeof(__pid_t), env.workers);
env.worker_socks = calloc(sizeof(int), env.workers);
if (env.debug)
fprintf(stdout, "Launching %d workers.\n", env.workers);
for (i = 0; i < env.workers; i++) {
int sv[2];
pid_t pid;
if (socketpair(AF_UNIX, SOCK_SEQPACKET | SOCK_CLOEXEC, 0, sv) < 0) {
perror("Fail to create worker socket");
return -1;
}
pid = fork();
if (pid < 0) {
perror("Failed to fork worker");
return -1;
} else if (pid != 0) { /* main process */
close(sv[1]);
env.worker_pids[i] = pid;
env.worker_socks[i] = sv[0];
} else { /* inside each worker process */
close(sv[0]);
env.worker_id = i;
return worker_main(sv[1]);
}
}
if (env.worker_id == -1) {
server_main();
goto out;
}
}
/* The rest of the main process */
/* on single mode */
save_netns();
for (i = 0; i < prog_test_cnt; i++) {
struct prog_test_def *test = &prog_test_defs[i];
if (!test->should_run)
continue;
if (env.get_test_cnt) {
env.succ_cnt++;
continue;
}
if (env.list_test_names) {
fprintf(env.stdout, "%s\n", test->test_name);
env.succ_cnt++;
continue;
}
run_one_test(i);
}
if (env.get_test_cnt) {
printf("%d\n", env.succ_cnt);
goto out;
}
if (env.list_test_names)
goto out;
calculate_summary_and_print_errors(&env);
close(env.saved_netns_fd);
out:
if (!env.list_test_names && env.has_testmod)
unload_bpf_testmod(verbose());
free_test_selector(&env.test_selector);
free_test_selector(&env.subtest_selector);
free_test_states();
if (env.succ_cnt + env.fail_cnt + env.skip_cnt == 0)
return EXIT_NO_TEST;
return env.fail_cnt ? EXIT_FAILURE : EXIT_SUCCESS;
}