mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 13:15:57 +00:00
de0428a7ad
The CPU support for perf events on x86 was implemented via included C files with #ifdefs. Clean this up by creating a new header file and compiling the vendor-specific files as needed. Signed-off-by: Kevin Winchester <kjwinchester@gmail.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1314747665-2090-1-git-send-email-kjwinchester@gmail.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
1634 lines
36 KiB
C
1634 lines
36 KiB
C
/*
|
|
* Performance events x86 architecture code
|
|
*
|
|
* Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
|
|
* Copyright (C) 2009 Jaswinder Singh Rajput
|
|
* Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
|
|
* Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
|
|
* Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
|
|
* Copyright (C) 2009 Google, Inc., Stephane Eranian
|
|
*
|
|
* For licencing details see kernel-base/COPYING
|
|
*/
|
|
|
|
#include <linux/perf_event.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include <asm/apic.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/compat.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/alternative.h>
|
|
|
|
#include "perf_event.h"
|
|
|
|
#if 0
|
|
#undef wrmsrl
|
|
#define wrmsrl(msr, val) \
|
|
do { \
|
|
trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
|
|
(unsigned long)(val)); \
|
|
native_write_msr((msr), (u32)((u64)(val)), \
|
|
(u32)((u64)(val) >> 32)); \
|
|
} while (0)
|
|
#endif
|
|
|
|
struct x86_pmu x86_pmu __read_mostly;
|
|
|
|
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
|
|
.enabled = 1,
|
|
};
|
|
|
|
u64 __read_mostly hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX];
|
|
u64 __read_mostly hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX];
|
|
|
|
/*
|
|
* Propagate event elapsed time into the generic event.
|
|
* Can only be executed on the CPU where the event is active.
|
|
* Returns the delta events processed.
|
|
*/
|
|
u64 x86_perf_event_update(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int shift = 64 - x86_pmu.cntval_bits;
|
|
u64 prev_raw_count, new_raw_count;
|
|
int idx = hwc->idx;
|
|
s64 delta;
|
|
|
|
if (idx == X86_PMC_IDX_FIXED_BTS)
|
|
return 0;
|
|
|
|
/*
|
|
* Careful: an NMI might modify the previous event value.
|
|
*
|
|
* Our tactic to handle this is to first atomically read and
|
|
* exchange a new raw count - then add that new-prev delta
|
|
* count to the generic event atomically:
|
|
*/
|
|
again:
|
|
prev_raw_count = local64_read(&hwc->prev_count);
|
|
rdmsrl(hwc->event_base, new_raw_count);
|
|
|
|
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
|
|
new_raw_count) != prev_raw_count)
|
|
goto again;
|
|
|
|
/*
|
|
* Now we have the new raw value and have updated the prev
|
|
* timestamp already. We can now calculate the elapsed delta
|
|
* (event-)time and add that to the generic event.
|
|
*
|
|
* Careful, not all hw sign-extends above the physical width
|
|
* of the count.
|
|
*/
|
|
delta = (new_raw_count << shift) - (prev_raw_count << shift);
|
|
delta >>= shift;
|
|
|
|
local64_add(delta, &event->count);
|
|
local64_sub(delta, &hwc->period_left);
|
|
|
|
return new_raw_count;
|
|
}
|
|
|
|
/*
|
|
* Find and validate any extra registers to set up.
|
|
*/
|
|
static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
|
|
{
|
|
struct hw_perf_event_extra *reg;
|
|
struct extra_reg *er;
|
|
|
|
reg = &event->hw.extra_reg;
|
|
|
|
if (!x86_pmu.extra_regs)
|
|
return 0;
|
|
|
|
for (er = x86_pmu.extra_regs; er->msr; er++) {
|
|
if (er->event != (config & er->config_mask))
|
|
continue;
|
|
if (event->attr.config1 & ~er->valid_mask)
|
|
return -EINVAL;
|
|
|
|
reg->idx = er->idx;
|
|
reg->config = event->attr.config1;
|
|
reg->reg = er->msr;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static atomic_t active_events;
|
|
static DEFINE_MUTEX(pmc_reserve_mutex);
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
|
|
static bool reserve_pmc_hardware(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.num_counters; i++) {
|
|
if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
|
|
goto perfctr_fail;
|
|
}
|
|
|
|
for (i = 0; i < x86_pmu.num_counters; i++) {
|
|
if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
|
|
goto eventsel_fail;
|
|
}
|
|
|
|
return true;
|
|
|
|
eventsel_fail:
|
|
for (i--; i >= 0; i--)
|
|
release_evntsel_nmi(x86_pmu_config_addr(i));
|
|
|
|
i = x86_pmu.num_counters;
|
|
|
|
perfctr_fail:
|
|
for (i--; i >= 0; i--)
|
|
release_perfctr_nmi(x86_pmu_event_addr(i));
|
|
|
|
return false;
|
|
}
|
|
|
|
static void release_pmc_hardware(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < x86_pmu.num_counters; i++) {
|
|
release_perfctr_nmi(x86_pmu_event_addr(i));
|
|
release_evntsel_nmi(x86_pmu_config_addr(i));
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static bool reserve_pmc_hardware(void) { return true; }
|
|
static void release_pmc_hardware(void) {}
|
|
|
|
#endif
|
|
|
|
static bool check_hw_exists(void)
|
|
{
|
|
u64 val, val_new = 0;
|
|
int i, reg, ret = 0;
|
|
|
|
/*
|
|
* Check to see if the BIOS enabled any of the counters, if so
|
|
* complain and bail.
|
|
*/
|
|
for (i = 0; i < x86_pmu.num_counters; i++) {
|
|
reg = x86_pmu_config_addr(i);
|
|
ret = rdmsrl_safe(reg, &val);
|
|
if (ret)
|
|
goto msr_fail;
|
|
if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
|
|
goto bios_fail;
|
|
}
|
|
|
|
if (x86_pmu.num_counters_fixed) {
|
|
reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
|
|
ret = rdmsrl_safe(reg, &val);
|
|
if (ret)
|
|
goto msr_fail;
|
|
for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
|
|
if (val & (0x03 << i*4))
|
|
goto bios_fail;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now write a value and read it back to see if it matches,
|
|
* this is needed to detect certain hardware emulators (qemu/kvm)
|
|
* that don't trap on the MSR access and always return 0s.
|
|
*/
|
|
val = 0xabcdUL;
|
|
ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
|
|
ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
|
|
if (ret || val != val_new)
|
|
goto msr_fail;
|
|
|
|
return true;
|
|
|
|
bios_fail:
|
|
/*
|
|
* We still allow the PMU driver to operate:
|
|
*/
|
|
printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
|
|
printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
|
|
|
|
return true;
|
|
|
|
msr_fail:
|
|
printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
static void hw_perf_event_destroy(struct perf_event *event)
|
|
{
|
|
if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
|
|
release_pmc_hardware();
|
|
release_ds_buffers();
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
}
|
|
}
|
|
|
|
static inline int x86_pmu_initialized(void)
|
|
{
|
|
return x86_pmu.handle_irq != NULL;
|
|
}
|
|
|
|
static inline int
|
|
set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
|
|
{
|
|
struct perf_event_attr *attr = &event->attr;
|
|
unsigned int cache_type, cache_op, cache_result;
|
|
u64 config, val;
|
|
|
|
config = attr->config;
|
|
|
|
cache_type = (config >> 0) & 0xff;
|
|
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
|
|
return -EINVAL;
|
|
|
|
cache_op = (config >> 8) & 0xff;
|
|
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
|
|
return -EINVAL;
|
|
|
|
cache_result = (config >> 16) & 0xff;
|
|
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
|
|
return -EINVAL;
|
|
|
|
val = hw_cache_event_ids[cache_type][cache_op][cache_result];
|
|
|
|
if (val == 0)
|
|
return -ENOENT;
|
|
|
|
if (val == -1)
|
|
return -EINVAL;
|
|
|
|
hwc->config |= val;
|
|
attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
|
|
return x86_pmu_extra_regs(val, event);
|
|
}
|
|
|
|
int x86_setup_perfctr(struct perf_event *event)
|
|
{
|
|
struct perf_event_attr *attr = &event->attr;
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
u64 config;
|
|
|
|
if (!is_sampling_event(event)) {
|
|
hwc->sample_period = x86_pmu.max_period;
|
|
hwc->last_period = hwc->sample_period;
|
|
local64_set(&hwc->period_left, hwc->sample_period);
|
|
} else {
|
|
/*
|
|
* If we have a PMU initialized but no APIC
|
|
* interrupts, we cannot sample hardware
|
|
* events (user-space has to fall back and
|
|
* sample via a hrtimer based software event):
|
|
*/
|
|
if (!x86_pmu.apic)
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/*
|
|
* Do not allow config1 (extended registers) to propagate,
|
|
* there's no sane user-space generalization yet:
|
|
*/
|
|
if (attr->type == PERF_TYPE_RAW)
|
|
return 0;
|
|
|
|
if (attr->type == PERF_TYPE_HW_CACHE)
|
|
return set_ext_hw_attr(hwc, event);
|
|
|
|
if (attr->config >= x86_pmu.max_events)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* The generic map:
|
|
*/
|
|
config = x86_pmu.event_map(attr->config);
|
|
|
|
if (config == 0)
|
|
return -ENOENT;
|
|
|
|
if (config == -1LL)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Branch tracing:
|
|
*/
|
|
if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
|
|
!attr->freq && hwc->sample_period == 1) {
|
|
/* BTS is not supported by this architecture. */
|
|
if (!x86_pmu.bts_active)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* BTS is currently only allowed for user-mode. */
|
|
if (!attr->exclude_kernel)
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
hwc->config |= config;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int x86_pmu_hw_config(struct perf_event *event)
|
|
{
|
|
if (event->attr.precise_ip) {
|
|
int precise = 0;
|
|
|
|
/* Support for constant skid */
|
|
if (x86_pmu.pebs_active) {
|
|
precise++;
|
|
|
|
/* Support for IP fixup */
|
|
if (x86_pmu.lbr_nr)
|
|
precise++;
|
|
}
|
|
|
|
if (event->attr.precise_ip > precise)
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/*
|
|
* Generate PMC IRQs:
|
|
* (keep 'enabled' bit clear for now)
|
|
*/
|
|
event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
|
|
|
|
/*
|
|
* Count user and OS events unless requested not to
|
|
*/
|
|
if (!event->attr.exclude_user)
|
|
event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
|
|
if (!event->attr.exclude_kernel)
|
|
event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
|
|
|
|
if (event->attr.type == PERF_TYPE_RAW)
|
|
event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
|
|
|
|
return x86_setup_perfctr(event);
|
|
}
|
|
|
|
/*
|
|
* Setup the hardware configuration for a given attr_type
|
|
*/
|
|
static int __x86_pmu_event_init(struct perf_event *event)
|
|
{
|
|
int err;
|
|
|
|
if (!x86_pmu_initialized())
|
|
return -ENODEV;
|
|
|
|
err = 0;
|
|
if (!atomic_inc_not_zero(&active_events)) {
|
|
mutex_lock(&pmc_reserve_mutex);
|
|
if (atomic_read(&active_events) == 0) {
|
|
if (!reserve_pmc_hardware())
|
|
err = -EBUSY;
|
|
else
|
|
reserve_ds_buffers();
|
|
}
|
|
if (!err)
|
|
atomic_inc(&active_events);
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
}
|
|
if (err)
|
|
return err;
|
|
|
|
event->destroy = hw_perf_event_destroy;
|
|
|
|
event->hw.idx = -1;
|
|
event->hw.last_cpu = -1;
|
|
event->hw.last_tag = ~0ULL;
|
|
|
|
/* mark unused */
|
|
event->hw.extra_reg.idx = EXTRA_REG_NONE;
|
|
|
|
return x86_pmu.hw_config(event);
|
|
}
|
|
|
|
void x86_pmu_disable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
u64 val;
|
|
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
rdmsrl(x86_pmu_config_addr(idx), val);
|
|
if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
|
|
continue;
|
|
val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
wrmsrl(x86_pmu_config_addr(idx), val);
|
|
}
|
|
}
|
|
|
|
static void x86_pmu_disable(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
if (!x86_pmu_initialized())
|
|
return;
|
|
|
|
if (!cpuc->enabled)
|
|
return;
|
|
|
|
cpuc->n_added = 0;
|
|
cpuc->enabled = 0;
|
|
barrier();
|
|
|
|
x86_pmu.disable_all();
|
|
}
|
|
|
|
void x86_pmu_enable_all(int added)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
|
|
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
|
|
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
}
|
|
}
|
|
|
|
static struct pmu pmu;
|
|
|
|
static inline int is_x86_event(struct perf_event *event)
|
|
{
|
|
return event->pmu == &pmu;
|
|
}
|
|
|
|
int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
|
|
{
|
|
struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
|
|
unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
|
|
int i, j, w, wmax, num = 0;
|
|
struct hw_perf_event *hwc;
|
|
|
|
bitmap_zero(used_mask, X86_PMC_IDX_MAX);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
|
|
constraints[i] = c;
|
|
}
|
|
|
|
/*
|
|
* fastpath, try to reuse previous register
|
|
*/
|
|
for (i = 0; i < n; i++) {
|
|
hwc = &cpuc->event_list[i]->hw;
|
|
c = constraints[i];
|
|
|
|
/* never assigned */
|
|
if (hwc->idx == -1)
|
|
break;
|
|
|
|
/* constraint still honored */
|
|
if (!test_bit(hwc->idx, c->idxmsk))
|
|
break;
|
|
|
|
/* not already used */
|
|
if (test_bit(hwc->idx, used_mask))
|
|
break;
|
|
|
|
__set_bit(hwc->idx, used_mask);
|
|
if (assign)
|
|
assign[i] = hwc->idx;
|
|
}
|
|
if (i == n)
|
|
goto done;
|
|
|
|
/*
|
|
* begin slow path
|
|
*/
|
|
|
|
bitmap_zero(used_mask, X86_PMC_IDX_MAX);
|
|
|
|
/*
|
|
* weight = number of possible counters
|
|
*
|
|
* 1 = most constrained, only works on one counter
|
|
* wmax = least constrained, works on any counter
|
|
*
|
|
* assign events to counters starting with most
|
|
* constrained events.
|
|
*/
|
|
wmax = x86_pmu.num_counters;
|
|
|
|
/*
|
|
* when fixed event counters are present,
|
|
* wmax is incremented by 1 to account
|
|
* for one more choice
|
|
*/
|
|
if (x86_pmu.num_counters_fixed)
|
|
wmax++;
|
|
|
|
for (w = 1, num = n; num && w <= wmax; w++) {
|
|
/* for each event */
|
|
for (i = 0; num && i < n; i++) {
|
|
c = constraints[i];
|
|
hwc = &cpuc->event_list[i]->hw;
|
|
|
|
if (c->weight != w)
|
|
continue;
|
|
|
|
for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
|
|
if (!test_bit(j, used_mask))
|
|
break;
|
|
}
|
|
|
|
if (j == X86_PMC_IDX_MAX)
|
|
break;
|
|
|
|
__set_bit(j, used_mask);
|
|
|
|
if (assign)
|
|
assign[i] = j;
|
|
num--;
|
|
}
|
|
}
|
|
done:
|
|
/*
|
|
* scheduling failed or is just a simulation,
|
|
* free resources if necessary
|
|
*/
|
|
if (!assign || num) {
|
|
for (i = 0; i < n; i++) {
|
|
if (x86_pmu.put_event_constraints)
|
|
x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
|
|
}
|
|
}
|
|
return num ? -ENOSPC : 0;
|
|
}
|
|
|
|
/*
|
|
* dogrp: true if must collect siblings events (group)
|
|
* returns total number of events and error code
|
|
*/
|
|
static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
|
|
{
|
|
struct perf_event *event;
|
|
int n, max_count;
|
|
|
|
max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
|
|
|
|
/* current number of events already accepted */
|
|
n = cpuc->n_events;
|
|
|
|
if (is_x86_event(leader)) {
|
|
if (n >= max_count)
|
|
return -ENOSPC;
|
|
cpuc->event_list[n] = leader;
|
|
n++;
|
|
}
|
|
if (!dogrp)
|
|
return n;
|
|
|
|
list_for_each_entry(event, &leader->sibling_list, group_entry) {
|
|
if (!is_x86_event(event) ||
|
|
event->state <= PERF_EVENT_STATE_OFF)
|
|
continue;
|
|
|
|
if (n >= max_count)
|
|
return -ENOSPC;
|
|
|
|
cpuc->event_list[n] = event;
|
|
n++;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static inline void x86_assign_hw_event(struct perf_event *event,
|
|
struct cpu_hw_events *cpuc, int i)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
hwc->idx = cpuc->assign[i];
|
|
hwc->last_cpu = smp_processor_id();
|
|
hwc->last_tag = ++cpuc->tags[i];
|
|
|
|
if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
|
|
hwc->config_base = 0;
|
|
hwc->event_base = 0;
|
|
} else if (hwc->idx >= X86_PMC_IDX_FIXED) {
|
|
hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
|
|
hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
|
|
} else {
|
|
hwc->config_base = x86_pmu_config_addr(hwc->idx);
|
|
hwc->event_base = x86_pmu_event_addr(hwc->idx);
|
|
}
|
|
}
|
|
|
|
static inline int match_prev_assignment(struct hw_perf_event *hwc,
|
|
struct cpu_hw_events *cpuc,
|
|
int i)
|
|
{
|
|
return hwc->idx == cpuc->assign[i] &&
|
|
hwc->last_cpu == smp_processor_id() &&
|
|
hwc->last_tag == cpuc->tags[i];
|
|
}
|
|
|
|
static void x86_pmu_start(struct perf_event *event, int flags);
|
|
|
|
static void x86_pmu_enable(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
struct perf_event *event;
|
|
struct hw_perf_event *hwc;
|
|
int i, added = cpuc->n_added;
|
|
|
|
if (!x86_pmu_initialized())
|
|
return;
|
|
|
|
if (cpuc->enabled)
|
|
return;
|
|
|
|
if (cpuc->n_added) {
|
|
int n_running = cpuc->n_events - cpuc->n_added;
|
|
/*
|
|
* apply assignment obtained either from
|
|
* hw_perf_group_sched_in() or x86_pmu_enable()
|
|
*
|
|
* step1: save events moving to new counters
|
|
* step2: reprogram moved events into new counters
|
|
*/
|
|
for (i = 0; i < n_running; i++) {
|
|
event = cpuc->event_list[i];
|
|
hwc = &event->hw;
|
|
|
|
/*
|
|
* we can avoid reprogramming counter if:
|
|
* - assigned same counter as last time
|
|
* - running on same CPU as last time
|
|
* - no other event has used the counter since
|
|
*/
|
|
if (hwc->idx == -1 ||
|
|
match_prev_assignment(hwc, cpuc, i))
|
|
continue;
|
|
|
|
/*
|
|
* Ensure we don't accidentally enable a stopped
|
|
* counter simply because we rescheduled.
|
|
*/
|
|
if (hwc->state & PERF_HES_STOPPED)
|
|
hwc->state |= PERF_HES_ARCH;
|
|
|
|
x86_pmu_stop(event, PERF_EF_UPDATE);
|
|
}
|
|
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
event = cpuc->event_list[i];
|
|
hwc = &event->hw;
|
|
|
|
if (!match_prev_assignment(hwc, cpuc, i))
|
|
x86_assign_hw_event(event, cpuc, i);
|
|
else if (i < n_running)
|
|
continue;
|
|
|
|
if (hwc->state & PERF_HES_ARCH)
|
|
continue;
|
|
|
|
x86_pmu_start(event, PERF_EF_RELOAD);
|
|
}
|
|
cpuc->n_added = 0;
|
|
perf_events_lapic_init();
|
|
}
|
|
|
|
cpuc->enabled = 1;
|
|
barrier();
|
|
|
|
x86_pmu.enable_all(added);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
|
|
|
|
/*
|
|
* Set the next IRQ period, based on the hwc->period_left value.
|
|
* To be called with the event disabled in hw:
|
|
*/
|
|
int x86_perf_event_set_period(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
s64 left = local64_read(&hwc->period_left);
|
|
s64 period = hwc->sample_period;
|
|
int ret = 0, idx = hwc->idx;
|
|
|
|
if (idx == X86_PMC_IDX_FIXED_BTS)
|
|
return 0;
|
|
|
|
/*
|
|
* If we are way outside a reasonable range then just skip forward:
|
|
*/
|
|
if (unlikely(left <= -period)) {
|
|
left = period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
|
|
if (unlikely(left <= 0)) {
|
|
left += period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
/*
|
|
* Quirk: certain CPUs dont like it if just 1 hw_event is left:
|
|
*/
|
|
if (unlikely(left < 2))
|
|
left = 2;
|
|
|
|
if (left > x86_pmu.max_period)
|
|
left = x86_pmu.max_period;
|
|
|
|
per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
|
|
|
|
/*
|
|
* The hw event starts counting from this event offset,
|
|
* mark it to be able to extra future deltas:
|
|
*/
|
|
local64_set(&hwc->prev_count, (u64)-left);
|
|
|
|
wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
|
|
|
|
/*
|
|
* Due to erratum on certan cpu we need
|
|
* a second write to be sure the register
|
|
* is updated properly
|
|
*/
|
|
if (x86_pmu.perfctr_second_write) {
|
|
wrmsrl(hwc->event_base,
|
|
(u64)(-left) & x86_pmu.cntval_mask);
|
|
}
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void x86_pmu_enable_event(struct perf_event *event)
|
|
{
|
|
if (__this_cpu_read(cpu_hw_events.enabled))
|
|
__x86_pmu_enable_event(&event->hw,
|
|
ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
}
|
|
|
|
/*
|
|
* Add a single event to the PMU.
|
|
*
|
|
* The event is added to the group of enabled events
|
|
* but only if it can be scehduled with existing events.
|
|
*/
|
|
static int x86_pmu_add(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
struct hw_perf_event *hwc;
|
|
int assign[X86_PMC_IDX_MAX];
|
|
int n, n0, ret;
|
|
|
|
hwc = &event->hw;
|
|
|
|
perf_pmu_disable(event->pmu);
|
|
n0 = cpuc->n_events;
|
|
ret = n = collect_events(cpuc, event, false);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
|
|
if (!(flags & PERF_EF_START))
|
|
hwc->state |= PERF_HES_ARCH;
|
|
|
|
/*
|
|
* If group events scheduling transaction was started,
|
|
* skip the schedulability test here, it will be performed
|
|
* at commit time (->commit_txn) as a whole
|
|
*/
|
|
if (cpuc->group_flag & PERF_EVENT_TXN)
|
|
goto done_collect;
|
|
|
|
ret = x86_pmu.schedule_events(cpuc, n, assign);
|
|
if (ret)
|
|
goto out;
|
|
/*
|
|
* copy new assignment, now we know it is possible
|
|
* will be used by hw_perf_enable()
|
|
*/
|
|
memcpy(cpuc->assign, assign, n*sizeof(int));
|
|
|
|
done_collect:
|
|
cpuc->n_events = n;
|
|
cpuc->n_added += n - n0;
|
|
cpuc->n_txn += n - n0;
|
|
|
|
ret = 0;
|
|
out:
|
|
perf_pmu_enable(event->pmu);
|
|
return ret;
|
|
}
|
|
|
|
static void x86_pmu_start(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int idx = event->hw.idx;
|
|
|
|
if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
|
|
return;
|
|
|
|
if (WARN_ON_ONCE(idx == -1))
|
|
return;
|
|
|
|
if (flags & PERF_EF_RELOAD) {
|
|
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
|
|
x86_perf_event_set_period(event);
|
|
}
|
|
|
|
event->hw.state = 0;
|
|
|
|
cpuc->events[idx] = event;
|
|
__set_bit(idx, cpuc->active_mask);
|
|
__set_bit(idx, cpuc->running);
|
|
x86_pmu.enable(event);
|
|
perf_event_update_userpage(event);
|
|
}
|
|
|
|
void perf_event_print_debug(void)
|
|
{
|
|
u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
|
|
u64 pebs;
|
|
struct cpu_hw_events *cpuc;
|
|
unsigned long flags;
|
|
int cpu, idx;
|
|
|
|
if (!x86_pmu.num_counters)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cpu = smp_processor_id();
|
|
cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
|
|
if (x86_pmu.version >= 2) {
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
|
|
rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
|
|
rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
|
|
|
|
pr_info("\n");
|
|
pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
|
|
pr_info("CPU#%d: status: %016llx\n", cpu, status);
|
|
pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
|
|
pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
|
|
pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
|
|
}
|
|
pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
|
|
rdmsrl(x86_pmu_event_addr(idx), pmc_count);
|
|
|
|
prev_left = per_cpu(pmc_prev_left[idx], cpu);
|
|
|
|
pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
|
|
cpu, idx, pmc_ctrl);
|
|
pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
|
|
cpu, idx, pmc_count);
|
|
pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
|
|
cpu, idx, prev_left);
|
|
}
|
|
for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
|
|
rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
|
|
|
|
pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
|
|
cpu, idx, pmc_count);
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void x86_pmu_stop(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
|
|
x86_pmu.disable(event);
|
|
cpuc->events[hwc->idx] = NULL;
|
|
WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
|
|
hwc->state |= PERF_HES_STOPPED;
|
|
}
|
|
|
|
if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
|
|
/*
|
|
* Drain the remaining delta count out of a event
|
|
* that we are disabling:
|
|
*/
|
|
x86_perf_event_update(event);
|
|
hwc->state |= PERF_HES_UPTODATE;
|
|
}
|
|
}
|
|
|
|
static void x86_pmu_del(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int i;
|
|
|
|
/*
|
|
* If we're called during a txn, we don't need to do anything.
|
|
* The events never got scheduled and ->cancel_txn will truncate
|
|
* the event_list.
|
|
*/
|
|
if (cpuc->group_flag & PERF_EVENT_TXN)
|
|
return;
|
|
|
|
x86_pmu_stop(event, PERF_EF_UPDATE);
|
|
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
if (event == cpuc->event_list[i]) {
|
|
|
|
if (x86_pmu.put_event_constraints)
|
|
x86_pmu.put_event_constraints(cpuc, event);
|
|
|
|
while (++i < cpuc->n_events)
|
|
cpuc->event_list[i-1] = cpuc->event_list[i];
|
|
|
|
--cpuc->n_events;
|
|
break;
|
|
}
|
|
}
|
|
perf_event_update_userpage(event);
|
|
}
|
|
|
|
int x86_pmu_handle_irq(struct pt_regs *regs)
|
|
{
|
|
struct perf_sample_data data;
|
|
struct cpu_hw_events *cpuc;
|
|
struct perf_event *event;
|
|
int idx, handled = 0;
|
|
u64 val;
|
|
|
|
perf_sample_data_init(&data, 0);
|
|
|
|
cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
/*
|
|
* Some chipsets need to unmask the LVTPC in a particular spot
|
|
* inside the nmi handler. As a result, the unmasking was pushed
|
|
* into all the nmi handlers.
|
|
*
|
|
* This generic handler doesn't seem to have any issues where the
|
|
* unmasking occurs so it was left at the top.
|
|
*/
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
if (!test_bit(idx, cpuc->active_mask)) {
|
|
/*
|
|
* Though we deactivated the counter some cpus
|
|
* might still deliver spurious interrupts still
|
|
* in flight. Catch them:
|
|
*/
|
|
if (__test_and_clear_bit(idx, cpuc->running))
|
|
handled++;
|
|
continue;
|
|
}
|
|
|
|
event = cpuc->events[idx];
|
|
|
|
val = x86_perf_event_update(event);
|
|
if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
|
|
continue;
|
|
|
|
/*
|
|
* event overflow
|
|
*/
|
|
handled++;
|
|
data.period = event->hw.last_period;
|
|
|
|
if (!x86_perf_event_set_period(event))
|
|
continue;
|
|
|
|
if (perf_event_overflow(event, &data, regs))
|
|
x86_pmu_stop(event, 0);
|
|
}
|
|
|
|
if (handled)
|
|
inc_irq_stat(apic_perf_irqs);
|
|
|
|
return handled;
|
|
}
|
|
|
|
void perf_events_lapic_init(void)
|
|
{
|
|
if (!x86_pmu.apic || !x86_pmu_initialized())
|
|
return;
|
|
|
|
/*
|
|
* Always use NMI for PMU
|
|
*/
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
}
|
|
|
|
struct pmu_nmi_state {
|
|
unsigned int marked;
|
|
int handled;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
|
|
|
|
static int __kprobes
|
|
perf_event_nmi_handler(struct notifier_block *self,
|
|
unsigned long cmd, void *__args)
|
|
{
|
|
struct die_args *args = __args;
|
|
unsigned int this_nmi;
|
|
int handled;
|
|
|
|
if (!atomic_read(&active_events))
|
|
return NOTIFY_DONE;
|
|
|
|
switch (cmd) {
|
|
case DIE_NMI:
|
|
break;
|
|
case DIE_NMIUNKNOWN:
|
|
this_nmi = percpu_read(irq_stat.__nmi_count);
|
|
if (this_nmi != __this_cpu_read(pmu_nmi.marked))
|
|
/* let the kernel handle the unknown nmi */
|
|
return NOTIFY_DONE;
|
|
/*
|
|
* This one is a PMU back-to-back nmi. Two events
|
|
* trigger 'simultaneously' raising two back-to-back
|
|
* NMIs. If the first NMI handles both, the latter
|
|
* will be empty and daze the CPU. So, we drop it to
|
|
* avoid false-positive 'unknown nmi' messages.
|
|
*/
|
|
return NOTIFY_STOP;
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
handled = x86_pmu.handle_irq(args->regs);
|
|
if (!handled)
|
|
return NOTIFY_DONE;
|
|
|
|
this_nmi = percpu_read(irq_stat.__nmi_count);
|
|
if ((handled > 1) ||
|
|
/* the next nmi could be a back-to-back nmi */
|
|
((__this_cpu_read(pmu_nmi.marked) == this_nmi) &&
|
|
(__this_cpu_read(pmu_nmi.handled) > 1))) {
|
|
/*
|
|
* We could have two subsequent back-to-back nmis: The
|
|
* first handles more than one counter, the 2nd
|
|
* handles only one counter and the 3rd handles no
|
|
* counter.
|
|
*
|
|
* This is the 2nd nmi because the previous was
|
|
* handling more than one counter. We will mark the
|
|
* next (3rd) and then drop it if unhandled.
|
|
*/
|
|
__this_cpu_write(pmu_nmi.marked, this_nmi + 1);
|
|
__this_cpu_write(pmu_nmi.handled, handled);
|
|
}
|
|
|
|
return NOTIFY_STOP;
|
|
}
|
|
|
|
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
|
|
.notifier_call = perf_event_nmi_handler,
|
|
.next = NULL,
|
|
.priority = NMI_LOCAL_LOW_PRIOR,
|
|
};
|
|
|
|
struct event_constraint emptyconstraint;
|
|
struct event_constraint unconstrained;
|
|
|
|
static int __cpuinit
|
|
x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (long)hcpu;
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
int ret = NOTIFY_OK;
|
|
|
|
switch (action & ~CPU_TASKS_FROZEN) {
|
|
case CPU_UP_PREPARE:
|
|
cpuc->kfree_on_online = NULL;
|
|
if (x86_pmu.cpu_prepare)
|
|
ret = x86_pmu.cpu_prepare(cpu);
|
|
break;
|
|
|
|
case CPU_STARTING:
|
|
if (x86_pmu.cpu_starting)
|
|
x86_pmu.cpu_starting(cpu);
|
|
break;
|
|
|
|
case CPU_ONLINE:
|
|
kfree(cpuc->kfree_on_online);
|
|
break;
|
|
|
|
case CPU_DYING:
|
|
if (x86_pmu.cpu_dying)
|
|
x86_pmu.cpu_dying(cpu);
|
|
break;
|
|
|
|
case CPU_UP_CANCELED:
|
|
case CPU_DEAD:
|
|
if (x86_pmu.cpu_dead)
|
|
x86_pmu.cpu_dead(cpu);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __init pmu_check_apic(void)
|
|
{
|
|
if (cpu_has_apic)
|
|
return;
|
|
|
|
x86_pmu.apic = 0;
|
|
pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
|
|
pr_info("no hardware sampling interrupt available.\n");
|
|
}
|
|
|
|
static int __init init_hw_perf_events(void)
|
|
{
|
|
struct event_constraint *c;
|
|
int err;
|
|
|
|
pr_info("Performance Events: ");
|
|
|
|
switch (boot_cpu_data.x86_vendor) {
|
|
case X86_VENDOR_INTEL:
|
|
err = intel_pmu_init();
|
|
break;
|
|
case X86_VENDOR_AMD:
|
|
err = amd_pmu_init();
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
if (err != 0) {
|
|
pr_cont("no PMU driver, software events only.\n");
|
|
return 0;
|
|
}
|
|
|
|
pmu_check_apic();
|
|
|
|
/* sanity check that the hardware exists or is emulated */
|
|
if (!check_hw_exists())
|
|
return 0;
|
|
|
|
pr_cont("%s PMU driver.\n", x86_pmu.name);
|
|
|
|
if (x86_pmu.quirks)
|
|
x86_pmu.quirks();
|
|
|
|
if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
|
|
WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
|
|
x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
|
|
x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
|
|
}
|
|
x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
|
|
|
|
if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
|
|
WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
|
|
x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
|
|
x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
|
|
}
|
|
|
|
x86_pmu.intel_ctrl |=
|
|
((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
|
|
|
|
perf_events_lapic_init();
|
|
register_die_notifier(&perf_event_nmi_notifier);
|
|
|
|
unconstrained = (struct event_constraint)
|
|
__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
|
|
0, x86_pmu.num_counters);
|
|
|
|
if (x86_pmu.event_constraints) {
|
|
for_each_event_constraint(c, x86_pmu.event_constraints) {
|
|
if (c->cmask != X86_RAW_EVENT_MASK)
|
|
continue;
|
|
|
|
c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
|
|
c->weight += x86_pmu.num_counters;
|
|
}
|
|
}
|
|
|
|
pr_info("... version: %d\n", x86_pmu.version);
|
|
pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
|
|
pr_info("... generic registers: %d\n", x86_pmu.num_counters);
|
|
pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
|
|
pr_info("... max period: %016Lx\n", x86_pmu.max_period);
|
|
pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
|
|
pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
|
|
|
|
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
|
|
perf_cpu_notifier(x86_pmu_notifier);
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(init_hw_perf_events);
|
|
|
|
static inline void x86_pmu_read(struct perf_event *event)
|
|
{
|
|
x86_perf_event_update(event);
|
|
}
|
|
|
|
/*
|
|
* Start group events scheduling transaction
|
|
* Set the flag to make pmu::enable() not perform the
|
|
* schedulability test, it will be performed at commit time
|
|
*/
|
|
static void x86_pmu_start_txn(struct pmu *pmu)
|
|
{
|
|
perf_pmu_disable(pmu);
|
|
__this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
|
|
__this_cpu_write(cpu_hw_events.n_txn, 0);
|
|
}
|
|
|
|
/*
|
|
* Stop group events scheduling transaction
|
|
* Clear the flag and pmu::enable() will perform the
|
|
* schedulability test.
|
|
*/
|
|
static void x86_pmu_cancel_txn(struct pmu *pmu)
|
|
{
|
|
__this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
|
|
/*
|
|
* Truncate the collected events.
|
|
*/
|
|
__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
|
|
__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
|
|
perf_pmu_enable(pmu);
|
|
}
|
|
|
|
/*
|
|
* Commit group events scheduling transaction
|
|
* Perform the group schedulability test as a whole
|
|
* Return 0 if success
|
|
*/
|
|
static int x86_pmu_commit_txn(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int assign[X86_PMC_IDX_MAX];
|
|
int n, ret;
|
|
|
|
n = cpuc->n_events;
|
|
|
|
if (!x86_pmu_initialized())
|
|
return -EAGAIN;
|
|
|
|
ret = x86_pmu.schedule_events(cpuc, n, assign);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* copy new assignment, now we know it is possible
|
|
* will be used by hw_perf_enable()
|
|
*/
|
|
memcpy(cpuc->assign, assign, n*sizeof(int));
|
|
|
|
cpuc->group_flag &= ~PERF_EVENT_TXN;
|
|
perf_pmu_enable(pmu);
|
|
return 0;
|
|
}
|
|
/*
|
|
* a fake_cpuc is used to validate event groups. Due to
|
|
* the extra reg logic, we need to also allocate a fake
|
|
* per_core and per_cpu structure. Otherwise, group events
|
|
* using extra reg may conflict without the kernel being
|
|
* able to catch this when the last event gets added to
|
|
* the group.
|
|
*/
|
|
static void free_fake_cpuc(struct cpu_hw_events *cpuc)
|
|
{
|
|
kfree(cpuc->shared_regs);
|
|
kfree(cpuc);
|
|
}
|
|
|
|
static struct cpu_hw_events *allocate_fake_cpuc(void)
|
|
{
|
|
struct cpu_hw_events *cpuc;
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
|
|
if (!cpuc)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* only needed, if we have extra_regs */
|
|
if (x86_pmu.extra_regs) {
|
|
cpuc->shared_regs = allocate_shared_regs(cpu);
|
|
if (!cpuc->shared_regs)
|
|
goto error;
|
|
}
|
|
return cpuc;
|
|
error:
|
|
free_fake_cpuc(cpuc);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* validate that we can schedule this event
|
|
*/
|
|
static int validate_event(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *fake_cpuc;
|
|
struct event_constraint *c;
|
|
int ret = 0;
|
|
|
|
fake_cpuc = allocate_fake_cpuc();
|
|
if (IS_ERR(fake_cpuc))
|
|
return PTR_ERR(fake_cpuc);
|
|
|
|
c = x86_pmu.get_event_constraints(fake_cpuc, event);
|
|
|
|
if (!c || !c->weight)
|
|
ret = -ENOSPC;
|
|
|
|
if (x86_pmu.put_event_constraints)
|
|
x86_pmu.put_event_constraints(fake_cpuc, event);
|
|
|
|
free_fake_cpuc(fake_cpuc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* validate a single event group
|
|
*
|
|
* validation include:
|
|
* - check events are compatible which each other
|
|
* - events do not compete for the same counter
|
|
* - number of events <= number of counters
|
|
*
|
|
* validation ensures the group can be loaded onto the
|
|
* PMU if it was the only group available.
|
|
*/
|
|
static int validate_group(struct perf_event *event)
|
|
{
|
|
struct perf_event *leader = event->group_leader;
|
|
struct cpu_hw_events *fake_cpuc;
|
|
int ret = -ENOSPC, n;
|
|
|
|
fake_cpuc = allocate_fake_cpuc();
|
|
if (IS_ERR(fake_cpuc))
|
|
return PTR_ERR(fake_cpuc);
|
|
/*
|
|
* the event is not yet connected with its
|
|
* siblings therefore we must first collect
|
|
* existing siblings, then add the new event
|
|
* before we can simulate the scheduling
|
|
*/
|
|
n = collect_events(fake_cpuc, leader, true);
|
|
if (n < 0)
|
|
goto out;
|
|
|
|
fake_cpuc->n_events = n;
|
|
n = collect_events(fake_cpuc, event, false);
|
|
if (n < 0)
|
|
goto out;
|
|
|
|
fake_cpuc->n_events = n;
|
|
|
|
ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
|
|
|
|
out:
|
|
free_fake_cpuc(fake_cpuc);
|
|
return ret;
|
|
}
|
|
|
|
static int x86_pmu_event_init(struct perf_event *event)
|
|
{
|
|
struct pmu *tmp;
|
|
int err;
|
|
|
|
switch (event->attr.type) {
|
|
case PERF_TYPE_RAW:
|
|
case PERF_TYPE_HARDWARE:
|
|
case PERF_TYPE_HW_CACHE:
|
|
break;
|
|
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
|
|
err = __x86_pmu_event_init(event);
|
|
if (!err) {
|
|
/*
|
|
* we temporarily connect event to its pmu
|
|
* such that validate_group() can classify
|
|
* it as an x86 event using is_x86_event()
|
|
*/
|
|
tmp = event->pmu;
|
|
event->pmu = &pmu;
|
|
|
|
if (event->group_leader != event)
|
|
err = validate_group(event);
|
|
else
|
|
err = validate_event(event);
|
|
|
|
event->pmu = tmp;
|
|
}
|
|
if (err) {
|
|
if (event->destroy)
|
|
event->destroy(event);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static struct pmu pmu = {
|
|
.pmu_enable = x86_pmu_enable,
|
|
.pmu_disable = x86_pmu_disable,
|
|
|
|
.event_init = x86_pmu_event_init,
|
|
|
|
.add = x86_pmu_add,
|
|
.del = x86_pmu_del,
|
|
.start = x86_pmu_start,
|
|
.stop = x86_pmu_stop,
|
|
.read = x86_pmu_read,
|
|
|
|
.start_txn = x86_pmu_start_txn,
|
|
.cancel_txn = x86_pmu_cancel_txn,
|
|
.commit_txn = x86_pmu_commit_txn,
|
|
};
|
|
|
|
/*
|
|
* callchain support
|
|
*/
|
|
|
|
static int backtrace_stack(void *data, char *name)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void backtrace_address(void *data, unsigned long addr, int reliable)
|
|
{
|
|
struct perf_callchain_entry *entry = data;
|
|
|
|
perf_callchain_store(entry, addr);
|
|
}
|
|
|
|
static const struct stacktrace_ops backtrace_ops = {
|
|
.stack = backtrace_stack,
|
|
.address = backtrace_address,
|
|
.walk_stack = print_context_stack_bp,
|
|
};
|
|
|
|
void
|
|
perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
|
|
{
|
|
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
|
|
/* TODO: We don't support guest os callchain now */
|
|
return;
|
|
}
|
|
|
|
perf_callchain_store(entry, regs->ip);
|
|
|
|
dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static inline int
|
|
perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
|
|
{
|
|
/* 32-bit process in 64-bit kernel. */
|
|
struct stack_frame_ia32 frame;
|
|
const void __user *fp;
|
|
|
|
if (!test_thread_flag(TIF_IA32))
|
|
return 0;
|
|
|
|
fp = compat_ptr(regs->bp);
|
|
while (entry->nr < PERF_MAX_STACK_DEPTH) {
|
|
unsigned long bytes;
|
|
frame.next_frame = 0;
|
|
frame.return_address = 0;
|
|
|
|
bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
|
|
if (bytes != sizeof(frame))
|
|
break;
|
|
|
|
if (fp < compat_ptr(regs->sp))
|
|
break;
|
|
|
|
perf_callchain_store(entry, frame.return_address);
|
|
fp = compat_ptr(frame.next_frame);
|
|
}
|
|
return 1;
|
|
}
|
|
#else
|
|
static inline int
|
|
perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void
|
|
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
|
|
{
|
|
struct stack_frame frame;
|
|
const void __user *fp;
|
|
|
|
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
|
|
/* TODO: We don't support guest os callchain now */
|
|
return;
|
|
}
|
|
|
|
fp = (void __user *)regs->bp;
|
|
|
|
perf_callchain_store(entry, regs->ip);
|
|
|
|
if (!current->mm)
|
|
return;
|
|
|
|
if (perf_callchain_user32(regs, entry))
|
|
return;
|
|
|
|
while (entry->nr < PERF_MAX_STACK_DEPTH) {
|
|
unsigned long bytes;
|
|
frame.next_frame = NULL;
|
|
frame.return_address = 0;
|
|
|
|
bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
|
|
if (bytes != sizeof(frame))
|
|
break;
|
|
|
|
if ((unsigned long)fp < regs->sp)
|
|
break;
|
|
|
|
perf_callchain_store(entry, frame.return_address);
|
|
fp = frame.next_frame;
|
|
}
|
|
}
|
|
|
|
unsigned long perf_instruction_pointer(struct pt_regs *regs)
|
|
{
|
|
unsigned long ip;
|
|
|
|
if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
|
|
ip = perf_guest_cbs->get_guest_ip();
|
|
else
|
|
ip = instruction_pointer(regs);
|
|
|
|
return ip;
|
|
}
|
|
|
|
unsigned long perf_misc_flags(struct pt_regs *regs)
|
|
{
|
|
int misc = 0;
|
|
|
|
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
|
|
if (perf_guest_cbs->is_user_mode())
|
|
misc |= PERF_RECORD_MISC_GUEST_USER;
|
|
else
|
|
misc |= PERF_RECORD_MISC_GUEST_KERNEL;
|
|
} else {
|
|
if (user_mode(regs))
|
|
misc |= PERF_RECORD_MISC_USER;
|
|
else
|
|
misc |= PERF_RECORD_MISC_KERNEL;
|
|
}
|
|
|
|
if (regs->flags & PERF_EFLAGS_EXACT)
|
|
misc |= PERF_RECORD_MISC_EXACT_IP;
|
|
|
|
return misc;
|
|
}
|