mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-04 04:02:26 +00:00
8fe3b21efa
xfs_buffered_write_iomap_begin can also create delallocate reservations that need cleaning up, prepare for that by adding support for the COW fork in xfs_bmap_punch_delalloc_range. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Carlos Maiolino <cem@kernel.org>
560 lines
16 KiB
C
560 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* Copyright (c) 2016-2018 Christoph Hellwig.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_iomap.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_bmap_util.h"
|
|
#include "xfs_reflink.h"
|
|
#include "xfs_errortag.h"
|
|
#include "xfs_error.h"
|
|
|
|
struct xfs_writepage_ctx {
|
|
struct iomap_writepage_ctx ctx;
|
|
unsigned int data_seq;
|
|
unsigned int cow_seq;
|
|
};
|
|
|
|
static inline struct xfs_writepage_ctx *
|
|
XFS_WPC(struct iomap_writepage_ctx *ctx)
|
|
{
|
|
return container_of(ctx, struct xfs_writepage_ctx, ctx);
|
|
}
|
|
|
|
/*
|
|
* Fast and loose check if this write could update the on-disk inode size.
|
|
*/
|
|
static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
|
|
{
|
|
return ioend->io_offset + ioend->io_size >
|
|
XFS_I(ioend->io_inode)->i_disk_size;
|
|
}
|
|
|
|
/*
|
|
* Update on-disk file size now that data has been written to disk.
|
|
*/
|
|
int
|
|
xfs_setfilesize(
|
|
struct xfs_inode *ip,
|
|
xfs_off_t offset,
|
|
size_t size)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_trans *tp;
|
|
xfs_fsize_t isize;
|
|
int error;
|
|
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
isize = xfs_new_eof(ip, offset + size);
|
|
if (!isize) {
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_cancel(tp);
|
|
return 0;
|
|
}
|
|
|
|
trace_xfs_setfilesize(ip, offset, size);
|
|
|
|
ip->i_disk_size = isize;
|
|
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
|
|
return xfs_trans_commit(tp);
|
|
}
|
|
|
|
/*
|
|
* IO write completion.
|
|
*/
|
|
STATIC void
|
|
xfs_end_ioend(
|
|
struct iomap_ioend *ioend)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(ioend->io_inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
xfs_off_t offset = ioend->io_offset;
|
|
size_t size = ioend->io_size;
|
|
unsigned int nofs_flag;
|
|
int error;
|
|
|
|
/*
|
|
* We can allocate memory here while doing writeback on behalf of
|
|
* memory reclaim. To avoid memory allocation deadlocks set the
|
|
* task-wide nofs context for the following operations.
|
|
*/
|
|
nofs_flag = memalloc_nofs_save();
|
|
|
|
/*
|
|
* Just clean up the in-memory structures if the fs has been shut down.
|
|
*/
|
|
if (xfs_is_shutdown(mp)) {
|
|
error = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Clean up all COW blocks and underlying data fork delalloc blocks on
|
|
* I/O error. The delalloc punch is required because this ioend was
|
|
* mapped to blocks in the COW fork and the associated pages are no
|
|
* longer dirty. If we don't remove delalloc blocks here, they become
|
|
* stale and can corrupt free space accounting on unmount.
|
|
*/
|
|
error = blk_status_to_errno(ioend->io_bio.bi_status);
|
|
if (unlikely(error)) {
|
|
if (ioend->io_flags & IOMAP_F_SHARED) {
|
|
xfs_reflink_cancel_cow_range(ip, offset, size, true);
|
|
xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, offset,
|
|
offset + size);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Success: commit the COW or unwritten blocks if needed.
|
|
*/
|
|
if (ioend->io_flags & IOMAP_F_SHARED)
|
|
error = xfs_reflink_end_cow(ip, offset, size);
|
|
else if (ioend->io_type == IOMAP_UNWRITTEN)
|
|
error = xfs_iomap_write_unwritten(ip, offset, size, false);
|
|
|
|
if (!error && xfs_ioend_is_append(ioend))
|
|
error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
|
|
done:
|
|
iomap_finish_ioends(ioend, error);
|
|
memalloc_nofs_restore(nofs_flag);
|
|
}
|
|
|
|
/*
|
|
* Finish all pending IO completions that require transactional modifications.
|
|
*
|
|
* We try to merge physical and logically contiguous ioends before completion to
|
|
* minimise the number of transactions we need to perform during IO completion.
|
|
* Both unwritten extent conversion and COW remapping need to iterate and modify
|
|
* one physical extent at a time, so we gain nothing by merging physically
|
|
* discontiguous extents here.
|
|
*
|
|
* The ioend chain length that we can be processing here is largely unbound in
|
|
* length and we may have to perform significant amounts of work on each ioend
|
|
* to complete it. Hence we have to be careful about holding the CPU for too
|
|
* long in this loop.
|
|
*/
|
|
void
|
|
xfs_end_io(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_inode *ip =
|
|
container_of(work, struct xfs_inode, i_ioend_work);
|
|
struct iomap_ioend *ioend;
|
|
struct list_head tmp;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ip->i_ioend_lock, flags);
|
|
list_replace_init(&ip->i_ioend_list, &tmp);
|
|
spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
|
|
|
|
iomap_sort_ioends(&tmp);
|
|
while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
|
|
io_list))) {
|
|
list_del_init(&ioend->io_list);
|
|
iomap_ioend_try_merge(ioend, &tmp);
|
|
xfs_end_ioend(ioend);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_end_bio(
|
|
struct bio *bio)
|
|
{
|
|
struct iomap_ioend *ioend = iomap_ioend_from_bio(bio);
|
|
struct xfs_inode *ip = XFS_I(ioend->io_inode);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ip->i_ioend_lock, flags);
|
|
if (list_empty(&ip->i_ioend_list))
|
|
WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
|
|
&ip->i_ioend_work));
|
|
list_add_tail(&ioend->io_list, &ip->i_ioend_list);
|
|
spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Fast revalidation of the cached writeback mapping. Return true if the current
|
|
* mapping is valid, false otherwise.
|
|
*/
|
|
static bool
|
|
xfs_imap_valid(
|
|
struct iomap_writepage_ctx *wpc,
|
|
struct xfs_inode *ip,
|
|
loff_t offset)
|
|
{
|
|
if (offset < wpc->iomap.offset ||
|
|
offset >= wpc->iomap.offset + wpc->iomap.length)
|
|
return false;
|
|
/*
|
|
* If this is a COW mapping, it is sufficient to check that the mapping
|
|
* covers the offset. Be careful to check this first because the caller
|
|
* can revalidate a COW mapping without updating the data seqno.
|
|
*/
|
|
if (wpc->iomap.flags & IOMAP_F_SHARED)
|
|
return true;
|
|
|
|
/*
|
|
* This is not a COW mapping. Check the sequence number of the data fork
|
|
* because concurrent changes could have invalidated the extent. Check
|
|
* the COW fork because concurrent changes since the last time we
|
|
* checked (and found nothing at this offset) could have added
|
|
* overlapping blocks.
|
|
*/
|
|
if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) {
|
|
trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap,
|
|
XFS_WPC(wpc)->data_seq, XFS_DATA_FORK);
|
|
return false;
|
|
}
|
|
if (xfs_inode_has_cow_data(ip) &&
|
|
XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) {
|
|
trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap,
|
|
XFS_WPC(wpc)->cow_seq, XFS_COW_FORK);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int
|
|
xfs_map_blocks(
|
|
struct iomap_writepage_ctx *wpc,
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
unsigned int len)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
ssize_t count = i_blocksize(inode);
|
|
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
|
|
xfs_fileoff_t cow_fsb;
|
|
int whichfork;
|
|
struct xfs_bmbt_irec imap;
|
|
struct xfs_iext_cursor icur;
|
|
int retries = 0;
|
|
int error = 0;
|
|
unsigned int *seq;
|
|
|
|
if (xfs_is_shutdown(mp))
|
|
return -EIO;
|
|
|
|
XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
|
|
|
|
/*
|
|
* COW fork blocks can overlap data fork blocks even if the blocks
|
|
* aren't shared. COW I/O always takes precedent, so we must always
|
|
* check for overlap on reflink inodes unless the mapping is already a
|
|
* COW one, or the COW fork hasn't changed from the last time we looked
|
|
* at it.
|
|
*
|
|
* It's safe to check the COW fork if_seq here without the ILOCK because
|
|
* we've indirectly protected against concurrent updates: writeback has
|
|
* the page locked, which prevents concurrent invalidations by reflink
|
|
* and directio and prevents concurrent buffered writes to the same
|
|
* page. Changes to if_seq always happen under i_lock, which protects
|
|
* against concurrent updates and provides a memory barrier on the way
|
|
* out that ensures that we always see the current value.
|
|
*/
|
|
if (xfs_imap_valid(wpc, ip, offset))
|
|
return 0;
|
|
|
|
/*
|
|
* If we don't have a valid map, now it's time to get a new one for this
|
|
* offset. This will convert delayed allocations (including COW ones)
|
|
* into real extents. If we return without a valid map, it means we
|
|
* landed in a hole and we skip the block.
|
|
*/
|
|
retry:
|
|
cow_fsb = NULLFILEOFF;
|
|
whichfork = XFS_DATA_FORK;
|
|
xfs_ilock(ip, XFS_ILOCK_SHARED);
|
|
ASSERT(!xfs_need_iread_extents(&ip->i_df));
|
|
|
|
/*
|
|
* Check if this is offset is covered by a COW extents, and if yes use
|
|
* it directly instead of looking up anything in the data fork.
|
|
*/
|
|
if (xfs_inode_has_cow_data(ip) &&
|
|
xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
|
|
cow_fsb = imap.br_startoff;
|
|
if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
|
|
XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
|
|
whichfork = XFS_COW_FORK;
|
|
goto allocate_blocks;
|
|
}
|
|
|
|
/*
|
|
* No COW extent overlap. Revalidate now that we may have updated
|
|
* ->cow_seq. If the data mapping is still valid, we're done.
|
|
*/
|
|
if (xfs_imap_valid(wpc, ip, offset)) {
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we don't have a valid map, now it's time to get a new one for this
|
|
* offset. This will convert delayed allocations (including COW ones)
|
|
* into real extents.
|
|
*/
|
|
if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
|
|
imap.br_startoff = end_fsb; /* fake a hole past EOF */
|
|
XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
|
|
/* landed in a hole or beyond EOF? */
|
|
if (imap.br_startoff > offset_fsb) {
|
|
imap.br_blockcount = imap.br_startoff - offset_fsb;
|
|
imap.br_startoff = offset_fsb;
|
|
imap.br_startblock = HOLESTARTBLOCK;
|
|
imap.br_state = XFS_EXT_NORM;
|
|
}
|
|
|
|
/*
|
|
* Truncate to the next COW extent if there is one. This is the only
|
|
* opportunity to do this because we can skip COW fork lookups for the
|
|
* subsequent blocks in the mapping; however, the requirement to treat
|
|
* the COW range separately remains.
|
|
*/
|
|
if (cow_fsb != NULLFILEOFF &&
|
|
cow_fsb < imap.br_startoff + imap.br_blockcount)
|
|
imap.br_blockcount = cow_fsb - imap.br_startoff;
|
|
|
|
/* got a delalloc extent? */
|
|
if (imap.br_startblock != HOLESTARTBLOCK &&
|
|
isnullstartblock(imap.br_startblock))
|
|
goto allocate_blocks;
|
|
|
|
xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq);
|
|
trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
|
|
return 0;
|
|
allocate_blocks:
|
|
/*
|
|
* Convert a dellalloc extent to a real one. The current page is held
|
|
* locked so nothing could have removed the block backing offset_fsb,
|
|
* although it could have moved from the COW to the data fork by another
|
|
* thread.
|
|
*/
|
|
if (whichfork == XFS_COW_FORK)
|
|
seq = &XFS_WPC(wpc)->cow_seq;
|
|
else
|
|
seq = &XFS_WPC(wpc)->data_seq;
|
|
|
|
error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
|
|
&wpc->iomap, seq);
|
|
if (error) {
|
|
/*
|
|
* If we failed to find the extent in the COW fork we might have
|
|
* raced with a COW to data fork conversion or truncate.
|
|
* Restart the lookup to catch the extent in the data fork for
|
|
* the former case, but prevent additional retries to avoid
|
|
* looping forever for the latter case.
|
|
*/
|
|
if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
|
|
goto retry;
|
|
ASSERT(error != -EAGAIN);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Due to merging the return real extent might be larger than the
|
|
* original delalloc one. Trim the return extent to the next COW
|
|
* boundary again to force a re-lookup.
|
|
*/
|
|
if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
|
|
loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
|
|
|
|
if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
|
|
wpc->iomap.length = cow_offset - wpc->iomap.offset;
|
|
}
|
|
|
|
ASSERT(wpc->iomap.offset <= offset);
|
|
ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
|
|
trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
xfs_prepare_ioend(
|
|
struct iomap_ioend *ioend,
|
|
int status)
|
|
{
|
|
unsigned int nofs_flag;
|
|
|
|
/*
|
|
* We can allocate memory here while doing writeback on behalf of
|
|
* memory reclaim. To avoid memory allocation deadlocks set the
|
|
* task-wide nofs context for the following operations.
|
|
*/
|
|
nofs_flag = memalloc_nofs_save();
|
|
|
|
/* Convert CoW extents to regular */
|
|
if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
|
|
status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
|
|
ioend->io_offset, ioend->io_size);
|
|
}
|
|
|
|
memalloc_nofs_restore(nofs_flag);
|
|
|
|
/* send ioends that might require a transaction to the completion wq */
|
|
if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
|
|
(ioend->io_flags & IOMAP_F_SHARED))
|
|
ioend->io_bio.bi_end_io = xfs_end_bio;
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* If the folio has delalloc blocks on it, the caller is asking us to punch them
|
|
* out. If we don't, we can leave a stale delalloc mapping covered by a clean
|
|
* page that needs to be dirtied again before the delalloc mapping can be
|
|
* converted. This stale delalloc mapping can trip up a later direct I/O read
|
|
* operation on the same region.
|
|
*
|
|
* We prevent this by truncating away the delalloc regions on the folio. Because
|
|
* they are delalloc, we can do this without needing a transaction. Indeed - if
|
|
* we get ENOSPC errors, we have to be able to do this truncation without a
|
|
* transaction as there is no space left for block reservation (typically why
|
|
* we see a ENOSPC in writeback).
|
|
*/
|
|
static void
|
|
xfs_discard_folio(
|
|
struct folio *folio,
|
|
loff_t pos)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(folio->mapping->host);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
|
|
if (xfs_is_shutdown(mp))
|
|
return;
|
|
|
|
xfs_alert_ratelimited(mp,
|
|
"page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
|
|
folio, ip->i_ino, pos);
|
|
|
|
/*
|
|
* The end of the punch range is always the offset of the first
|
|
* byte of the next folio. Hence the end offset is only dependent on the
|
|
* folio itself and not the start offset that is passed in.
|
|
*/
|
|
xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, pos,
|
|
folio_pos(folio) + folio_size(folio));
|
|
}
|
|
|
|
static const struct iomap_writeback_ops xfs_writeback_ops = {
|
|
.map_blocks = xfs_map_blocks,
|
|
.prepare_ioend = xfs_prepare_ioend,
|
|
.discard_folio = xfs_discard_folio,
|
|
};
|
|
|
|
STATIC int
|
|
xfs_vm_writepages(
|
|
struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct xfs_writepage_ctx wpc = { };
|
|
|
|
xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
|
|
return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_dax_writepages(
|
|
struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(mapping->host);
|
|
|
|
xfs_iflags_clear(ip, XFS_ITRUNCATED);
|
|
return dax_writeback_mapping_range(mapping,
|
|
xfs_inode_buftarg(ip)->bt_daxdev, wbc);
|
|
}
|
|
|
|
STATIC sector_t
|
|
xfs_vm_bmap(
|
|
struct address_space *mapping,
|
|
sector_t block)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(mapping->host);
|
|
|
|
trace_xfs_vm_bmap(ip);
|
|
|
|
/*
|
|
* The swap code (ab-)uses ->bmap to get a block mapping and then
|
|
* bypasses the file system for actual I/O. We really can't allow
|
|
* that on reflinks inodes, so we have to skip out here. And yes,
|
|
* 0 is the magic code for a bmap error.
|
|
*
|
|
* Since we don't pass back blockdev info, we can't return bmap
|
|
* information for rt files either.
|
|
*/
|
|
if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
|
|
return 0;
|
|
return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_read_folio(
|
|
struct file *unused,
|
|
struct folio *folio)
|
|
{
|
|
return iomap_read_folio(folio, &xfs_read_iomap_ops);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_vm_readahead(
|
|
struct readahead_control *rac)
|
|
{
|
|
iomap_readahead(rac, &xfs_read_iomap_ops);
|
|
}
|
|
|
|
static int
|
|
xfs_iomap_swapfile_activate(
|
|
struct swap_info_struct *sis,
|
|
struct file *swap_file,
|
|
sector_t *span)
|
|
{
|
|
sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
|
|
return iomap_swapfile_activate(sis, swap_file, span,
|
|
&xfs_read_iomap_ops);
|
|
}
|
|
|
|
const struct address_space_operations xfs_address_space_operations = {
|
|
.read_folio = xfs_vm_read_folio,
|
|
.readahead = xfs_vm_readahead,
|
|
.writepages = xfs_vm_writepages,
|
|
.dirty_folio = iomap_dirty_folio,
|
|
.release_folio = iomap_release_folio,
|
|
.invalidate_folio = iomap_invalidate_folio,
|
|
.bmap = xfs_vm_bmap,
|
|
.migrate_folio = filemap_migrate_folio,
|
|
.is_partially_uptodate = iomap_is_partially_uptodate,
|
|
.error_remove_folio = generic_error_remove_folio,
|
|
.swap_activate = xfs_iomap_swapfile_activate,
|
|
};
|
|
|
|
const struct address_space_operations xfs_dax_aops = {
|
|
.writepages = xfs_dax_writepages,
|
|
.dirty_folio = noop_dirty_folio,
|
|
.swap_activate = xfs_iomap_swapfile_activate,
|
|
};
|