linux-next/fs/xfs/xfs_icache.c
Darrick J. Wong be42fc1393 xfs: record health problems with the metadata directory
Make a report to the health monitoring subsystem any time we encounter
something in the metadata directory tree that looks like corruption.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05 13:38:33 -08:00

2348 lines
59 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_inode_item.h"
#include "xfs_quota.h"
#include "xfs_trace.h"
#include "xfs_icache.h"
#include "xfs_bmap_util.h"
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
#include "xfs_reflink.h"
#include "xfs_ialloc.h"
#include "xfs_ag.h"
#include "xfs_log_priv.h"
#include "xfs_health.h"
#include "xfs_da_format.h"
#include "xfs_dir2.h"
#include "xfs_metafile.h"
#include <linux/iversion.h>
/* Radix tree tags for incore inode tree. */
/* inode is to be reclaimed */
#define XFS_ICI_RECLAIM_TAG 0
/* Inode has speculative preallocations (posteof or cow) to clean. */
#define XFS_ICI_BLOCKGC_TAG 1
/*
* The goal for walking incore inodes. These can correspond with incore inode
* radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
*/
enum xfs_icwalk_goal {
/* Goals directly associated with tagged inodes. */
XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
};
static int xfs_icwalk(struct xfs_mount *mp,
enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
static int xfs_icwalk_ag(struct xfs_perag *pag,
enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
/*
* Private inode cache walk flags for struct xfs_icwalk. Must not
* coincide with XFS_ICWALK_FLAGS_VALID.
*/
/* Stop scanning after icw_scan_limit inodes. */
#define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
#define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
#define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
#define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
XFS_ICWALK_FLAG_RECLAIM_SICK | \
XFS_ICWALK_FLAG_UNION)
/* Marks for the perag xarray */
#define XFS_PERAG_RECLAIM_MARK XA_MARK_0
#define XFS_PERAG_BLOCKGC_MARK XA_MARK_1
static inline xa_mark_t ici_tag_to_mark(unsigned int tag)
{
if (tag == XFS_ICI_RECLAIM_TAG)
return XFS_PERAG_RECLAIM_MARK;
ASSERT(tag == XFS_ICI_BLOCKGC_TAG);
return XFS_PERAG_BLOCKGC_MARK;
}
/*
* Allocate and initialise an xfs_inode.
*/
struct xfs_inode *
xfs_inode_alloc(
struct xfs_mount *mp,
xfs_ino_t ino)
{
struct xfs_inode *ip;
/*
* XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
* and return NULL here on ENOMEM.
*/
ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
if (inode_init_always(mp->m_super, VFS_I(ip))) {
kmem_cache_free(xfs_inode_cache, ip);
return NULL;
}
/* VFS doesn't initialise i_mode! */
VFS_I(ip)->i_mode = 0;
mapping_set_folio_min_order(VFS_I(ip)->i_mapping,
M_IGEO(mp)->min_folio_order);
XFS_STATS_INC(mp, vn_active);
ASSERT(atomic_read(&ip->i_pincount) == 0);
ASSERT(ip->i_ino == 0);
/* initialise the xfs inode */
ip->i_ino = ino;
ip->i_mount = mp;
memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
ip->i_cowfp = NULL;
memset(&ip->i_af, 0, sizeof(ip->i_af));
ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
memset(&ip->i_df, 0, sizeof(ip->i_df));
ip->i_flags = 0;
ip->i_delayed_blks = 0;
ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
ip->i_nblocks = 0;
ip->i_forkoff = 0;
ip->i_sick = 0;
ip->i_checked = 0;
INIT_WORK(&ip->i_ioend_work, xfs_end_io);
INIT_LIST_HEAD(&ip->i_ioend_list);
spin_lock_init(&ip->i_ioend_lock);
ip->i_next_unlinked = NULLAGINO;
ip->i_prev_unlinked = 0;
return ip;
}
STATIC void
xfs_inode_free_callback(
struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
struct xfs_inode *ip = XFS_I(inode);
switch (VFS_I(ip)->i_mode & S_IFMT) {
case S_IFREG:
case S_IFDIR:
case S_IFLNK:
xfs_idestroy_fork(&ip->i_df);
break;
}
xfs_ifork_zap_attr(ip);
if (ip->i_cowfp) {
xfs_idestroy_fork(ip->i_cowfp);
kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
}
if (ip->i_itemp) {
ASSERT(!test_bit(XFS_LI_IN_AIL,
&ip->i_itemp->ili_item.li_flags));
xfs_inode_item_destroy(ip);
ip->i_itemp = NULL;
}
kmem_cache_free(xfs_inode_cache, ip);
}
static void
__xfs_inode_free(
struct xfs_inode *ip)
{
/* asserts to verify all state is correct here */
ASSERT(atomic_read(&ip->i_pincount) == 0);
ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
XFS_STATS_DEC(ip->i_mount, vn_active);
call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}
void
xfs_inode_free(
struct xfs_inode *ip)
{
ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
/*
* Because we use RCU freeing we need to ensure the inode always
* appears to be reclaimed with an invalid inode number when in the
* free state. The ip->i_flags_lock provides the barrier against lookup
* races.
*/
spin_lock(&ip->i_flags_lock);
ip->i_flags = XFS_IRECLAIM;
ip->i_ino = 0;
spin_unlock(&ip->i_flags_lock);
__xfs_inode_free(ip);
}
/*
* Queue background inode reclaim work if there are reclaimable inodes and there
* isn't reclaim work already scheduled or in progress.
*/
static void
xfs_reclaim_work_queue(
struct xfs_mount *mp)
{
rcu_read_lock();
if (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
}
rcu_read_unlock();
}
/*
* Background scanning to trim preallocated space. This is queued based on the
* 'speculative_prealloc_lifetime' tunable (5m by default).
*/
static inline void
xfs_blockgc_queue(
struct xfs_perag *pag)
{
struct xfs_mount *mp = pag_mount(pag);
if (!xfs_is_blockgc_enabled(mp))
return;
rcu_read_lock();
if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
queue_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work,
msecs_to_jiffies(xfs_blockgc_secs * 1000));
rcu_read_unlock();
}
/* Set a tag on both the AG incore inode tree and the AG radix tree. */
static void
xfs_perag_set_inode_tag(
struct xfs_perag *pag,
xfs_agino_t agino,
unsigned int tag)
{
bool was_tagged;
lockdep_assert_held(&pag->pag_ici_lock);
was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
if (tag == XFS_ICI_RECLAIM_TAG)
pag->pag_ici_reclaimable++;
if (was_tagged)
return;
/* propagate the tag up into the pag xarray tree */
xfs_group_set_mark(pag_group(pag), ici_tag_to_mark(tag));
/* start background work */
switch (tag) {
case XFS_ICI_RECLAIM_TAG:
xfs_reclaim_work_queue(pag_mount(pag));
break;
case XFS_ICI_BLOCKGC_TAG:
xfs_blockgc_queue(pag);
break;
}
trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
}
/* Clear a tag on both the AG incore inode tree and the AG radix tree. */
static void
xfs_perag_clear_inode_tag(
struct xfs_perag *pag,
xfs_agino_t agino,
unsigned int tag)
{
lockdep_assert_held(&pag->pag_ici_lock);
/*
* Reclaim can signal (with a null agino) that it cleared its own tag
* by removing the inode from the radix tree.
*/
if (agino != NULLAGINO)
radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
else
ASSERT(tag == XFS_ICI_RECLAIM_TAG);
if (tag == XFS_ICI_RECLAIM_TAG)
pag->pag_ici_reclaimable--;
if (radix_tree_tagged(&pag->pag_ici_root, tag))
return;
/* clear the tag from the pag xarray */
xfs_group_clear_mark(pag_group(pag), ici_tag_to_mark(tag));
trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
}
/*
* Find the next AG after @pag, or the first AG if @pag is NULL.
*/
static struct xfs_perag *
xfs_perag_grab_next_tag(
struct xfs_mount *mp,
struct xfs_perag *pag,
int tag)
{
return to_perag(xfs_group_grab_next_mark(mp,
pag ? pag_group(pag) : NULL,
ici_tag_to_mark(tag), XG_TYPE_AG));
}
/*
* When we recycle a reclaimable inode, we need to re-initialise the VFS inode
* part of the structure. This is made more complex by the fact we store
* information about the on-disk values in the VFS inode and so we can't just
* overwrite the values unconditionally. Hence we save the parameters we
* need to retain across reinitialisation, and rewrite them into the VFS inode
* after reinitialisation even if it fails.
*/
static int
xfs_reinit_inode(
struct xfs_mount *mp,
struct inode *inode)
{
int error;
uint32_t nlink = inode->i_nlink;
uint32_t generation = inode->i_generation;
uint64_t version = inode_peek_iversion(inode);
umode_t mode = inode->i_mode;
dev_t dev = inode->i_rdev;
kuid_t uid = inode->i_uid;
kgid_t gid = inode->i_gid;
unsigned long state = inode->i_state;
error = inode_init_always(mp->m_super, inode);
set_nlink(inode, nlink);
inode->i_generation = generation;
inode_set_iversion_queried(inode, version);
inode->i_mode = mode;
inode->i_rdev = dev;
inode->i_uid = uid;
inode->i_gid = gid;
inode->i_state = state;
mapping_set_folio_min_order(inode->i_mapping,
M_IGEO(mp)->min_folio_order);
return error;
}
/*
* Carefully nudge an inode whose VFS state has been torn down back into a
* usable state. Drops the i_flags_lock and the rcu read lock.
*/
static int
xfs_iget_recycle(
struct xfs_perag *pag,
struct xfs_inode *ip) __releases(&ip->i_flags_lock)
{
struct xfs_mount *mp = ip->i_mount;
struct inode *inode = VFS_I(ip);
int error;
trace_xfs_iget_recycle(ip);
if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
return -EAGAIN;
/*
* We need to make it look like the inode is being reclaimed to prevent
* the actual reclaim workers from stomping over us while we recycle
* the inode. We can't clear the radix tree tag yet as it requires
* pag_ici_lock to be held exclusive.
*/
ip->i_flags |= XFS_IRECLAIM;
spin_unlock(&ip->i_flags_lock);
rcu_read_unlock();
ASSERT(!rwsem_is_locked(&inode->i_rwsem));
error = xfs_reinit_inode(mp, inode);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error) {
/*
* Re-initializing the inode failed, and we are in deep
* trouble. Try to re-add it to the reclaim list.
*/
rcu_read_lock();
spin_lock(&ip->i_flags_lock);
ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
spin_unlock(&ip->i_flags_lock);
rcu_read_unlock();
trace_xfs_iget_recycle_fail(ip);
return error;
}
spin_lock(&pag->pag_ici_lock);
spin_lock(&ip->i_flags_lock);
/*
* Clear the per-lifetime state in the inode as we are now effectively
* a new inode and need to return to the initial state before reuse
* occurs.
*/
ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
ip->i_flags |= XFS_INEW;
xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
XFS_ICI_RECLAIM_TAG);
inode->i_state = I_NEW;
spin_unlock(&ip->i_flags_lock);
spin_unlock(&pag->pag_ici_lock);
return 0;
}
/*
* If we are allocating a new inode, then check what was returned is
* actually a free, empty inode. If we are not allocating an inode,
* then check we didn't find a free inode.
*
* Returns:
* 0 if the inode free state matches the lookup context
* -ENOENT if the inode is free and we are not allocating
* -EFSCORRUPTED if there is any state mismatch at all
*/
static int
xfs_iget_check_free_state(
struct xfs_inode *ip,
int flags)
{
if (flags & XFS_IGET_CREATE) {
/* should be a free inode */
if (VFS_I(ip)->i_mode != 0) {
xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
ip->i_ino, VFS_I(ip)->i_mode);
xfs_agno_mark_sick(ip->i_mount,
XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
XFS_SICK_AG_INOBT);
return -EFSCORRUPTED;
}
if (ip->i_nblocks != 0) {
xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx has blocks allocated!",
ip->i_ino);
xfs_agno_mark_sick(ip->i_mount,
XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
XFS_SICK_AG_INOBT);
return -EFSCORRUPTED;
}
return 0;
}
/* should be an allocated inode */
if (VFS_I(ip)->i_mode == 0)
return -ENOENT;
return 0;
}
/* Make all pending inactivation work start immediately. */
static bool
xfs_inodegc_queue_all(
struct xfs_mount *mp)
{
struct xfs_inodegc *gc;
int cpu;
bool ret = false;
for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
gc = per_cpu_ptr(mp->m_inodegc, cpu);
if (!llist_empty(&gc->list)) {
mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
ret = true;
}
}
return ret;
}
/* Wait for all queued work and collect errors */
static int
xfs_inodegc_wait_all(
struct xfs_mount *mp)
{
int cpu;
int error = 0;
flush_workqueue(mp->m_inodegc_wq);
for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
struct xfs_inodegc *gc;
gc = per_cpu_ptr(mp->m_inodegc, cpu);
if (gc->error && !error)
error = gc->error;
gc->error = 0;
}
return error;
}
/*
* Check the validity of the inode we just found it the cache
*/
static int
xfs_iget_cache_hit(
struct xfs_perag *pag,
struct xfs_inode *ip,
xfs_ino_t ino,
int flags,
int lock_flags) __releases(RCU)
{
struct inode *inode = VFS_I(ip);
struct xfs_mount *mp = ip->i_mount;
int error;
/*
* check for re-use of an inode within an RCU grace period due to the
* radix tree nodes not being updated yet. We monitor for this by
* setting the inode number to zero before freeing the inode structure.
* If the inode has been reallocated and set up, then the inode number
* will not match, so check for that, too.
*/
spin_lock(&ip->i_flags_lock);
if (ip->i_ino != ino)
goto out_skip;
/*
* If we are racing with another cache hit that is currently
* instantiating this inode or currently recycling it out of
* reclaimable state, wait for the initialisation to complete
* before continuing.
*
* If we're racing with the inactivation worker we also want to wait.
* If we're creating a new file, it's possible that the worker
* previously marked the inode as free on disk but hasn't finished
* updating the incore state yet. The AGI buffer will be dirty and
* locked to the icreate transaction, so a synchronous push of the
* inodegc workers would result in deadlock. For a regular iget, the
* worker is running already, so we might as well wait.
*
* XXX(hch): eventually we should do something equivalent to
* wait_on_inode to wait for these flags to be cleared
* instead of polling for it.
*/
if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
goto out_skip;
if (ip->i_flags & XFS_NEED_INACTIVE) {
/* Unlinked inodes cannot be re-grabbed. */
if (VFS_I(ip)->i_nlink == 0) {
error = -ENOENT;
goto out_error;
}
goto out_inodegc_flush;
}
/*
* Check the inode free state is valid. This also detects lookup
* racing with unlinks.
*/
error = xfs_iget_check_free_state(ip, flags);
if (error)
goto out_error;
/* Skip inodes that have no vfs state. */
if ((flags & XFS_IGET_INCORE) &&
(ip->i_flags & XFS_IRECLAIMABLE))
goto out_skip;
/* The inode fits the selection criteria; process it. */
if (ip->i_flags & XFS_IRECLAIMABLE) {
/* Drops i_flags_lock and RCU read lock. */
error = xfs_iget_recycle(pag, ip);
if (error == -EAGAIN)
goto out_skip;
if (error)
return error;
} else {
/* If the VFS inode is being torn down, pause and try again. */
if (!igrab(inode))
goto out_skip;
/* We've got a live one. */
spin_unlock(&ip->i_flags_lock);
rcu_read_unlock();
trace_xfs_iget_hit(ip);
}
if (lock_flags != 0)
xfs_ilock(ip, lock_flags);
if (!(flags & XFS_IGET_INCORE))
xfs_iflags_clear(ip, XFS_ISTALE);
XFS_STATS_INC(mp, xs_ig_found);
return 0;
out_skip:
trace_xfs_iget_skip(ip);
XFS_STATS_INC(mp, xs_ig_frecycle);
error = -EAGAIN;
out_error:
spin_unlock(&ip->i_flags_lock);
rcu_read_unlock();
return error;
out_inodegc_flush:
spin_unlock(&ip->i_flags_lock);
rcu_read_unlock();
/*
* Do not wait for the workers, because the caller could hold an AGI
* buffer lock. We're just going to sleep in a loop anyway.
*/
if (xfs_is_inodegc_enabled(mp))
xfs_inodegc_queue_all(mp);
return -EAGAIN;
}
static int
xfs_iget_cache_miss(
struct xfs_mount *mp,
struct xfs_perag *pag,
xfs_trans_t *tp,
xfs_ino_t ino,
struct xfs_inode **ipp,
int flags,
int lock_flags)
{
struct xfs_inode *ip;
int error;
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
ip = xfs_inode_alloc(mp, ino);
if (!ip)
return -ENOMEM;
error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
if (error)
goto out_destroy;
/*
* For version 5 superblocks, if we are initialising a new inode and we
* are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
* simply build the new inode core with a random generation number.
*
* For version 4 (and older) superblocks, log recovery is dependent on
* the i_flushiter field being initialised from the current on-disk
* value and hence we must also read the inode off disk even when
* initializing new inodes.
*/
if (xfs_has_v3inodes(mp) &&
(flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
VFS_I(ip)->i_generation = get_random_u32();
} else {
struct xfs_buf *bp;
error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
if (error)
goto out_destroy;
error = xfs_inode_from_disk(ip,
xfs_buf_offset(bp, ip->i_imap.im_boffset));
if (!error)
xfs_buf_set_ref(bp, XFS_INO_REF);
else
xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
xfs_trans_brelse(tp, bp);
if (error)
goto out_destroy;
}
trace_xfs_iget_miss(ip);
/*
* Check the inode free state is valid. This also detects lookup
* racing with unlinks.
*/
error = xfs_iget_check_free_state(ip, flags);
if (error)
goto out_destroy;
/*
* Preload the radix tree so we can insert safely under the
* write spinlock. Note that we cannot sleep inside the preload
* region.
*/
if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
error = -EAGAIN;
goto out_destroy;
}
/*
* Because the inode hasn't been added to the radix-tree yet it can't
* be found by another thread, so we can do the non-sleeping lock here.
*/
if (lock_flags) {
if (!xfs_ilock_nowait(ip, lock_flags))
BUG();
}
/*
* These values must be set before inserting the inode into the radix
* tree as the moment it is inserted a concurrent lookup (allowed by the
* RCU locking mechanism) can find it and that lookup must see that this
* is an inode currently under construction (i.e. that XFS_INEW is set).
* The ip->i_flags_lock that protects the XFS_INEW flag forms the
* memory barrier that ensures this detection works correctly at lookup
* time.
*/
if (flags & XFS_IGET_DONTCACHE)
d_mark_dontcache(VFS_I(ip));
ip->i_udquot = NULL;
ip->i_gdquot = NULL;
ip->i_pdquot = NULL;
xfs_iflags_set(ip, XFS_INEW);
/* insert the new inode */
spin_lock(&pag->pag_ici_lock);
error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
if (unlikely(error)) {
WARN_ON(error != -EEXIST);
XFS_STATS_INC(mp, xs_ig_dup);
error = -EAGAIN;
goto out_preload_end;
}
spin_unlock(&pag->pag_ici_lock);
radix_tree_preload_end();
*ipp = ip;
return 0;
out_preload_end:
spin_unlock(&pag->pag_ici_lock);
radix_tree_preload_end();
if (lock_flags)
xfs_iunlock(ip, lock_flags);
out_destroy:
__destroy_inode(VFS_I(ip));
xfs_inode_free(ip);
return error;
}
/*
* Look up an inode by number in the given file system. The inode is looked up
* in the cache held in each AG. If the inode is found in the cache, initialise
* the vfs inode if necessary.
*
* If it is not in core, read it in from the file system's device, add it to the
* cache and initialise the vfs inode.
*
* The inode is locked according to the value of the lock_flags parameter.
* Inode lookup is only done during metadata operations and not as part of the
* data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
*/
int
xfs_iget(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_ino_t ino,
uint flags,
uint lock_flags,
struct xfs_inode **ipp)
{
struct xfs_inode *ip;
struct xfs_perag *pag;
xfs_agino_t agino;
int error;
ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
/* reject inode numbers outside existing AGs */
if (!xfs_verify_ino(mp, ino))
return -EINVAL;
XFS_STATS_INC(mp, xs_ig_attempts);
/* get the perag structure and ensure that it's inode capable */
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
agino = XFS_INO_TO_AGINO(mp, ino);
again:
error = 0;
rcu_read_lock();
ip = radix_tree_lookup(&pag->pag_ici_root, agino);
if (ip) {
error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
if (error)
goto out_error_or_again;
} else {
rcu_read_unlock();
if (flags & XFS_IGET_INCORE) {
error = -ENODATA;
goto out_error_or_again;
}
XFS_STATS_INC(mp, xs_ig_missed);
error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
flags, lock_flags);
if (error)
goto out_error_or_again;
}
xfs_perag_put(pag);
*ipp = ip;
/*
* If we have a real type for an on-disk inode, we can setup the inode
* now. If it's a new inode being created, xfs_init_new_inode will
* handle it.
*/
if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
xfs_setup_existing_inode(ip);
return 0;
out_error_or_again:
if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
error == -EAGAIN) {
delay(1);
goto again;
}
xfs_perag_put(pag);
return error;
}
/*
* Get a metadata inode.
*
* The metafile type must match the file mode exactly, and for files in the
* metadata directory tree, it must match the inode's metatype exactly.
*/
int
xfs_trans_metafile_iget(
struct xfs_trans *tp,
xfs_ino_t ino,
enum xfs_metafile_type metafile_type,
struct xfs_inode **ipp)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_inode *ip;
umode_t mode;
int error;
error = xfs_iget(mp, tp, ino, 0, 0, &ip);
if (error == -EFSCORRUPTED || error == -EINVAL)
goto whine;
if (error)
return error;
if (VFS_I(ip)->i_nlink == 0)
goto bad_rele;
if (metafile_type == XFS_METAFILE_DIR)
mode = S_IFDIR;
else
mode = S_IFREG;
if (inode_wrong_type(VFS_I(ip), mode))
goto bad_rele;
if (xfs_has_metadir(mp)) {
if (!xfs_is_metadir_inode(ip))
goto bad_rele;
if (metafile_type != ip->i_metatype)
goto bad_rele;
}
*ipp = ip;
return 0;
bad_rele:
xfs_irele(ip);
whine:
xfs_err(mp, "metadata inode 0x%llx type %u is corrupt", ino,
metafile_type);
xfs_fs_mark_sick(mp, XFS_SICK_FS_METADIR);
return -EFSCORRUPTED;
}
/* Grab a metadata file if the caller doesn't already have a transaction. */
int
xfs_metafile_iget(
struct xfs_mount *mp,
xfs_ino_t ino,
enum xfs_metafile_type metafile_type,
struct xfs_inode **ipp)
{
struct xfs_trans *tp;
int error;
error = xfs_trans_alloc_empty(mp, &tp);
if (error)
return error;
error = xfs_trans_metafile_iget(tp, ino, metafile_type, ipp);
xfs_trans_cancel(tp);
return error;
}
/*
* Grab the inode for reclaim exclusively.
*
* We have found this inode via a lookup under RCU, so the inode may have
* already been freed, or it may be in the process of being recycled by
* xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
* has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
* will not be set. Hence we need to check for both these flag conditions to
* avoid inodes that are no longer reclaim candidates.
*
* Note: checking for other state flags here, under the i_flags_lock or not, is
* racy and should be avoided. Those races should be resolved only after we have
* ensured that we are able to reclaim this inode and the world can see that we
* are going to reclaim it.
*
* Return true if we grabbed it, false otherwise.
*/
static bool
xfs_reclaim_igrab(
struct xfs_inode *ip,
struct xfs_icwalk *icw)
{
ASSERT(rcu_read_lock_held());
spin_lock(&ip->i_flags_lock);
if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
__xfs_iflags_test(ip, XFS_IRECLAIM)) {
/* not a reclaim candidate. */
spin_unlock(&ip->i_flags_lock);
return false;
}
/* Don't reclaim a sick inode unless the caller asked for it. */
if (ip->i_sick &&
(!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
spin_unlock(&ip->i_flags_lock);
return false;
}
__xfs_iflags_set(ip, XFS_IRECLAIM);
spin_unlock(&ip->i_flags_lock);
return true;
}
/*
* Inode reclaim is non-blocking, so the default action if progress cannot be
* made is to "requeue" the inode for reclaim by unlocking it and clearing the
* XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
* blocking anymore and hence we can wait for the inode to be able to reclaim
* it.
*
* We do no IO here - if callers require inodes to be cleaned they must push the
* AIL first to trigger writeback of dirty inodes. This enables writeback to be
* done in the background in a non-blocking manner, and enables memory reclaim
* to make progress without blocking.
*/
static void
xfs_reclaim_inode(
struct xfs_inode *ip,
struct xfs_perag *pag)
{
xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
goto out;
if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
goto out_iunlock;
/*
* Check for log shutdown because aborting the inode can move the log
* tail and corrupt in memory state. This is fine if the log is shut
* down, but if the log is still active and only the mount is shut down
* then the in-memory log tail movement caused by the abort can be
* incorrectly propagated to disk.
*/
if (xlog_is_shutdown(ip->i_mount->m_log)) {
xfs_iunpin_wait(ip);
xfs_iflush_shutdown_abort(ip);
goto reclaim;
}
if (xfs_ipincount(ip))
goto out_clear_flush;
if (!xfs_inode_clean(ip))
goto out_clear_flush;
xfs_iflags_clear(ip, XFS_IFLUSHING);
reclaim:
trace_xfs_inode_reclaiming(ip);
/*
* Because we use RCU freeing we need to ensure the inode always appears
* to be reclaimed with an invalid inode number when in the free state.
* We do this as early as possible under the ILOCK so that
* xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
* detect races with us here. By doing this, we guarantee that once
* xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
* it will see either a valid inode that will serialise correctly, or it
* will see an invalid inode that it can skip.
*/
spin_lock(&ip->i_flags_lock);
ip->i_flags = XFS_IRECLAIM;
ip->i_ino = 0;
ip->i_sick = 0;
ip->i_checked = 0;
spin_unlock(&ip->i_flags_lock);
ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
/*
* Remove the inode from the per-AG radix tree.
*
* Because radix_tree_delete won't complain even if the item was never
* added to the tree assert that it's been there before to catch
* problems with the inode life time early on.
*/
spin_lock(&pag->pag_ici_lock);
if (!radix_tree_delete(&pag->pag_ici_root,
XFS_INO_TO_AGINO(ip->i_mount, ino)))
ASSERT(0);
xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
spin_unlock(&pag->pag_ici_lock);
/*
* Here we do an (almost) spurious inode lock in order to coordinate
* with inode cache radix tree lookups. This is because the lookup
* can reference the inodes in the cache without taking references.
*
* We make that OK here by ensuring that we wait until the inode is
* unlocked after the lookup before we go ahead and free it.
*/
xfs_ilock(ip, XFS_ILOCK_EXCL);
ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
ASSERT(xfs_inode_clean(ip));
__xfs_inode_free(ip);
return;
out_clear_flush:
xfs_iflags_clear(ip, XFS_IFLUSHING);
out_iunlock:
xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
xfs_iflags_clear(ip, XFS_IRECLAIM);
}
/* Reclaim sick inodes if we're unmounting or the fs went down. */
static inline bool
xfs_want_reclaim_sick(
struct xfs_mount *mp)
{
return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
xfs_is_shutdown(mp);
}
void
xfs_reclaim_inodes(
struct xfs_mount *mp)
{
struct xfs_icwalk icw = {
.icw_flags = 0,
};
if (xfs_want_reclaim_sick(mp))
icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
while (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
xfs_ail_push_all_sync(mp->m_ail);
xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
}
}
/*
* The shrinker infrastructure determines how many inodes we should scan for
* reclaim. We want as many clean inodes ready to reclaim as possible, so we
* push the AIL here. We also want to proactively free up memory if we can to
* minimise the amount of work memory reclaim has to do so we kick the
* background reclaim if it isn't already scheduled.
*/
long
xfs_reclaim_inodes_nr(
struct xfs_mount *mp,
unsigned long nr_to_scan)
{
struct xfs_icwalk icw = {
.icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
.icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
};
if (xfs_want_reclaim_sick(mp))
icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
/* kick background reclaimer and push the AIL */
xfs_reclaim_work_queue(mp);
xfs_ail_push_all(mp->m_ail);
xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
return 0;
}
/*
* Return the number of reclaimable inodes in the filesystem for
* the shrinker to determine how much to reclaim.
*/
long
xfs_reclaim_inodes_count(
struct xfs_mount *mp)
{
XA_STATE (xas, &mp->m_groups[XG_TYPE_AG].xa, 0);
long reclaimable = 0;
struct xfs_perag *pag;
rcu_read_lock();
xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) {
trace_xfs_reclaim_inodes_count(pag, _THIS_IP_);
reclaimable += pag->pag_ici_reclaimable;
}
rcu_read_unlock();
return reclaimable;
}
STATIC bool
xfs_icwalk_match_id(
struct xfs_inode *ip,
struct xfs_icwalk *icw)
{
if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
!uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
return false;
if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
!gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
return false;
if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
ip->i_projid != icw->icw_prid)
return false;
return true;
}
/*
* A union-based inode filtering algorithm. Process the inode if any of the
* criteria match. This is for global/internal scans only.
*/
STATIC bool
xfs_icwalk_match_id_union(
struct xfs_inode *ip,
struct xfs_icwalk *icw)
{
if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
return true;
if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
return true;
if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
ip->i_projid == icw->icw_prid)
return true;
return false;
}
/*
* Is this inode @ip eligible for eof/cow block reclamation, given some
* filtering parameters @icw? The inode is eligible if @icw is null or
* if the predicate functions match.
*/
static bool
xfs_icwalk_match(
struct xfs_inode *ip,
struct xfs_icwalk *icw)
{
bool match;
if (!icw)
return true;
if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
match = xfs_icwalk_match_id_union(ip, icw);
else
match = xfs_icwalk_match_id(ip, icw);
if (!match)
return false;
/* skip the inode if the file size is too small */
if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
XFS_ISIZE(ip) < icw->icw_min_file_size)
return false;
return true;
}
/*
* This is a fast pass over the inode cache to try to get reclaim moving on as
* many inodes as possible in a short period of time. It kicks itself every few
* seconds, as well as being kicked by the inode cache shrinker when memory
* goes low.
*/
void
xfs_reclaim_worker(
struct work_struct *work)
{
struct xfs_mount *mp = container_of(to_delayed_work(work),
struct xfs_mount, m_reclaim_work);
xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
xfs_reclaim_work_queue(mp);
}
STATIC int
xfs_inode_free_eofblocks(
struct xfs_inode *ip,
struct xfs_icwalk *icw,
unsigned int *lockflags)
{
bool wait;
wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
return 0;
/*
* If the mapping is dirty the operation can block and wait for some
* time. Unless we are waiting, skip it.
*/
if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
return 0;
if (!xfs_icwalk_match(ip, icw))
return 0;
/*
* If the caller is waiting, return -EAGAIN to keep the background
* scanner moving and revisit the inode in a subsequent pass.
*/
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
if (wait)
return -EAGAIN;
return 0;
}
*lockflags |= XFS_IOLOCK_EXCL;
if (xfs_can_free_eofblocks(ip))
return xfs_free_eofblocks(ip);
/* inode could be preallocated */
trace_xfs_inode_free_eofblocks_invalid(ip);
xfs_inode_clear_eofblocks_tag(ip);
return 0;
}
static void
xfs_blockgc_set_iflag(
struct xfs_inode *ip,
unsigned long iflag)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_perag *pag;
ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
/*
* Don't bother locking the AG and looking up in the radix trees
* if we already know that we have the tag set.
*/
if (ip->i_flags & iflag)
return;
spin_lock(&ip->i_flags_lock);
ip->i_flags |= iflag;
spin_unlock(&ip->i_flags_lock);
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
spin_lock(&pag->pag_ici_lock);
xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
XFS_ICI_BLOCKGC_TAG);
spin_unlock(&pag->pag_ici_lock);
xfs_perag_put(pag);
}
void
xfs_inode_set_eofblocks_tag(
xfs_inode_t *ip)
{
trace_xfs_inode_set_eofblocks_tag(ip);
return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
}
static void
xfs_blockgc_clear_iflag(
struct xfs_inode *ip,
unsigned long iflag)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_perag *pag;
bool clear_tag;
ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
spin_lock(&ip->i_flags_lock);
ip->i_flags &= ~iflag;
clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
spin_unlock(&ip->i_flags_lock);
if (!clear_tag)
return;
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
spin_lock(&pag->pag_ici_lock);
xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
XFS_ICI_BLOCKGC_TAG);
spin_unlock(&pag->pag_ici_lock);
xfs_perag_put(pag);
}
void
xfs_inode_clear_eofblocks_tag(
xfs_inode_t *ip)
{
trace_xfs_inode_clear_eofblocks_tag(ip);
return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
}
/*
* Prepare to free COW fork blocks from an inode.
*/
static bool
xfs_prep_free_cowblocks(
struct xfs_inode *ip,
struct xfs_icwalk *icw)
{
bool sync;
sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
/*
* Just clear the tag if we have an empty cow fork or none at all. It's
* possible the inode was fully unshared since it was originally tagged.
*/
if (!xfs_inode_has_cow_data(ip)) {
trace_xfs_inode_free_cowblocks_invalid(ip);
xfs_inode_clear_cowblocks_tag(ip);
return false;
}
/*
* A cowblocks trim of an inode can have a significant effect on
* fragmentation even when a reasonable COW extent size hint is set.
* Therefore, we prefer to not process cowblocks unless they are clean
* and idle. We can never process a cowblocks inode that is dirty or has
* in-flight I/O under any circumstances, because outstanding writeback
* or dio expects targeted COW fork blocks exist through write
* completion where they can be remapped into the data fork.
*
* Therefore, the heuristic used here is to never process inodes
* currently opened for write from background (i.e. non-sync) scans. For
* sync scans, use the pagecache/dio state of the inode to ensure we
* never free COW fork blocks out from under pending I/O.
*/
if (!sync && inode_is_open_for_write(VFS_I(ip)))
return false;
return xfs_can_free_cowblocks(ip);
}
/*
* Automatic CoW Reservation Freeing
*
* These functions automatically garbage collect leftover CoW reservations
* that were made on behalf of a cowextsize hint when we start to run out
* of quota or when the reservations sit around for too long. If the file
* has dirty pages or is undergoing writeback, its CoW reservations will
* be retained.
*
* The actual garbage collection piggybacks off the same code that runs
* the speculative EOF preallocation garbage collector.
*/
STATIC int
xfs_inode_free_cowblocks(
struct xfs_inode *ip,
struct xfs_icwalk *icw,
unsigned int *lockflags)
{
bool wait;
int ret = 0;
wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
return 0;
if (!xfs_prep_free_cowblocks(ip, icw))
return 0;
if (!xfs_icwalk_match(ip, icw))
return 0;
/*
* If the caller is waiting, return -EAGAIN to keep the background
* scanner moving and revisit the inode in a subsequent pass.
*/
if (!(*lockflags & XFS_IOLOCK_EXCL) &&
!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
if (wait)
return -EAGAIN;
return 0;
}
*lockflags |= XFS_IOLOCK_EXCL;
if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
if (wait)
return -EAGAIN;
return 0;
}
*lockflags |= XFS_MMAPLOCK_EXCL;
/*
* Check again, nobody else should be able to dirty blocks or change
* the reflink iflag now that we have the first two locks held.
*/
if (xfs_prep_free_cowblocks(ip, icw))
ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
return ret;
}
void
xfs_inode_set_cowblocks_tag(
xfs_inode_t *ip)
{
trace_xfs_inode_set_cowblocks_tag(ip);
return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
}
void
xfs_inode_clear_cowblocks_tag(
xfs_inode_t *ip)
{
trace_xfs_inode_clear_cowblocks_tag(ip);
return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
}
/* Disable post-EOF and CoW block auto-reclamation. */
void
xfs_blockgc_stop(
struct xfs_mount *mp)
{
struct xfs_perag *pag = NULL;
if (!xfs_clear_blockgc_enabled(mp))
return;
while ((pag = xfs_perag_next(mp, pag)))
cancel_delayed_work_sync(&pag->pag_blockgc_work);
trace_xfs_blockgc_stop(mp, __return_address);
}
/* Enable post-EOF and CoW block auto-reclamation. */
void
xfs_blockgc_start(
struct xfs_mount *mp)
{
struct xfs_perag *pag = NULL;
if (xfs_set_blockgc_enabled(mp))
return;
trace_xfs_blockgc_start(mp, __return_address);
while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
xfs_blockgc_queue(pag);
}
/* Don't try to run block gc on an inode that's in any of these states. */
#define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
XFS_NEED_INACTIVE | \
XFS_INACTIVATING | \
XFS_IRECLAIMABLE | \
XFS_IRECLAIM)
/*
* Decide if the given @ip is eligible for garbage collection of speculative
* preallocations, and grab it if so. Returns true if it's ready to go or
* false if we should just ignore it.
*/
static bool
xfs_blockgc_igrab(
struct xfs_inode *ip)
{
struct inode *inode = VFS_I(ip);
ASSERT(rcu_read_lock_held());
/* Check for stale RCU freed inode */
spin_lock(&ip->i_flags_lock);
if (!ip->i_ino)
goto out_unlock_noent;
if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
goto out_unlock_noent;
spin_unlock(&ip->i_flags_lock);
/* nothing to sync during shutdown */
if (xfs_is_shutdown(ip->i_mount))
return false;
/* If we can't grab the inode, it must on it's way to reclaim. */
if (!igrab(inode))
return false;
/* inode is valid */
return true;
out_unlock_noent:
spin_unlock(&ip->i_flags_lock);
return false;
}
/* Scan one incore inode for block preallocations that we can remove. */
static int
xfs_blockgc_scan_inode(
struct xfs_inode *ip,
struct xfs_icwalk *icw)
{
unsigned int lockflags = 0;
int error;
error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
if (error)
goto unlock;
error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
unlock:
if (lockflags)
xfs_iunlock(ip, lockflags);
xfs_irele(ip);
return error;
}
/* Background worker that trims preallocated space. */
void
xfs_blockgc_worker(
struct work_struct *work)
{
struct xfs_perag *pag = container_of(to_delayed_work(work),
struct xfs_perag, pag_blockgc_work);
struct xfs_mount *mp = pag_mount(pag);
int error;
trace_xfs_blockgc_worker(mp, __return_address);
error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
if (error)
xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
pag_agno(pag), error);
xfs_blockgc_queue(pag);
}
/*
* Try to free space in the filesystem by purging inactive inodes, eofblocks
* and cowblocks.
*/
int
xfs_blockgc_free_space(
struct xfs_mount *mp,
struct xfs_icwalk *icw)
{
int error;
trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
if (error)
return error;
return xfs_inodegc_flush(mp);
}
/*
* Reclaim all the free space that we can by scheduling the background blockgc
* and inodegc workers immediately and waiting for them all to clear.
*/
int
xfs_blockgc_flush_all(
struct xfs_mount *mp)
{
struct xfs_perag *pag = NULL;
trace_xfs_blockgc_flush_all(mp, __return_address);
/*
* For each blockgc worker, move its queue time up to now. If it wasn't
* queued, it will not be requeued. Then flush whatever is left.
*/
while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
mod_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 0);
while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
flush_delayed_work(&pag->pag_blockgc_work);
return xfs_inodegc_flush(mp);
}
/*
* Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
* quota caused an allocation failure, so we make a best effort by including
* each quota under low free space conditions (less than 1% free space) in the
* scan.
*
* Callers must not hold any inode's ILOCK. If requesting a synchronous scan
* (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
* MMAPLOCK.
*/
int
xfs_blockgc_free_dquots(
struct xfs_mount *mp,
struct xfs_dquot *udqp,
struct xfs_dquot *gdqp,
struct xfs_dquot *pdqp,
unsigned int iwalk_flags)
{
struct xfs_icwalk icw = {0};
bool do_work = false;
if (!udqp && !gdqp && !pdqp)
return 0;
/*
* Run a scan to free blocks using the union filter to cover all
* applicable quotas in a single scan.
*/
icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
icw.icw_flags |= XFS_ICWALK_FLAG_UID;
do_work = true;
}
if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
icw.icw_flags |= XFS_ICWALK_FLAG_GID;
do_work = true;
}
if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
icw.icw_prid = pdqp->q_id;
icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
do_work = true;
}
if (!do_work)
return 0;
return xfs_blockgc_free_space(mp, &icw);
}
/* Run cow/eofblocks scans on the quotas attached to the inode. */
int
xfs_blockgc_free_quota(
struct xfs_inode *ip,
unsigned int iwalk_flags)
{
return xfs_blockgc_free_dquots(ip->i_mount,
xfs_inode_dquot(ip, XFS_DQTYPE_USER),
xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
}
/* XFS Inode Cache Walking Code */
/*
* The inode lookup is done in batches to keep the amount of lock traffic and
* radix tree lookups to a minimum. The batch size is a trade off between
* lookup reduction and stack usage. This is in the reclaim path, so we can't
* be too greedy.
*/
#define XFS_LOOKUP_BATCH 32
/*
* Decide if we want to grab this inode in anticipation of doing work towards
* the goal.
*/
static inline bool
xfs_icwalk_igrab(
enum xfs_icwalk_goal goal,
struct xfs_inode *ip,
struct xfs_icwalk *icw)
{
switch (goal) {
case XFS_ICWALK_BLOCKGC:
return xfs_blockgc_igrab(ip);
case XFS_ICWALK_RECLAIM:
return xfs_reclaim_igrab(ip, icw);
default:
return false;
}
}
/*
* Process an inode. Each processing function must handle any state changes
* made by the icwalk igrab function. Return -EAGAIN to skip an inode.
*/
static inline int
xfs_icwalk_process_inode(
enum xfs_icwalk_goal goal,
struct xfs_inode *ip,
struct xfs_perag *pag,
struct xfs_icwalk *icw)
{
int error = 0;
switch (goal) {
case XFS_ICWALK_BLOCKGC:
error = xfs_blockgc_scan_inode(ip, icw);
break;
case XFS_ICWALK_RECLAIM:
xfs_reclaim_inode(ip, pag);
break;
}
return error;
}
/*
* For a given per-AG structure @pag and a goal, grab qualifying inodes and
* process them in some manner.
*/
static int
xfs_icwalk_ag(
struct xfs_perag *pag,
enum xfs_icwalk_goal goal,
struct xfs_icwalk *icw)
{
struct xfs_mount *mp = pag_mount(pag);
uint32_t first_index;
int last_error = 0;
int skipped;
bool done;
int nr_found;
restart:
done = false;
skipped = 0;
if (goal == XFS_ICWALK_RECLAIM)
first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
else
first_index = 0;
nr_found = 0;
do {
struct xfs_inode *batch[XFS_LOOKUP_BATCH];
int error = 0;
int i;
rcu_read_lock();
nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
(void **) batch, first_index,
XFS_LOOKUP_BATCH, goal);
if (!nr_found) {
done = true;
rcu_read_unlock();
break;
}
/*
* Grab the inodes before we drop the lock. if we found
* nothing, nr == 0 and the loop will be skipped.
*/
for (i = 0; i < nr_found; i++) {
struct xfs_inode *ip = batch[i];
if (done || !xfs_icwalk_igrab(goal, ip, icw))
batch[i] = NULL;
/*
* Update the index for the next lookup. Catch
* overflows into the next AG range which can occur if
* we have inodes in the last block of the AG and we
* are currently pointing to the last inode.
*
* Because we may see inodes that are from the wrong AG
* due to RCU freeing and reallocation, only update the
* index if it lies in this AG. It was a race that lead
* us to see this inode, so another lookup from the
* same index will not find it again.
*/
if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag))
continue;
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
done = true;
}
/* unlock now we've grabbed the inodes. */
rcu_read_unlock();
for (i = 0; i < nr_found; i++) {
if (!batch[i])
continue;
error = xfs_icwalk_process_inode(goal, batch[i], pag,
icw);
if (error == -EAGAIN) {
skipped++;
continue;
}
if (error && last_error != -EFSCORRUPTED)
last_error = error;
}
/* bail out if the filesystem is corrupted. */
if (error == -EFSCORRUPTED)
break;
cond_resched();
if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
if (icw->icw_scan_limit <= 0)
break;
}
} while (nr_found && !done);
if (goal == XFS_ICWALK_RECLAIM) {
if (done)
first_index = 0;
WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
}
if (skipped) {
delay(1);
goto restart;
}
return last_error;
}
/* Walk all incore inodes to achieve a given goal. */
static int
xfs_icwalk(
struct xfs_mount *mp,
enum xfs_icwalk_goal goal,
struct xfs_icwalk *icw)
{
struct xfs_perag *pag = NULL;
int error = 0;
int last_error = 0;
while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) {
error = xfs_icwalk_ag(pag, goal, icw);
if (error) {
last_error = error;
if (error == -EFSCORRUPTED) {
xfs_perag_rele(pag);
break;
}
}
}
return last_error;
BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
}
#ifdef DEBUG
static void
xfs_check_delalloc(
struct xfs_inode *ip,
int whichfork)
{
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
struct xfs_bmbt_irec got;
struct xfs_iext_cursor icur;
if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
return;
do {
if (isnullstartblock(got.br_startblock)) {
xfs_warn(ip->i_mount,
"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
ip->i_ino,
whichfork == XFS_DATA_FORK ? "data" : "cow",
got.br_startoff, got.br_blockcount);
}
} while (xfs_iext_next_extent(ifp, &icur, &got));
}
#else
#define xfs_check_delalloc(ip, whichfork) do { } while (0)
#endif
/* Schedule the inode for reclaim. */
static void
xfs_inodegc_set_reclaimable(
struct xfs_inode *ip)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_perag *pag;
if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
xfs_check_delalloc(ip, XFS_DATA_FORK);
xfs_check_delalloc(ip, XFS_COW_FORK);
ASSERT(0);
}
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
spin_lock(&pag->pag_ici_lock);
spin_lock(&ip->i_flags_lock);
trace_xfs_inode_set_reclaimable(ip);
ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
ip->i_flags |= XFS_IRECLAIMABLE;
xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
XFS_ICI_RECLAIM_TAG);
spin_unlock(&ip->i_flags_lock);
spin_unlock(&pag->pag_ici_lock);
xfs_perag_put(pag);
}
/*
* Free all speculative preallocations and possibly even the inode itself.
* This is the last chance to make changes to an otherwise unreferenced file
* before incore reclamation happens.
*/
static int
xfs_inodegc_inactivate(
struct xfs_inode *ip)
{
int error;
trace_xfs_inode_inactivating(ip);
error = xfs_inactive(ip);
xfs_inodegc_set_reclaimable(ip);
return error;
}
void
xfs_inodegc_worker(
struct work_struct *work)
{
struct xfs_inodegc *gc = container_of(to_delayed_work(work),
struct xfs_inodegc, work);
struct llist_node *node = llist_del_all(&gc->list);
struct xfs_inode *ip, *n;
struct xfs_mount *mp = gc->mp;
unsigned int nofs_flag;
/*
* Clear the cpu mask bit and ensure that we have seen the latest
* update of the gc structure associated with this CPU. This matches
* with the release semantics used when setting the cpumask bit in
* xfs_inodegc_queue.
*/
cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
smp_mb__after_atomic();
WRITE_ONCE(gc->items, 0);
if (!node)
return;
/*
* We can allocate memory here while doing writeback on behalf of
* memory reclaim. To avoid memory allocation deadlocks set the
* task-wide nofs context for the following operations.
*/
nofs_flag = memalloc_nofs_save();
ip = llist_entry(node, struct xfs_inode, i_gclist);
trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
WRITE_ONCE(gc->shrinker_hits, 0);
llist_for_each_entry_safe(ip, n, node, i_gclist) {
int error;
xfs_iflags_set(ip, XFS_INACTIVATING);
error = xfs_inodegc_inactivate(ip);
if (error && !gc->error)
gc->error = error;
}
memalloc_nofs_restore(nofs_flag);
}
/*
* Expedite all pending inodegc work to run immediately. This does not wait for
* completion of the work.
*/
void
xfs_inodegc_push(
struct xfs_mount *mp)
{
if (!xfs_is_inodegc_enabled(mp))
return;
trace_xfs_inodegc_push(mp, __return_address);
xfs_inodegc_queue_all(mp);
}
/*
* Force all currently queued inode inactivation work to run immediately and
* wait for the work to finish.
*/
int
xfs_inodegc_flush(
struct xfs_mount *mp)
{
xfs_inodegc_push(mp);
trace_xfs_inodegc_flush(mp, __return_address);
return xfs_inodegc_wait_all(mp);
}
/*
* Flush all the pending work and then disable the inode inactivation background
* workers and wait for them to stop. Caller must hold sb->s_umount to
* coordinate changes in the inodegc_enabled state.
*/
void
xfs_inodegc_stop(
struct xfs_mount *mp)
{
bool rerun;
if (!xfs_clear_inodegc_enabled(mp))
return;
/*
* Drain all pending inodegc work, including inodes that could be
* queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
* threads that sample the inodegc state just prior to us clearing it.
* The inodegc flag state prevents new threads from queuing more
* inodes, so we queue pending work items and flush the workqueue until
* all inodegc lists are empty. IOWs, we cannot use drain_workqueue
* here because it does not allow other unserialized mechanisms to
* reschedule inodegc work while this draining is in progress.
*/
xfs_inodegc_queue_all(mp);
do {
flush_workqueue(mp->m_inodegc_wq);
rerun = xfs_inodegc_queue_all(mp);
} while (rerun);
trace_xfs_inodegc_stop(mp, __return_address);
}
/*
* Enable the inode inactivation background workers and schedule deferred inode
* inactivation work if there is any. Caller must hold sb->s_umount to
* coordinate changes in the inodegc_enabled state.
*/
void
xfs_inodegc_start(
struct xfs_mount *mp)
{
if (xfs_set_inodegc_enabled(mp))
return;
trace_xfs_inodegc_start(mp, __return_address);
xfs_inodegc_queue_all(mp);
}
#ifdef CONFIG_XFS_RT
static inline bool
xfs_inodegc_want_queue_rt_file(
struct xfs_inode *ip)
{
struct xfs_mount *mp = ip->i_mount;
if (!XFS_IS_REALTIME_INODE(ip))
return false;
if (__percpu_counter_compare(&mp->m_frextents,
mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
XFS_FDBLOCKS_BATCH) < 0)
return true;
return false;
}
#else
# define xfs_inodegc_want_queue_rt_file(ip) (false)
#endif /* CONFIG_XFS_RT */
/*
* Schedule the inactivation worker when:
*
* - We've accumulated more than one inode cluster buffer's worth of inodes.
* - There is less than 5% free space left.
* - Any of the quotas for this inode are near an enforcement limit.
*/
static inline bool
xfs_inodegc_want_queue_work(
struct xfs_inode *ip,
unsigned int items)
{
struct xfs_mount *mp = ip->i_mount;
if (items > mp->m_ino_geo.inodes_per_cluster)
return true;
if (__percpu_counter_compare(&mp->m_fdblocks,
mp->m_low_space[XFS_LOWSP_5_PCNT],
XFS_FDBLOCKS_BATCH) < 0)
return true;
if (xfs_inodegc_want_queue_rt_file(ip))
return true;
if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
return true;
if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
return true;
if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
return true;
return false;
}
/*
* Upper bound on the number of inodes in each AG that can be queued for
* inactivation at any given time, to avoid monopolizing the workqueue.
*/
#define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
/*
* Make the frontend wait for inactivations when:
*
* - Memory shrinkers queued the inactivation worker and it hasn't finished.
* - The queue depth exceeds the maximum allowable percpu backlog.
*
* Note: If we are in a NOFS context here (e.g. current thread is running a
* transaction) the we don't want to block here as inodegc progress may require
* filesystem resources we hold to make progress and that could result in a
* deadlock. Hence we skip out of here if we are in a scoped NOFS context.
*/
static inline bool
xfs_inodegc_want_flush_work(
struct xfs_inode *ip,
unsigned int items,
unsigned int shrinker_hits)
{
if (current->flags & PF_MEMALLOC_NOFS)
return false;
if (shrinker_hits > 0)
return true;
if (items > XFS_INODEGC_MAX_BACKLOG)
return true;
return false;
}
/*
* Queue a background inactivation worker if there are inodes that need to be
* inactivated and higher level xfs code hasn't disabled the background
* workers.
*/
static void
xfs_inodegc_queue(
struct xfs_inode *ip)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_inodegc *gc;
int items;
unsigned int shrinker_hits;
unsigned int cpu_nr;
unsigned long queue_delay = 1;
trace_xfs_inode_set_need_inactive(ip);
spin_lock(&ip->i_flags_lock);
ip->i_flags |= XFS_NEED_INACTIVE;
spin_unlock(&ip->i_flags_lock);
cpu_nr = get_cpu();
gc = this_cpu_ptr(mp->m_inodegc);
llist_add(&ip->i_gclist, &gc->list);
items = READ_ONCE(gc->items);
WRITE_ONCE(gc->items, items + 1);
shrinker_hits = READ_ONCE(gc->shrinker_hits);
/*
* Ensure the list add is always seen by anyone who finds the cpumask
* bit set. This effectively gives the cpumask bit set operation
* release ordering semantics.
*/
smp_mb__before_atomic();
if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
/*
* We queue the work while holding the current CPU so that the work
* is scheduled to run on this CPU.
*/
if (!xfs_is_inodegc_enabled(mp)) {
put_cpu();
return;
}
if (xfs_inodegc_want_queue_work(ip, items))
queue_delay = 0;
trace_xfs_inodegc_queue(mp, __return_address);
mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
queue_delay);
put_cpu();
if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
trace_xfs_inodegc_throttle(mp, __return_address);
flush_delayed_work(&gc->work);
}
}
/*
* We set the inode flag atomically with the radix tree tag. Once we get tag
* lookups on the radix tree, this inode flag can go away.
*
* We always use background reclaim here because even if the inode is clean, it
* still may be under IO and hence we have wait for IO completion to occur
* before we can reclaim the inode. The background reclaim path handles this
* more efficiently than we can here, so simply let background reclaim tear down
* all inodes.
*/
void
xfs_inode_mark_reclaimable(
struct xfs_inode *ip)
{
struct xfs_mount *mp = ip->i_mount;
bool need_inactive;
XFS_STATS_INC(mp, vn_reclaim);
/*
* We should never get here with any of the reclaim flags already set.
*/
ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
need_inactive = xfs_inode_needs_inactive(ip);
if (need_inactive) {
xfs_inodegc_queue(ip);
return;
}
/* Going straight to reclaim, so drop the dquots. */
xfs_qm_dqdetach(ip);
xfs_inodegc_set_reclaimable(ip);
}
/*
* Register a phony shrinker so that we can run background inodegc sooner when
* there's memory pressure. Inactivation does not itself free any memory but
* it does make inodes reclaimable, which eventually frees memory.
*
* The count function, seek value, and batch value are crafted to trigger the
* scan function during the second round of scanning. Hopefully this means
* that we reclaimed enough memory that initiating metadata transactions won't
* make things worse.
*/
#define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY)
#define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
static unsigned long
xfs_inodegc_shrinker_count(
struct shrinker *shrink,
struct shrink_control *sc)
{
struct xfs_mount *mp = shrink->private_data;
struct xfs_inodegc *gc;
int cpu;
if (!xfs_is_inodegc_enabled(mp))
return 0;
for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
gc = per_cpu_ptr(mp->m_inodegc, cpu);
if (!llist_empty(&gc->list))
return XFS_INODEGC_SHRINKER_COUNT;
}
return 0;
}
static unsigned long
xfs_inodegc_shrinker_scan(
struct shrinker *shrink,
struct shrink_control *sc)
{
struct xfs_mount *mp = shrink->private_data;
struct xfs_inodegc *gc;
int cpu;
bool no_items = true;
if (!xfs_is_inodegc_enabled(mp))
return SHRINK_STOP;
trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
gc = per_cpu_ptr(mp->m_inodegc, cpu);
if (!llist_empty(&gc->list)) {
unsigned int h = READ_ONCE(gc->shrinker_hits);
WRITE_ONCE(gc->shrinker_hits, h + 1);
mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
no_items = false;
}
}
/*
* If there are no inodes to inactivate, we don't want the shrinker
* to think there's deferred work to call us back about.
*/
if (no_items)
return LONG_MAX;
return SHRINK_STOP;
}
/* Register a shrinker so we can accelerate inodegc and throttle queuing. */
int
xfs_inodegc_register_shrinker(
struct xfs_mount *mp)
{
mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
"xfs-inodegc:%s",
mp->m_super->s_id);
if (!mp->m_inodegc_shrinker)
return -ENOMEM;
mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
mp->m_inodegc_shrinker->seeks = 0;
mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
mp->m_inodegc_shrinker->private_data = mp;
shrinker_register(mp->m_inodegc_shrinker);
return 0;
}