mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-12 16:58:53 +00:00
cd514bdaa8
Put back the QUEUE_ORDERED_NONE test which caused us grief in sles when it was taken out as, IIRC, it allowed md/lvm to be thought of as supporting barriers when they weren't in some configurations. This patch will be reverting what went in as part of a change for the SGI-pv 964544 (SGI-Modid: xfs-linux-melb:xfs-kern:28568a). SGI-PV: 971783 SGI-Modid: xfs-linux-melb:xfs-kern:29882a Signed-off-by: Tim Shimmin <tes@sgi.com> Signed-off-by: David Chinner <dgc@sgi.com>
966 lines
22 KiB
C
966 lines
22 KiB
C
/*
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_clnt.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_dmapi.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_dir2_sf.h"
|
|
#include "xfs_attr_sf.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_rtalloc.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_itable.h"
|
|
#include "xfs_rw.h"
|
|
#include "xfs_acl.h"
|
|
#include "xfs_attr.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_utils.h"
|
|
#include "xfs_vnodeops.h"
|
|
#include "xfs_vfsops.h"
|
|
#include "xfs_version.h"
|
|
|
|
#include <linux/namei.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/freezer.h>
|
|
|
|
static struct quotactl_ops xfs_quotactl_operations;
|
|
static struct super_operations xfs_super_operations;
|
|
static kmem_zone_t *xfs_vnode_zone;
|
|
static kmem_zone_t *xfs_ioend_zone;
|
|
mempool_t *xfs_ioend_pool;
|
|
|
|
STATIC struct xfs_mount_args *
|
|
xfs_args_allocate(
|
|
struct super_block *sb,
|
|
int silent)
|
|
{
|
|
struct xfs_mount_args *args;
|
|
|
|
args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
|
|
args->logbufs = args->logbufsize = -1;
|
|
strncpy(args->fsname, sb->s_id, MAXNAMELEN);
|
|
|
|
/* Copy the already-parsed mount(2) flags we're interested in */
|
|
if (sb->s_flags & MS_DIRSYNC)
|
|
args->flags |= XFSMNT_DIRSYNC;
|
|
if (sb->s_flags & MS_SYNCHRONOUS)
|
|
args->flags |= XFSMNT_WSYNC;
|
|
if (silent)
|
|
args->flags |= XFSMNT_QUIET;
|
|
args->flags |= XFSMNT_32BITINODES;
|
|
|
|
return args;
|
|
}
|
|
|
|
__uint64_t
|
|
xfs_max_file_offset(
|
|
unsigned int blockshift)
|
|
{
|
|
unsigned int pagefactor = 1;
|
|
unsigned int bitshift = BITS_PER_LONG - 1;
|
|
|
|
/* Figure out maximum filesize, on Linux this can depend on
|
|
* the filesystem blocksize (on 32 bit platforms).
|
|
* __block_prepare_write does this in an [unsigned] long...
|
|
* page->index << (PAGE_CACHE_SHIFT - bbits)
|
|
* So, for page sized blocks (4K on 32 bit platforms),
|
|
* this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
|
|
* (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
|
|
* but for smaller blocksizes it is less (bbits = log2 bsize).
|
|
* Note1: get_block_t takes a long (implicit cast from above)
|
|
* Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
|
|
* can optionally convert the [unsigned] long from above into
|
|
* an [unsigned] long long.
|
|
*/
|
|
|
|
#if BITS_PER_LONG == 32
|
|
# if defined(CONFIG_LBD)
|
|
ASSERT(sizeof(sector_t) == 8);
|
|
pagefactor = PAGE_CACHE_SIZE;
|
|
bitshift = BITS_PER_LONG;
|
|
# else
|
|
pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
|
|
# endif
|
|
#endif
|
|
|
|
return (((__uint64_t)pagefactor) << bitshift) - 1;
|
|
}
|
|
|
|
STATIC_INLINE void
|
|
xfs_set_inodeops(
|
|
struct inode *inode)
|
|
{
|
|
switch (inode->i_mode & S_IFMT) {
|
|
case S_IFREG:
|
|
inode->i_op = &xfs_inode_operations;
|
|
inode->i_fop = &xfs_file_operations;
|
|
inode->i_mapping->a_ops = &xfs_address_space_operations;
|
|
break;
|
|
case S_IFDIR:
|
|
inode->i_op = &xfs_dir_inode_operations;
|
|
inode->i_fop = &xfs_dir_file_operations;
|
|
break;
|
|
case S_IFLNK:
|
|
inode->i_op = &xfs_symlink_inode_operations;
|
|
if (inode->i_blocks)
|
|
inode->i_mapping->a_ops = &xfs_address_space_operations;
|
|
break;
|
|
default:
|
|
inode->i_op = &xfs_inode_operations;
|
|
init_special_inode(inode, inode->i_mode, inode->i_rdev);
|
|
break;
|
|
}
|
|
}
|
|
|
|
STATIC_INLINE void
|
|
xfs_revalidate_inode(
|
|
xfs_mount_t *mp,
|
|
bhv_vnode_t *vp,
|
|
xfs_inode_t *ip)
|
|
{
|
|
struct inode *inode = vn_to_inode(vp);
|
|
|
|
inode->i_mode = ip->i_d.di_mode;
|
|
inode->i_nlink = ip->i_d.di_nlink;
|
|
inode->i_uid = ip->i_d.di_uid;
|
|
inode->i_gid = ip->i_d.di_gid;
|
|
|
|
switch (inode->i_mode & S_IFMT) {
|
|
case S_IFBLK:
|
|
case S_IFCHR:
|
|
inode->i_rdev =
|
|
MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
|
|
sysv_minor(ip->i_df.if_u2.if_rdev));
|
|
break;
|
|
default:
|
|
inode->i_rdev = 0;
|
|
break;
|
|
}
|
|
|
|
inode->i_generation = ip->i_d.di_gen;
|
|
i_size_write(inode, ip->i_d.di_size);
|
|
inode->i_blocks =
|
|
XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
|
|
inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
|
|
inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
|
|
inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
|
|
inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
|
|
inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
|
|
inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
|
|
if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
|
|
inode->i_flags |= S_IMMUTABLE;
|
|
else
|
|
inode->i_flags &= ~S_IMMUTABLE;
|
|
if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
|
|
inode->i_flags |= S_APPEND;
|
|
else
|
|
inode->i_flags &= ~S_APPEND;
|
|
if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
|
|
inode->i_flags |= S_SYNC;
|
|
else
|
|
inode->i_flags &= ~S_SYNC;
|
|
if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
|
|
inode->i_flags |= S_NOATIME;
|
|
else
|
|
inode->i_flags &= ~S_NOATIME;
|
|
xfs_iflags_clear(ip, XFS_IMODIFIED);
|
|
}
|
|
|
|
void
|
|
xfs_initialize_vnode(
|
|
struct xfs_mount *mp,
|
|
bhv_vnode_t *vp,
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct inode *inode = vn_to_inode(vp);
|
|
|
|
if (!ip->i_vnode) {
|
|
ip->i_vnode = vp;
|
|
inode->i_private = ip;
|
|
}
|
|
|
|
/*
|
|
* We need to set the ops vectors, and unlock the inode, but if
|
|
* we have been called during the new inode create process, it is
|
|
* too early to fill in the Linux inode. We will get called a
|
|
* second time once the inode is properly set up, and then we can
|
|
* finish our work.
|
|
*/
|
|
if (ip->i_d.di_mode != 0 && (inode->i_state & I_NEW)) {
|
|
xfs_revalidate_inode(mp, vp, ip);
|
|
xfs_set_inodeops(inode);
|
|
|
|
xfs_iflags_clear(ip, XFS_INEW);
|
|
barrier();
|
|
|
|
unlock_new_inode(inode);
|
|
}
|
|
}
|
|
|
|
int
|
|
xfs_blkdev_get(
|
|
xfs_mount_t *mp,
|
|
const char *name,
|
|
struct block_device **bdevp)
|
|
{
|
|
int error = 0;
|
|
|
|
*bdevp = open_bdev_excl(name, 0, mp);
|
|
if (IS_ERR(*bdevp)) {
|
|
error = PTR_ERR(*bdevp);
|
|
printk("XFS: Invalid device [%s], error=%d\n", name, error);
|
|
}
|
|
|
|
return -error;
|
|
}
|
|
|
|
void
|
|
xfs_blkdev_put(
|
|
struct block_device *bdev)
|
|
{
|
|
if (bdev)
|
|
close_bdev_excl(bdev);
|
|
}
|
|
|
|
/*
|
|
* Try to write out the superblock using barriers.
|
|
*/
|
|
STATIC int
|
|
xfs_barrier_test(
|
|
xfs_mount_t *mp)
|
|
{
|
|
xfs_buf_t *sbp = xfs_getsb(mp, 0);
|
|
int error;
|
|
|
|
XFS_BUF_UNDONE(sbp);
|
|
XFS_BUF_UNREAD(sbp);
|
|
XFS_BUF_UNDELAYWRITE(sbp);
|
|
XFS_BUF_WRITE(sbp);
|
|
XFS_BUF_UNASYNC(sbp);
|
|
XFS_BUF_ORDERED(sbp);
|
|
|
|
xfsbdstrat(mp, sbp);
|
|
error = xfs_iowait(sbp);
|
|
|
|
/*
|
|
* Clear all the flags we set and possible error state in the
|
|
* buffer. We only did the write to try out whether barriers
|
|
* worked and shouldn't leave any traces in the superblock
|
|
* buffer.
|
|
*/
|
|
XFS_BUF_DONE(sbp);
|
|
XFS_BUF_ERROR(sbp, 0);
|
|
XFS_BUF_UNORDERED(sbp);
|
|
|
|
xfs_buf_relse(sbp);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
xfs_mountfs_check_barriers(xfs_mount_t *mp)
|
|
{
|
|
int error;
|
|
|
|
if (mp->m_logdev_targp != mp->m_ddev_targp) {
|
|
xfs_fs_cmn_err(CE_NOTE, mp,
|
|
"Disabling barriers, not supported with external log device");
|
|
mp->m_flags &= ~XFS_MOUNT_BARRIER;
|
|
return;
|
|
}
|
|
|
|
if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
|
|
QUEUE_ORDERED_NONE) {
|
|
xfs_fs_cmn_err(CE_NOTE, mp,
|
|
"Disabling barriers, not supported by the underlying device");
|
|
mp->m_flags &= ~XFS_MOUNT_BARRIER;
|
|
return;
|
|
}
|
|
|
|
if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
|
|
xfs_fs_cmn_err(CE_NOTE, mp,
|
|
"Disabling barriers, underlying device is readonly");
|
|
mp->m_flags &= ~XFS_MOUNT_BARRIER;
|
|
return;
|
|
}
|
|
|
|
error = xfs_barrier_test(mp);
|
|
if (error) {
|
|
xfs_fs_cmn_err(CE_NOTE, mp,
|
|
"Disabling barriers, trial barrier write failed");
|
|
mp->m_flags &= ~XFS_MOUNT_BARRIER;
|
|
return;
|
|
}
|
|
}
|
|
|
|
void
|
|
xfs_blkdev_issue_flush(
|
|
xfs_buftarg_t *buftarg)
|
|
{
|
|
blkdev_issue_flush(buftarg->bt_bdev, NULL);
|
|
}
|
|
|
|
STATIC struct inode *
|
|
xfs_fs_alloc_inode(
|
|
struct super_block *sb)
|
|
{
|
|
bhv_vnode_t *vp;
|
|
|
|
vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
|
|
if (unlikely(!vp))
|
|
return NULL;
|
|
return vn_to_inode(vp);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_fs_destroy_inode(
|
|
struct inode *inode)
|
|
{
|
|
kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
|
|
}
|
|
|
|
STATIC void
|
|
xfs_fs_inode_init_once(
|
|
void *vnode,
|
|
kmem_zone_t *zonep,
|
|
unsigned long flags)
|
|
{
|
|
inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
|
|
}
|
|
|
|
STATIC int
|
|
xfs_init_zones(void)
|
|
{
|
|
xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
|
|
KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
|
|
KM_ZONE_SPREAD,
|
|
xfs_fs_inode_init_once);
|
|
if (!xfs_vnode_zone)
|
|
goto out;
|
|
|
|
xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
|
|
if (!xfs_ioend_zone)
|
|
goto out_destroy_vnode_zone;
|
|
|
|
xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
|
|
xfs_ioend_zone);
|
|
if (!xfs_ioend_pool)
|
|
goto out_free_ioend_zone;
|
|
return 0;
|
|
|
|
out_free_ioend_zone:
|
|
kmem_zone_destroy(xfs_ioend_zone);
|
|
out_destroy_vnode_zone:
|
|
kmem_zone_destroy(xfs_vnode_zone);
|
|
out:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_destroy_zones(void)
|
|
{
|
|
mempool_destroy(xfs_ioend_pool);
|
|
kmem_zone_destroy(xfs_vnode_zone);
|
|
kmem_zone_destroy(xfs_ioend_zone);
|
|
}
|
|
|
|
/*
|
|
* Attempt to flush the inode, this will actually fail
|
|
* if the inode is pinned, but we dirty the inode again
|
|
* at the point when it is unpinned after a log write,
|
|
* since this is when the inode itself becomes flushable.
|
|
*/
|
|
STATIC int
|
|
xfs_fs_write_inode(
|
|
struct inode *inode,
|
|
int sync)
|
|
{
|
|
int error = 0, flags = FLUSH_INODE;
|
|
|
|
vn_trace_entry(XFS_I(inode), __FUNCTION__,
|
|
(inst_t *)__return_address);
|
|
if (sync) {
|
|
filemap_fdatawait(inode->i_mapping);
|
|
flags |= FLUSH_SYNC;
|
|
}
|
|
error = xfs_inode_flush(XFS_I(inode), flags);
|
|
/*
|
|
* if we failed to write out the inode then mark
|
|
* it dirty again so we'll try again later.
|
|
*/
|
|
if (error)
|
|
mark_inode_dirty_sync(inode);
|
|
|
|
return -error;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_fs_clear_inode(
|
|
struct inode *inode)
|
|
{
|
|
xfs_inode_t *ip = XFS_I(inode);
|
|
|
|
/*
|
|
* ip can be null when xfs_iget_core calls xfs_idestroy if we
|
|
* find an inode with di_mode == 0 but without IGET_CREATE set.
|
|
*/
|
|
if (ip) {
|
|
vn_trace_entry(ip, __FUNCTION__, (inst_t *)__return_address);
|
|
|
|
XFS_STATS_INC(vn_rele);
|
|
XFS_STATS_INC(vn_remove);
|
|
XFS_STATS_INC(vn_reclaim);
|
|
XFS_STATS_DEC(vn_active);
|
|
|
|
xfs_inactive(ip);
|
|
xfs_iflags_clear(ip, XFS_IMODIFIED);
|
|
if (xfs_reclaim(ip))
|
|
panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, inode);
|
|
}
|
|
|
|
ASSERT(XFS_I(inode) == NULL);
|
|
}
|
|
|
|
/*
|
|
* Enqueue a work item to be picked up by the vfs xfssyncd thread.
|
|
* Doing this has two advantages:
|
|
* - It saves on stack space, which is tight in certain situations
|
|
* - It can be used (with care) as a mechanism to avoid deadlocks.
|
|
* Flushing while allocating in a full filesystem requires both.
|
|
*/
|
|
STATIC void
|
|
xfs_syncd_queue_work(
|
|
struct xfs_mount *mp,
|
|
void *data,
|
|
void (*syncer)(struct xfs_mount *, void *))
|
|
{
|
|
struct bhv_vfs_sync_work *work;
|
|
|
|
work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
|
|
INIT_LIST_HEAD(&work->w_list);
|
|
work->w_syncer = syncer;
|
|
work->w_data = data;
|
|
work->w_mount = mp;
|
|
spin_lock(&mp->m_sync_lock);
|
|
list_add_tail(&work->w_list, &mp->m_sync_list);
|
|
spin_unlock(&mp->m_sync_lock);
|
|
wake_up_process(mp->m_sync_task);
|
|
}
|
|
|
|
/*
|
|
* Flush delayed allocate data, attempting to free up reserved space
|
|
* from existing allocations. At this point a new allocation attempt
|
|
* has failed with ENOSPC and we are in the process of scratching our
|
|
* heads, looking about for more room...
|
|
*/
|
|
STATIC void
|
|
xfs_flush_inode_work(
|
|
struct xfs_mount *mp,
|
|
void *arg)
|
|
{
|
|
struct inode *inode = arg;
|
|
filemap_flush(inode->i_mapping);
|
|
iput(inode);
|
|
}
|
|
|
|
void
|
|
xfs_flush_inode(
|
|
xfs_inode_t *ip)
|
|
{
|
|
struct inode *inode = ip->i_vnode;
|
|
|
|
igrab(inode);
|
|
xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
|
|
delay(msecs_to_jiffies(500));
|
|
}
|
|
|
|
/*
|
|
* This is the "bigger hammer" version of xfs_flush_inode_work...
|
|
* (IOW, "If at first you don't succeed, use a Bigger Hammer").
|
|
*/
|
|
STATIC void
|
|
xfs_flush_device_work(
|
|
struct xfs_mount *mp,
|
|
void *arg)
|
|
{
|
|
struct inode *inode = arg;
|
|
sync_blockdev(mp->m_super->s_bdev);
|
|
iput(inode);
|
|
}
|
|
|
|
void
|
|
xfs_flush_device(
|
|
xfs_inode_t *ip)
|
|
{
|
|
struct inode *inode = vn_to_inode(XFS_ITOV(ip));
|
|
|
|
igrab(inode);
|
|
xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
|
|
delay(msecs_to_jiffies(500));
|
|
xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_sync_worker(
|
|
struct xfs_mount *mp,
|
|
void *unused)
|
|
{
|
|
int error;
|
|
|
|
if (!(mp->m_flags & XFS_MOUNT_RDONLY))
|
|
error = xfs_sync(mp, SYNC_FSDATA | SYNC_BDFLUSH | SYNC_ATTR |
|
|
SYNC_REFCACHE | SYNC_SUPER);
|
|
mp->m_sync_seq++;
|
|
wake_up(&mp->m_wait_single_sync_task);
|
|
}
|
|
|
|
STATIC int
|
|
xfssyncd(
|
|
void *arg)
|
|
{
|
|
struct xfs_mount *mp = arg;
|
|
long timeleft;
|
|
bhv_vfs_sync_work_t *work, *n;
|
|
LIST_HEAD (tmp);
|
|
|
|
set_freezable();
|
|
timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
|
|
for (;;) {
|
|
timeleft = schedule_timeout_interruptible(timeleft);
|
|
/* swsusp */
|
|
try_to_freeze();
|
|
if (kthread_should_stop() && list_empty(&mp->m_sync_list))
|
|
break;
|
|
|
|
spin_lock(&mp->m_sync_lock);
|
|
/*
|
|
* We can get woken by laptop mode, to do a sync -
|
|
* that's the (only!) case where the list would be
|
|
* empty with time remaining.
|
|
*/
|
|
if (!timeleft || list_empty(&mp->m_sync_list)) {
|
|
if (!timeleft)
|
|
timeleft = xfs_syncd_centisecs *
|
|
msecs_to_jiffies(10);
|
|
INIT_LIST_HEAD(&mp->m_sync_work.w_list);
|
|
list_add_tail(&mp->m_sync_work.w_list,
|
|
&mp->m_sync_list);
|
|
}
|
|
list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
|
|
list_move(&work->w_list, &tmp);
|
|
spin_unlock(&mp->m_sync_lock);
|
|
|
|
list_for_each_entry_safe(work, n, &tmp, w_list) {
|
|
(*work->w_syncer)(mp, work->w_data);
|
|
list_del(&work->w_list);
|
|
if (work == &mp->m_sync_work)
|
|
continue;
|
|
kmem_free(work, sizeof(struct bhv_vfs_sync_work));
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_fs_put_super(
|
|
struct super_block *sb)
|
|
{
|
|
struct xfs_mount *mp = XFS_M(sb);
|
|
int error;
|
|
|
|
kthread_stop(mp->m_sync_task);
|
|
|
|
xfs_sync(mp, SYNC_ATTR | SYNC_DELWRI);
|
|
error = xfs_unmount(mp, 0, NULL);
|
|
if (error)
|
|
printk("XFS: unmount got error=%d\n", error);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_fs_write_super(
|
|
struct super_block *sb)
|
|
{
|
|
if (!(sb->s_flags & MS_RDONLY))
|
|
xfs_sync(XFS_M(sb), SYNC_FSDATA);
|
|
sb->s_dirt = 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_fs_sync_super(
|
|
struct super_block *sb,
|
|
int wait)
|
|
{
|
|
struct xfs_mount *mp = XFS_M(sb);
|
|
int error;
|
|
int flags;
|
|
|
|
/*
|
|
* Treat a sync operation like a freeze. This is to work
|
|
* around a race in sync_inodes() which works in two phases
|
|
* - an asynchronous flush, which can write out an inode
|
|
* without waiting for file size updates to complete, and a
|
|
* synchronous flush, which wont do anything because the
|
|
* async flush removed the inode's dirty flag. Also
|
|
* sync_inodes() will not see any files that just have
|
|
* outstanding transactions to be flushed because we don't
|
|
* dirty the Linux inode until after the transaction I/O
|
|
* completes.
|
|
*/
|
|
if (wait || unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
|
|
/*
|
|
* First stage of freeze - no more writers will make progress
|
|
* now we are here, so we flush delwri and delalloc buffers
|
|
* here, then wait for all I/O to complete. Data is frozen at
|
|
* that point. Metadata is not frozen, transactions can still
|
|
* occur here so don't bother flushing the buftarg (i.e
|
|
* SYNC_QUIESCE) because it'll just get dirty again.
|
|
*/
|
|
flags = SYNC_DATA_QUIESCE;
|
|
} else
|
|
flags = SYNC_FSDATA;
|
|
|
|
error = xfs_sync(mp, flags);
|
|
sb->s_dirt = 0;
|
|
|
|
if (unlikely(laptop_mode)) {
|
|
int prev_sync_seq = mp->m_sync_seq;
|
|
|
|
/*
|
|
* The disk must be active because we're syncing.
|
|
* We schedule xfssyncd now (now that the disk is
|
|
* active) instead of later (when it might not be).
|
|
*/
|
|
wake_up_process(mp->m_sync_task);
|
|
/*
|
|
* We have to wait for the sync iteration to complete.
|
|
* If we don't, the disk activity caused by the sync
|
|
* will come after the sync is completed, and that
|
|
* triggers another sync from laptop mode.
|
|
*/
|
|
wait_event(mp->m_wait_single_sync_task,
|
|
mp->m_sync_seq != prev_sync_seq);
|
|
}
|
|
|
|
return -error;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_fs_statfs(
|
|
struct dentry *dentry,
|
|
struct kstatfs *statp)
|
|
{
|
|
return -xfs_statvfs(XFS_M(dentry->d_sb), statp,
|
|
vn_from_inode(dentry->d_inode));
|
|
}
|
|
|
|
STATIC int
|
|
xfs_fs_remount(
|
|
struct super_block *sb,
|
|
int *flags,
|
|
char *options)
|
|
{
|
|
struct xfs_mount *mp = XFS_M(sb);
|
|
struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
|
|
int error;
|
|
|
|
error = xfs_parseargs(mp, options, args, 1);
|
|
if (!error)
|
|
error = xfs_mntupdate(mp, flags, args);
|
|
kmem_free(args, sizeof(*args));
|
|
return -error;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_fs_lockfs(
|
|
struct super_block *sb)
|
|
{
|
|
xfs_freeze(XFS_M(sb));
|
|
}
|
|
|
|
STATIC int
|
|
xfs_fs_show_options(
|
|
struct seq_file *m,
|
|
struct vfsmount *mnt)
|
|
{
|
|
return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_fs_quotasync(
|
|
struct super_block *sb,
|
|
int type)
|
|
{
|
|
return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XQUOTASYNC, 0, NULL);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_fs_getxstate(
|
|
struct super_block *sb,
|
|
struct fs_quota_stat *fqs)
|
|
{
|
|
return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_fs_setxstate(
|
|
struct super_block *sb,
|
|
unsigned int flags,
|
|
int op)
|
|
{
|
|
return -XFS_QM_QUOTACTL(XFS_M(sb), op, 0, (caddr_t)&flags);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_fs_getxquota(
|
|
struct super_block *sb,
|
|
int type,
|
|
qid_t id,
|
|
struct fs_disk_quota *fdq)
|
|
{
|
|
return -XFS_QM_QUOTACTL(XFS_M(sb),
|
|
(type == USRQUOTA) ? Q_XGETQUOTA :
|
|
((type == GRPQUOTA) ? Q_XGETGQUOTA :
|
|
Q_XGETPQUOTA), id, (caddr_t)fdq);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_fs_setxquota(
|
|
struct super_block *sb,
|
|
int type,
|
|
qid_t id,
|
|
struct fs_disk_quota *fdq)
|
|
{
|
|
return -XFS_QM_QUOTACTL(XFS_M(sb),
|
|
(type == USRQUOTA) ? Q_XSETQLIM :
|
|
((type == GRPQUOTA) ? Q_XSETGQLIM :
|
|
Q_XSETPQLIM), id, (caddr_t)fdq);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_fs_fill_super(
|
|
struct super_block *sb,
|
|
void *data,
|
|
int silent)
|
|
{
|
|
struct inode *rootvp;
|
|
struct xfs_mount *mp = NULL;
|
|
struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
|
|
struct kstatfs statvfs;
|
|
int error;
|
|
|
|
mp = xfs_mount_init();
|
|
|
|
INIT_LIST_HEAD(&mp->m_sync_list);
|
|
spin_lock_init(&mp->m_sync_lock);
|
|
init_waitqueue_head(&mp->m_wait_single_sync_task);
|
|
|
|
mp->m_super = sb;
|
|
sb->s_fs_info = mp;
|
|
|
|
if (sb->s_flags & MS_RDONLY)
|
|
mp->m_flags |= XFS_MOUNT_RDONLY;
|
|
|
|
error = xfs_parseargs(mp, (char *)data, args, 0);
|
|
if (error)
|
|
goto fail_vfsop;
|
|
|
|
sb_min_blocksize(sb, BBSIZE);
|
|
sb->s_export_op = &xfs_export_operations;
|
|
sb->s_qcop = &xfs_quotactl_operations;
|
|
sb->s_op = &xfs_super_operations;
|
|
|
|
error = xfs_mount(mp, args, NULL);
|
|
if (error)
|
|
goto fail_vfsop;
|
|
|
|
error = xfs_statvfs(mp, &statvfs, NULL);
|
|
if (error)
|
|
goto fail_unmount;
|
|
|
|
sb->s_dirt = 1;
|
|
sb->s_magic = statvfs.f_type;
|
|
sb->s_blocksize = statvfs.f_bsize;
|
|
sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
|
|
sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
|
|
sb->s_time_gran = 1;
|
|
set_posix_acl_flag(sb);
|
|
|
|
error = xfs_root(mp, &rootvp);
|
|
if (error)
|
|
goto fail_unmount;
|
|
|
|
sb->s_root = d_alloc_root(vn_to_inode(rootvp));
|
|
if (!sb->s_root) {
|
|
error = ENOMEM;
|
|
goto fail_vnrele;
|
|
}
|
|
if (is_bad_inode(sb->s_root->d_inode)) {
|
|
error = EINVAL;
|
|
goto fail_vnrele;
|
|
}
|
|
|
|
mp->m_sync_work.w_syncer = xfs_sync_worker;
|
|
mp->m_sync_work.w_mount = mp;
|
|
mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
|
|
if (IS_ERR(mp->m_sync_task)) {
|
|
error = -PTR_ERR(mp->m_sync_task);
|
|
goto fail_vnrele;
|
|
}
|
|
|
|
vn_trace_exit(XFS_I(sb->s_root->d_inode), __FUNCTION__,
|
|
(inst_t *)__return_address);
|
|
|
|
kmem_free(args, sizeof(*args));
|
|
return 0;
|
|
|
|
fail_vnrele:
|
|
if (sb->s_root) {
|
|
dput(sb->s_root);
|
|
sb->s_root = NULL;
|
|
} else {
|
|
VN_RELE(rootvp);
|
|
}
|
|
|
|
fail_unmount:
|
|
xfs_unmount(mp, 0, NULL);
|
|
|
|
fail_vfsop:
|
|
kmem_free(args, sizeof(*args));
|
|
return -error;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_fs_get_sb(
|
|
struct file_system_type *fs_type,
|
|
int flags,
|
|
const char *dev_name,
|
|
void *data,
|
|
struct vfsmount *mnt)
|
|
{
|
|
return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
|
|
mnt);
|
|
}
|
|
|
|
static struct super_operations xfs_super_operations = {
|
|
.alloc_inode = xfs_fs_alloc_inode,
|
|
.destroy_inode = xfs_fs_destroy_inode,
|
|
.write_inode = xfs_fs_write_inode,
|
|
.clear_inode = xfs_fs_clear_inode,
|
|
.put_super = xfs_fs_put_super,
|
|
.write_super = xfs_fs_write_super,
|
|
.sync_fs = xfs_fs_sync_super,
|
|
.write_super_lockfs = xfs_fs_lockfs,
|
|
.statfs = xfs_fs_statfs,
|
|
.remount_fs = xfs_fs_remount,
|
|
.show_options = xfs_fs_show_options,
|
|
};
|
|
|
|
static struct quotactl_ops xfs_quotactl_operations = {
|
|
.quota_sync = xfs_fs_quotasync,
|
|
.get_xstate = xfs_fs_getxstate,
|
|
.set_xstate = xfs_fs_setxstate,
|
|
.get_xquota = xfs_fs_getxquota,
|
|
.set_xquota = xfs_fs_setxquota,
|
|
};
|
|
|
|
static struct file_system_type xfs_fs_type = {
|
|
.owner = THIS_MODULE,
|
|
.name = "xfs",
|
|
.get_sb = xfs_fs_get_sb,
|
|
.kill_sb = kill_block_super,
|
|
.fs_flags = FS_REQUIRES_DEV,
|
|
};
|
|
|
|
|
|
STATIC int __init
|
|
init_xfs_fs( void )
|
|
{
|
|
int error;
|
|
static char message[] __initdata = KERN_INFO \
|
|
XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
|
|
|
|
printk(message);
|
|
|
|
ktrace_init(64);
|
|
|
|
error = xfs_init_zones();
|
|
if (error < 0)
|
|
goto undo_zones;
|
|
|
|
error = xfs_buf_init();
|
|
if (error < 0)
|
|
goto undo_buffers;
|
|
|
|
vn_init();
|
|
xfs_init();
|
|
uuid_init();
|
|
vfs_initquota();
|
|
|
|
error = register_filesystem(&xfs_fs_type);
|
|
if (error)
|
|
goto undo_register;
|
|
return 0;
|
|
|
|
undo_register:
|
|
xfs_buf_terminate();
|
|
|
|
undo_buffers:
|
|
xfs_destroy_zones();
|
|
|
|
undo_zones:
|
|
return error;
|
|
}
|
|
|
|
STATIC void __exit
|
|
exit_xfs_fs( void )
|
|
{
|
|
vfs_exitquota();
|
|
unregister_filesystem(&xfs_fs_type);
|
|
xfs_cleanup();
|
|
xfs_buf_terminate();
|
|
xfs_destroy_zones();
|
|
ktrace_uninit();
|
|
}
|
|
|
|
module_init(init_xfs_fs);
|
|
module_exit(exit_xfs_fs);
|
|
|
|
MODULE_AUTHOR("Silicon Graphics, Inc.");
|
|
MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
|
|
MODULE_LICENSE("GPL");
|