linux-next/drivers/hwmon/w83627ehf.c
Jean Delvare 45633fb370 hwmon: (w83627ehf) Get rid of smatch warnings
The smatch static code analyzer complains:

drivers/hwmon/w83627ehf.c:911 w83627ehf_update_device() error: buffer overflow 'W83627EHF_REG_TEMP_OFFSET' 3 <= 8
drivers/hwmon/w83627ehf.c:909 w83627ehf_update_device() error: buffer overflow 'data->temp_offset' 3 <= 8
drivers/hwmon/w83627ehf.c:2672 w83627ehf_resume() error: buffer overflow 'W83627EHF_REG_TEMP_OFFSET' 3 <= 8
drivers/hwmon/w83627ehf.c:2673 w83627ehf_resume() error: buffer overflow 'data->temp_offset' 3 <= 8

A deeper analysis of the code shows that these are false positives, as
only the lower 3 bits of data->have_temp_offset can be set so the
write is never attempted with i >= 3. However this shows that the code
isn't very robust and future changes could easily introduce a buffer
overflow. So let's add a safety check to prevent that and make smatch
happy.

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Cc: Peter Huewe <PeterHuewe@gmx.de>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
2012-12-19 22:17:00 +01:00

2900 lines
86 KiB
C

/*
* w83627ehf - Driver for the hardware monitoring functionality of
* the Winbond W83627EHF Super-I/O chip
* Copyright (C) 2005-2012 Jean Delvare <khali@linux-fr.org>
* Copyright (C) 2006 Yuan Mu (Winbond),
* Rudolf Marek <r.marek@assembler.cz>
* David Hubbard <david.c.hubbard@gmail.com>
* Daniel J Blueman <daniel.blueman@gmail.com>
* Copyright (C) 2010 Sheng-Yuan Huang (Nuvoton) (PS00)
*
* Shamelessly ripped from the w83627hf driver
* Copyright (C) 2003 Mark Studebaker
*
* Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
* in testing and debugging this driver.
*
* This driver also supports the W83627EHG, which is the lead-free
* version of the W83627EHF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Supports the following chips:
*
* Chip #vin #fan #pwm #temp chip IDs man ID
* w83627ehf 10 5 4 3 0x8850 0x88 0x5ca3
* 0x8860 0xa1
* w83627dhg 9 5 4 3 0xa020 0xc1 0x5ca3
* w83627dhg-p 9 5 4 3 0xb070 0xc1 0x5ca3
* w83627uhg 8 2 2 3 0xa230 0xc1 0x5ca3
* w83667hg 9 5 3 3 0xa510 0xc1 0x5ca3
* w83667hg-b 9 5 3 4 0xb350 0xc1 0x5ca3
* nct6775f 9 4 3 9 0xb470 0xc1 0x5ca3
* nct6776f 9 5 3 9 0xC330 0xc1 0x5ca3
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/platform_device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/acpi.h>
#include <linux/io.h>
#include "lm75.h"
enum kinds {
w83627ehf, w83627dhg, w83627dhg_p, w83627uhg,
w83667hg, w83667hg_b, nct6775, nct6776,
};
/* used to set data->name = w83627ehf_device_names[data->sio_kind] */
static const char * const w83627ehf_device_names[] = {
"w83627ehf",
"w83627dhg",
"w83627dhg",
"w83627uhg",
"w83667hg",
"w83667hg",
"nct6775",
"nct6776",
};
static unsigned short force_id;
module_param(force_id, ushort, 0);
MODULE_PARM_DESC(force_id, "Override the detected device ID");
static unsigned short fan_debounce;
module_param(fan_debounce, ushort, 0);
MODULE_PARM_DESC(fan_debounce, "Enable debouncing for fan RPM signal");
#define DRVNAME "w83627ehf"
/*
* Super-I/O constants and functions
*/
#define W83627EHF_LD_HWM 0x0b
#define W83667HG_LD_VID 0x0d
#define SIO_REG_LDSEL 0x07 /* Logical device select */
#define SIO_REG_DEVID 0x20 /* Device ID (2 bytes) */
#define SIO_REG_EN_VRM10 0x2C /* GPIO3, GPIO4 selection */
#define SIO_REG_ENABLE 0x30 /* Logical device enable */
#define SIO_REG_ADDR 0x60 /* Logical device address (2 bytes) */
#define SIO_REG_VID_CTRL 0xF0 /* VID control */
#define SIO_REG_VID_DATA 0xF1 /* VID data */
#define SIO_W83627EHF_ID 0x8850
#define SIO_W83627EHG_ID 0x8860
#define SIO_W83627DHG_ID 0xa020
#define SIO_W83627DHG_P_ID 0xb070
#define SIO_W83627UHG_ID 0xa230
#define SIO_W83667HG_ID 0xa510
#define SIO_W83667HG_B_ID 0xb350
#define SIO_NCT6775_ID 0xb470
#define SIO_NCT6776_ID 0xc330
#define SIO_ID_MASK 0xFFF0
static inline void
superio_outb(int ioreg, int reg, int val)
{
outb(reg, ioreg);
outb(val, ioreg + 1);
}
static inline int
superio_inb(int ioreg, int reg)
{
outb(reg, ioreg);
return inb(ioreg + 1);
}
static inline void
superio_select(int ioreg, int ld)
{
outb(SIO_REG_LDSEL, ioreg);
outb(ld, ioreg + 1);
}
static inline void
superio_enter(int ioreg)
{
outb(0x87, ioreg);
outb(0x87, ioreg);
}
static inline void
superio_exit(int ioreg)
{
outb(0xaa, ioreg);
outb(0x02, ioreg);
outb(0x02, ioreg + 1);
}
/*
* ISA constants
*/
#define IOREGION_ALIGNMENT (~7)
#define IOREGION_OFFSET 5
#define IOREGION_LENGTH 2
#define ADDR_REG_OFFSET 0
#define DATA_REG_OFFSET 1
#define W83627EHF_REG_BANK 0x4E
#define W83627EHF_REG_CONFIG 0x40
/*
* Not currently used:
* REG_MAN_ID has the value 0x5ca3 for all supported chips.
* REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
* REG_MAN_ID is at port 0x4f
* REG_CHIP_ID is at port 0x58
*/
static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };
/* The W83627EHF registers for nr=7,8,9 are in bank 5 */
#define W83627EHF_REG_IN_MAX(nr) ((nr < 7) ? (0x2b + (nr) * 2) : \
(0x554 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN_MIN(nr) ((nr < 7) ? (0x2c + (nr) * 2) : \
(0x555 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN(nr) ((nr < 7) ? (0x20 + (nr)) : \
(0x550 + (nr) - 7))
static const u16 W83627EHF_REG_TEMP[] = { 0x27, 0x150, 0x250, 0x7e };
static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x3a, 0x153, 0x253, 0 };
static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x39, 0x155, 0x255, 0 };
static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0, 0x152, 0x252, 0 };
/* Fan clock dividers are spread over the following five registers */
#define W83627EHF_REG_FANDIV1 0x47
#define W83627EHF_REG_FANDIV2 0x4B
#define W83627EHF_REG_VBAT 0x5D
#define W83627EHF_REG_DIODE 0x59
#define W83627EHF_REG_SMI_OVT 0x4C
/* NCT6775F has its own fan divider registers */
#define NCT6775_REG_FANDIV1 0x506
#define NCT6775_REG_FANDIV2 0x507
#define NCT6775_REG_FAN_DEBOUNCE 0xf0
#define W83627EHF_REG_ALARM1 0x459
#define W83627EHF_REG_ALARM2 0x45A
#define W83627EHF_REG_ALARM3 0x45B
#define W83627EHF_REG_CASEOPEN_DET 0x42 /* SMI STATUS #2 */
#define W83627EHF_REG_CASEOPEN_CLR 0x46 /* SMI MASK #3 */
/* SmartFan registers */
#define W83627EHF_REG_FAN_STEPUP_TIME 0x0f
#define W83627EHF_REG_FAN_STEPDOWN_TIME 0x0e
/* DC or PWM output fan configuration */
static const u8 W83627EHF_REG_PWM_ENABLE[] = {
0x04, /* SYS FAN0 output mode and PWM mode */
0x04, /* CPU FAN0 output mode and PWM mode */
0x12, /* AUX FAN mode */
0x62, /* CPU FAN1 mode */
};
static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };
/* FAN Duty Cycle, be used to control */
static const u16 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
static const u16 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };
/* Advanced Fan control, some values are common for all fans */
static const u16 W83627EHF_REG_FAN_START_OUTPUT[] = { 0x0a, 0x0b, 0x16, 0x65 };
static const u16 W83627EHF_REG_FAN_STOP_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
static const u16 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0c, 0x0d, 0x17, 0x66 };
static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_COMMON[]
= { 0xff, 0x67, 0xff, 0x69 };
static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_COMMON[]
= { 0xff, 0x68, 0xff, 0x6a };
static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B[] = { 0x67, 0x69, 0x6b };
static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B[]
= { 0x68, 0x6a, 0x6c };
static const u16 W83627EHF_REG_TEMP_OFFSET[] = { 0x454, 0x455, 0x456 };
static const u16 NCT6775_REG_TARGET[] = { 0x101, 0x201, 0x301 };
static const u16 NCT6775_REG_FAN_MODE[] = { 0x102, 0x202, 0x302 };
static const u16 NCT6775_REG_FAN_STOP_OUTPUT[] = { 0x105, 0x205, 0x305 };
static const u16 NCT6775_REG_FAN_START_OUTPUT[] = { 0x106, 0x206, 0x306 };
static const u16 NCT6775_REG_FAN_STOP_TIME[] = { 0x107, 0x207, 0x307 };
static const u16 NCT6775_REG_PWM[] = { 0x109, 0x209, 0x309 };
static const u16 NCT6775_REG_FAN_MAX_OUTPUT[] = { 0x10a, 0x20a, 0x30a };
static const u16 NCT6775_REG_FAN_STEP_OUTPUT[] = { 0x10b, 0x20b, 0x30b };
static const u16 NCT6775_REG_FAN[] = { 0x630, 0x632, 0x634, 0x636, 0x638 };
static const u16 NCT6776_REG_FAN_MIN[] = { 0x63a, 0x63c, 0x63e, 0x640, 0x642};
static const u16 NCT6775_REG_TEMP[]
= { 0x27, 0x150, 0x250, 0x73, 0x75, 0x77, 0x62b, 0x62c, 0x62d };
static const u16 NCT6775_REG_TEMP_CONFIG[]
= { 0, 0x152, 0x252, 0, 0, 0, 0x628, 0x629, 0x62A };
static const u16 NCT6775_REG_TEMP_HYST[]
= { 0x3a, 0x153, 0x253, 0, 0, 0, 0x673, 0x678, 0x67D };
static const u16 NCT6775_REG_TEMP_OVER[]
= { 0x39, 0x155, 0x255, 0, 0, 0, 0x672, 0x677, 0x67C };
static const u16 NCT6775_REG_TEMP_SOURCE[]
= { 0x621, 0x622, 0x623, 0x100, 0x200, 0x300, 0x624, 0x625, 0x626 };
static const char *const w83667hg_b_temp_label[] = {
"SYSTIN",
"CPUTIN",
"AUXTIN",
"AMDTSI",
"PECI Agent 1",
"PECI Agent 2",
"PECI Agent 3",
"PECI Agent 4"
};
static const char *const nct6775_temp_label[] = {
"",
"SYSTIN",
"CPUTIN",
"AUXTIN",
"AMD SB-TSI",
"PECI Agent 0",
"PECI Agent 1",
"PECI Agent 2",
"PECI Agent 3",
"PECI Agent 4",
"PECI Agent 5",
"PECI Agent 6",
"PECI Agent 7",
"PCH_CHIP_CPU_MAX_TEMP",
"PCH_CHIP_TEMP",
"PCH_CPU_TEMP",
"PCH_MCH_TEMP",
"PCH_DIM0_TEMP",
"PCH_DIM1_TEMP",
"PCH_DIM2_TEMP",
"PCH_DIM3_TEMP"
};
static const char *const nct6776_temp_label[] = {
"",
"SYSTIN",
"CPUTIN",
"AUXTIN",
"SMBUSMASTER 0",
"SMBUSMASTER 1",
"SMBUSMASTER 2",
"SMBUSMASTER 3",
"SMBUSMASTER 4",
"SMBUSMASTER 5",
"SMBUSMASTER 6",
"SMBUSMASTER 7",
"PECI Agent 0",
"PECI Agent 1",
"PCH_CHIP_CPU_MAX_TEMP",
"PCH_CHIP_TEMP",
"PCH_CPU_TEMP",
"PCH_MCH_TEMP",
"PCH_DIM0_TEMP",
"PCH_DIM1_TEMP",
"PCH_DIM2_TEMP",
"PCH_DIM3_TEMP",
"BYTE_TEMP"
};
#define NUM_REG_TEMP ARRAY_SIZE(NCT6775_REG_TEMP)
static int is_word_sized(u16 reg)
{
return ((((reg & 0xff00) == 0x100
|| (reg & 0xff00) == 0x200)
&& ((reg & 0x00ff) == 0x50
|| (reg & 0x00ff) == 0x53
|| (reg & 0x00ff) == 0x55))
|| (reg & 0xfff0) == 0x630
|| reg == 0x640 || reg == 0x642
|| ((reg & 0xfff0) == 0x650
&& (reg & 0x000f) >= 0x06)
|| reg == 0x73 || reg == 0x75 || reg == 0x77
);
}
/*
* Conversions
*/
/* 1 is PWM mode, output in ms */
static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
{
return mode ? 100 * reg : 400 * reg;
}
static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
{
return SENSORS_LIMIT((mode ? (msec + 50) / 100 :
(msec + 200) / 400), 1, 255);
}
static unsigned int fan_from_reg8(u16 reg, unsigned int divreg)
{
if (reg == 0 || reg == 255)
return 0;
return 1350000U / (reg << divreg);
}
static unsigned int fan_from_reg13(u16 reg, unsigned int divreg)
{
if ((reg & 0xff1f) == 0xff1f)
return 0;
reg = (reg & 0x1f) | ((reg & 0xff00) >> 3);
if (reg == 0)
return 0;
return 1350000U / reg;
}
static unsigned int fan_from_reg16(u16 reg, unsigned int divreg)
{
if (reg == 0 || reg == 0xffff)
return 0;
/*
* Even though the registers are 16 bit wide, the fan divisor
* still applies.
*/
return 1350000U / (reg << divreg);
}
static inline unsigned int
div_from_reg(u8 reg)
{
return 1 << reg;
}
/*
* Some of the voltage inputs have internal scaling, the tables below
* contain 8 (the ADC LSB in mV) * scaling factor * 100
*/
static const u16 scale_in_common[10] = {
800, 800, 1600, 1600, 800, 800, 800, 1600, 1600, 800
};
static const u16 scale_in_w83627uhg[9] = {
800, 800, 3328, 3424, 800, 800, 0, 3328, 3400
};
static inline long in_from_reg(u8 reg, u8 nr, const u16 *scale_in)
{
return DIV_ROUND_CLOSEST(reg * scale_in[nr], 100);
}
static inline u8 in_to_reg(u32 val, u8 nr, const u16 *scale_in)
{
return SENSORS_LIMIT(DIV_ROUND_CLOSEST(val * 100, scale_in[nr]), 0,
255);
}
/*
* Data structures and manipulation thereof
*/
struct w83627ehf_data {
int addr; /* IO base of hw monitor block */
const char *name;
struct device *hwmon_dev;
struct mutex lock;
u16 reg_temp[NUM_REG_TEMP];
u16 reg_temp_over[NUM_REG_TEMP];
u16 reg_temp_hyst[NUM_REG_TEMP];
u16 reg_temp_config[NUM_REG_TEMP];
u8 temp_src[NUM_REG_TEMP];
const char * const *temp_label;
const u16 *REG_PWM;
const u16 *REG_TARGET;
const u16 *REG_FAN;
const u16 *REG_FAN_MIN;
const u16 *REG_FAN_START_OUTPUT;
const u16 *REG_FAN_STOP_OUTPUT;
const u16 *REG_FAN_STOP_TIME;
const u16 *REG_FAN_MAX_OUTPUT;
const u16 *REG_FAN_STEP_OUTPUT;
const u16 *scale_in;
unsigned int (*fan_from_reg)(u16 reg, unsigned int divreg);
unsigned int (*fan_from_reg_min)(u16 reg, unsigned int divreg);
struct mutex update_lock;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
/* Register values */
u8 bank; /* current register bank */
u8 in_num; /* number of in inputs we have */
u8 in[10]; /* Register value */
u8 in_max[10]; /* Register value */
u8 in_min[10]; /* Register value */
unsigned int rpm[5];
u16 fan_min[5];
u8 fan_div[5];
u8 has_fan; /* some fan inputs can be disabled */
u8 has_fan_min; /* some fans don't have min register */
bool has_fan_div;
u8 temp_type[3];
s8 temp_offset[3];
s16 temp[9];
s16 temp_max[9];
s16 temp_max_hyst[9];
u32 alarms;
u8 caseopen;
u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
u8 pwm_enable[4]; /* 1->manual
* 2->thermal cruise mode (also called SmartFan I)
* 3->fan speed cruise mode
* 4->variable thermal cruise (also called
* SmartFan III)
* 5->enhanced variable thermal cruise (also called
* SmartFan IV)
*/
u8 pwm_enable_orig[4]; /* original value of pwm_enable */
u8 pwm_num; /* number of pwm */
u8 pwm[4];
u8 target_temp[4];
u8 tolerance[4];
u8 fan_start_output[4]; /* minimum fan speed when spinning up */
u8 fan_stop_output[4]; /* minimum fan speed when spinning down */
u8 fan_stop_time[4]; /* time at minimum before disabling fan */
u8 fan_max_output[4]; /* maximum fan speed */
u8 fan_step_output[4]; /* rate of change output value */
u8 vid;
u8 vrm;
u16 have_temp;
u16 have_temp_offset;
u8 in6_skip:1;
u8 temp3_val_only:1;
#ifdef CONFIG_PM
/* Remember extra register values over suspend/resume */
u8 vbat;
u8 fandiv1;
u8 fandiv2;
#endif
};
struct w83627ehf_sio_data {
int sioreg;
enum kinds kind;
};
/*
* On older chips, only registers 0x50-0x5f are banked.
* On more recent chips, all registers are banked.
* Assume that is the case and set the bank number for each access.
* Cache the bank number so it only needs to be set if it changes.
*/
static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
{
u8 bank = reg >> 8;
if (data->bank != bank) {
outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
outb_p(bank, data->addr + DATA_REG_OFFSET);
data->bank = bank;
}
}
static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
{
int res, word_sized = is_word_sized(reg);
mutex_lock(&data->lock);
w83627ehf_set_bank(data, reg);
outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
res = inb_p(data->addr + DATA_REG_OFFSET);
if (word_sized) {
outb_p((reg & 0xff) + 1,
data->addr + ADDR_REG_OFFSET);
res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
}
mutex_unlock(&data->lock);
return res;
}
static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg,
u16 value)
{
int word_sized = is_word_sized(reg);
mutex_lock(&data->lock);
w83627ehf_set_bank(data, reg);
outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
if (word_sized) {
outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
outb_p((reg & 0xff) + 1,
data->addr + ADDR_REG_OFFSET);
}
outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
mutex_unlock(&data->lock);
return 0;
}
/* We left-align 8-bit temperature values to make the code simpler */
static u16 w83627ehf_read_temp(struct w83627ehf_data *data, u16 reg)
{
u16 res;
res = w83627ehf_read_value(data, reg);
if (!is_word_sized(reg))
res <<= 8;
return res;
}
static int w83627ehf_write_temp(struct w83627ehf_data *data, u16 reg,
u16 value)
{
if (!is_word_sized(reg))
value >>= 8;
return w83627ehf_write_value(data, reg, value);
}
/* This function assumes that the caller holds data->update_lock */
static void nct6775_write_fan_div(struct w83627ehf_data *data, int nr)
{
u8 reg;
switch (nr) {
case 0:
reg = (w83627ehf_read_value(data, NCT6775_REG_FANDIV1) & 0x70)
| (data->fan_div[0] & 0x7);
w83627ehf_write_value(data, NCT6775_REG_FANDIV1, reg);
break;
case 1:
reg = (w83627ehf_read_value(data, NCT6775_REG_FANDIV1) & 0x7)
| ((data->fan_div[1] << 4) & 0x70);
w83627ehf_write_value(data, NCT6775_REG_FANDIV1, reg);
break;
case 2:
reg = (w83627ehf_read_value(data, NCT6775_REG_FANDIV2) & 0x70)
| (data->fan_div[2] & 0x7);
w83627ehf_write_value(data, NCT6775_REG_FANDIV2, reg);
break;
case 3:
reg = (w83627ehf_read_value(data, NCT6775_REG_FANDIV2) & 0x7)
| ((data->fan_div[3] << 4) & 0x70);
w83627ehf_write_value(data, NCT6775_REG_FANDIV2, reg);
break;
}
}
/* This function assumes that the caller holds data->update_lock */
static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
{
u8 reg;
switch (nr) {
case 0:
reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
| ((data->fan_div[0] & 0x03) << 4);
/* fan5 input control bit is write only, compute the value */
reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
| ((data->fan_div[0] & 0x04) << 3);
w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
break;
case 1:
reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
| ((data->fan_div[1] & 0x03) << 6);
/* fan5 input control bit is write only, compute the value */
reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
| ((data->fan_div[1] & 0x04) << 4);
w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
break;
case 2:
reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
| ((data->fan_div[2] & 0x03) << 6);
w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
| ((data->fan_div[2] & 0x04) << 5);
w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
break;
case 3:
reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
| (data->fan_div[3] & 0x03);
w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
| ((data->fan_div[3] & 0x04) << 5);
w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
break;
case 4:
reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
| ((data->fan_div[4] & 0x03) << 2)
| ((data->fan_div[4] & 0x04) << 5);
w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
break;
}
}
static void w83627ehf_write_fan_div_common(struct device *dev,
struct w83627ehf_data *data, int nr)
{
struct w83627ehf_sio_data *sio_data = dev->platform_data;
if (sio_data->kind == nct6776)
; /* no dividers, do nothing */
else if (sio_data->kind == nct6775)
nct6775_write_fan_div(data, nr);
else
w83627ehf_write_fan_div(data, nr);
}
static void nct6775_update_fan_div(struct w83627ehf_data *data)
{
u8 i;
i = w83627ehf_read_value(data, NCT6775_REG_FANDIV1);
data->fan_div[0] = i & 0x7;
data->fan_div[1] = (i & 0x70) >> 4;
i = w83627ehf_read_value(data, NCT6775_REG_FANDIV2);
data->fan_div[2] = i & 0x7;
if (data->has_fan & (1<<3))
data->fan_div[3] = (i & 0x70) >> 4;
}
static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
{
int i;
i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
data->fan_div[0] = (i >> 4) & 0x03;
data->fan_div[1] = (i >> 6) & 0x03;
i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
data->fan_div[2] = (i >> 6) & 0x03;
i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
data->fan_div[0] |= (i >> 3) & 0x04;
data->fan_div[1] |= (i >> 4) & 0x04;
data->fan_div[2] |= (i >> 5) & 0x04;
if (data->has_fan & ((1 << 3) | (1 << 4))) {
i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
data->fan_div[3] = i & 0x03;
data->fan_div[4] = ((i >> 2) & 0x03)
| ((i >> 5) & 0x04);
}
if (data->has_fan & (1 << 3)) {
i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
data->fan_div[3] |= (i >> 5) & 0x04;
}
}
static void w83627ehf_update_fan_div_common(struct device *dev,
struct w83627ehf_data *data)
{
struct w83627ehf_sio_data *sio_data = dev->platform_data;
if (sio_data->kind == nct6776)
; /* no dividers, do nothing */
else if (sio_data->kind == nct6775)
nct6775_update_fan_div(data);
else
w83627ehf_update_fan_div(data);
}
static void nct6775_update_pwm(struct w83627ehf_data *data)
{
int i;
int pwmcfg, fanmodecfg;
for (i = 0; i < data->pwm_num; i++) {
pwmcfg = w83627ehf_read_value(data,
W83627EHF_REG_PWM_ENABLE[i]);
fanmodecfg = w83627ehf_read_value(data,
NCT6775_REG_FAN_MODE[i]);
data->pwm_mode[i] =
((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1;
data->pwm_enable[i] = ((fanmodecfg >> 4) & 7) + 1;
data->tolerance[i] = fanmodecfg & 0x0f;
data->pwm[i] = w83627ehf_read_value(data, data->REG_PWM[i]);
}
}
static void w83627ehf_update_pwm(struct w83627ehf_data *data)
{
int i;
int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
for (i = 0; i < data->pwm_num; i++) {
if (!(data->has_fan & (1 << i)))
continue;
/* pwmcfg, tolerance mapped for i=0, i=1 to same reg */
if (i != 1) {
pwmcfg = w83627ehf_read_value(data,
W83627EHF_REG_PWM_ENABLE[i]);
tolerance = w83627ehf_read_value(data,
W83627EHF_REG_TOLERANCE[i]);
}
data->pwm_mode[i] =
((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1;
data->pwm_enable[i] = ((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
& 3) + 1;
data->pwm[i] = w83627ehf_read_value(data, data->REG_PWM[i]);
data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0)) & 0x0f;
}
}
static void w83627ehf_update_pwm_common(struct device *dev,
struct w83627ehf_data *data)
{
struct w83627ehf_sio_data *sio_data = dev->platform_data;
if (sio_data->kind == nct6775 || sio_data->kind == nct6776)
nct6775_update_pwm(data);
else
w83627ehf_update_pwm(data);
}
static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
struct w83627ehf_sio_data *sio_data = dev->platform_data;
int i;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ + HZ/2)
|| !data->valid) {
/* Fan clock dividers */
w83627ehf_update_fan_div_common(dev, data);
/* Measured voltages and limits */
for (i = 0; i < data->in_num; i++) {
if ((i == 6) && data->in6_skip)
continue;
data->in[i] = w83627ehf_read_value(data,
W83627EHF_REG_IN(i));
data->in_min[i] = w83627ehf_read_value(data,
W83627EHF_REG_IN_MIN(i));
data->in_max[i] = w83627ehf_read_value(data,
W83627EHF_REG_IN_MAX(i));
}
/* Measured fan speeds and limits */
for (i = 0; i < 5; i++) {
u16 reg;
if (!(data->has_fan & (1 << i)))
continue;
reg = w83627ehf_read_value(data, data->REG_FAN[i]);
data->rpm[i] = data->fan_from_reg(reg,
data->fan_div[i]);
if (data->has_fan_min & (1 << i))
data->fan_min[i] = w83627ehf_read_value(data,
data->REG_FAN_MIN[i]);
/*
* If we failed to measure the fan speed and clock
* divider can be increased, let's try that for next
* time
*/
if (data->has_fan_div
&& (reg >= 0xff || (sio_data->kind == nct6775
&& reg == 0x00))
&& data->fan_div[i] < 0x07) {
dev_dbg(dev, "Increasing fan%d "
"clock divider from %u to %u\n",
i + 1, div_from_reg(data->fan_div[i]),
div_from_reg(data->fan_div[i] + 1));
data->fan_div[i]++;
w83627ehf_write_fan_div_common(dev, data, i);
/* Preserve min limit if possible */
if ((data->has_fan_min & (1 << i))
&& data->fan_min[i] >= 2
&& data->fan_min[i] != 255)
w83627ehf_write_value(data,
data->REG_FAN_MIN[i],
(data->fan_min[i] /= 2));
}
}
w83627ehf_update_pwm_common(dev, data);
for (i = 0; i < data->pwm_num; i++) {
if (!(data->has_fan & (1 << i)))
continue;
data->fan_start_output[i] =
w83627ehf_read_value(data,
data->REG_FAN_START_OUTPUT[i]);
data->fan_stop_output[i] =
w83627ehf_read_value(data,
data->REG_FAN_STOP_OUTPUT[i]);
data->fan_stop_time[i] =
w83627ehf_read_value(data,
data->REG_FAN_STOP_TIME[i]);
if (data->REG_FAN_MAX_OUTPUT &&
data->REG_FAN_MAX_OUTPUT[i] != 0xff)
data->fan_max_output[i] =
w83627ehf_read_value(data,
data->REG_FAN_MAX_OUTPUT[i]);
if (data->REG_FAN_STEP_OUTPUT &&
data->REG_FAN_STEP_OUTPUT[i] != 0xff)
data->fan_step_output[i] =
w83627ehf_read_value(data,
data->REG_FAN_STEP_OUTPUT[i]);
data->target_temp[i] =
w83627ehf_read_value(data,
data->REG_TARGET[i]) &
(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
}
/* Measured temperatures and limits */
for (i = 0; i < NUM_REG_TEMP; i++) {
if (!(data->have_temp & (1 << i)))
continue;
data->temp[i] = w83627ehf_read_temp(data,
data->reg_temp[i]);
if (data->reg_temp_over[i])
data->temp_max[i]
= w83627ehf_read_temp(data,
data->reg_temp_over[i]);
if (data->reg_temp_hyst[i])
data->temp_max_hyst[i]
= w83627ehf_read_temp(data,
data->reg_temp_hyst[i]);
if (i > 2)
continue;
if (data->have_temp_offset & (1 << i))
data->temp_offset[i]
= w83627ehf_read_value(data,
W83627EHF_REG_TEMP_OFFSET[i]);
}
data->alarms = w83627ehf_read_value(data,
W83627EHF_REG_ALARM1) |
(w83627ehf_read_value(data,
W83627EHF_REG_ALARM2) << 8) |
(w83627ehf_read_value(data,
W83627EHF_REG_ALARM3) << 16);
data->caseopen = w83627ehf_read_value(data,
W83627EHF_REG_CASEOPEN_DET);
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
/*
* Sysfs callback functions
*/
#define show_in_reg(reg) \
static ssize_t \
show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct w83627ehf_data *data = w83627ehf_update_device(dev); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
return sprintf(buf, "%ld\n", in_from_reg(data->reg[nr], nr, \
data->scale_in)); \
}
show_in_reg(in)
show_in_reg(in_min)
show_in_reg(in_max)
#define store_in_reg(REG, reg) \
static ssize_t \
store_in_##reg(struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct w83627ehf_data *data = dev_get_drvdata(dev); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
unsigned long val; \
int err; \
err = kstrtoul(buf, 10, &val); \
if (err < 0) \
return err; \
mutex_lock(&data->update_lock); \
data->in_##reg[nr] = in_to_reg(val, nr, data->scale_in); \
w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(nr), \
data->in_##reg[nr]); \
mutex_unlock(&data->update_lock); \
return count; \
}
store_in_reg(MIN, min)
store_in_reg(MAX, max)
static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct w83627ehf_data *data = w83627ehf_update_device(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
return sprintf(buf, "%u\n", (data->alarms >> nr) & 0x01);
}
static struct sensor_device_attribute sda_in_input[] = {
SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
};
static struct sensor_device_attribute sda_in_alarm[] = {
SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 21),
SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 20),
SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 16),
SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 17),
SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 19),
};
static struct sensor_device_attribute sda_in_min[] = {
SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
};
static struct sensor_device_attribute sda_in_max[] = {
SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
};
static ssize_t
show_fan(struct device *dev, struct device_attribute *attr, char *buf)
{
struct w83627ehf_data *data = w83627ehf_update_device(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
return sprintf(buf, "%d\n", data->rpm[nr]);
}
static ssize_t
show_fan_min(struct device *dev, struct device_attribute *attr, char *buf)
{
struct w83627ehf_data *data = w83627ehf_update_device(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
return sprintf(buf, "%d\n",
data->fan_from_reg_min(data->fan_min[nr],
data->fan_div[nr]));
}
static ssize_t
show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct w83627ehf_data *data = w83627ehf_update_device(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
return sprintf(buf, "%u\n", div_from_reg(data->fan_div[nr]));
}
static ssize_t
store_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
unsigned long val;
int err;
unsigned int reg;
u8 new_div;
err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
mutex_lock(&data->update_lock);
if (!data->has_fan_div) {
/*
* Only NCT6776F for now, so we know that this is a 13 bit
* register
*/
if (!val) {
val = 0xff1f;
} else {
if (val > 1350000U)
val = 135000U;
val = 1350000U / val;
val = (val & 0x1f) | ((val << 3) & 0xff00);
}
data->fan_min[nr] = val;
goto done; /* Leave fan divider alone */
}
if (!val) {
/* No min limit, alarm disabled */
data->fan_min[nr] = 255;
new_div = data->fan_div[nr]; /* No change */
dev_info(dev, "fan%u low limit and alarm disabled\n", nr + 1);
} else if ((reg = 1350000U / val) >= 128 * 255) {
/*
* Speed below this value cannot possibly be represented,
* even with the highest divider (128)
*/
data->fan_min[nr] = 254;
new_div = 7; /* 128 == (1 << 7) */
dev_warn(dev, "fan%u low limit %lu below minimum %u, set to "
"minimum\n", nr + 1, val,
data->fan_from_reg_min(254, 7));
} else if (!reg) {
/*
* Speed above this value cannot possibly be represented,
* even with the lowest divider (1)
*/
data->fan_min[nr] = 1;
new_div = 0; /* 1 == (1 << 0) */
dev_warn(dev, "fan%u low limit %lu above maximum %u, set to "
"maximum\n", nr + 1, val,
data->fan_from_reg_min(1, 0));
} else {
/*
* Automatically pick the best divider, i.e. the one such
* that the min limit will correspond to a register value
* in the 96..192 range
*/
new_div = 0;
while (reg > 192 && new_div < 7) {
reg >>= 1;
new_div++;
}
data->fan_min[nr] = reg;
}
/*
* Write both the fan clock divider (if it changed) and the new
* fan min (unconditionally)
*/
if (new_div != data->fan_div[nr]) {
dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
nr + 1, div_from_reg(data->fan_div[nr]),
div_from_reg(new_div));
data->fan_div[nr] = new_div;
w83627ehf_write_fan_div_common(dev, data, nr);
/* Give the chip time to sample a new speed value */
data->last_updated = jiffies;
}
done:
w83627ehf_write_value(data, data->REG_FAN_MIN[nr],
data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_fan_input[] = {
SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
};
static struct sensor_device_attribute sda_fan_alarm[] = {
SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 10),
SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 23),
};
static struct sensor_device_attribute sda_fan_min[] = {
SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min,
store_fan_min, 0),
SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min,
store_fan_min, 1),
SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min,
store_fan_min, 2),
SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min,
store_fan_min, 3),
SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO, show_fan_min,
store_fan_min, 4),
};
static struct sensor_device_attribute sda_fan_div[] = {
SENSOR_ATTR(fan1_div, S_IRUGO, show_fan_div, NULL, 0),
SENSOR_ATTR(fan2_div, S_IRUGO, show_fan_div, NULL, 1),
SENSOR_ATTR(fan3_div, S_IRUGO, show_fan_div, NULL, 2),
SENSOR_ATTR(fan4_div, S_IRUGO, show_fan_div, NULL, 3),
SENSOR_ATTR(fan5_div, S_IRUGO, show_fan_div, NULL, 4),
};
static ssize_t
show_temp_label(struct device *dev, struct device_attribute *attr, char *buf)
{
struct w83627ehf_data *data = w83627ehf_update_device(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
return sprintf(buf, "%s\n", data->temp_label[data->temp_src[nr]]);
}
#define show_temp_reg(addr, reg) \
static ssize_t \
show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct w83627ehf_data *data = w83627ehf_update_device(dev); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
return sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(data->reg[nr])); \
}
show_temp_reg(reg_temp, temp);
show_temp_reg(reg_temp_over, temp_max);
show_temp_reg(reg_temp_hyst, temp_max_hyst);
#define store_temp_reg(addr, reg) \
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct w83627ehf_data *data = dev_get_drvdata(dev); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
int err; \
long val; \
err = kstrtol(buf, 10, &val); \
if (err < 0) \
return err; \
mutex_lock(&data->update_lock); \
data->reg[nr] = LM75_TEMP_TO_REG(val); \
w83627ehf_write_temp(data, data->addr[nr], data->reg[nr]); \
mutex_unlock(&data->update_lock); \
return count; \
}
store_temp_reg(reg_temp_over, temp_max);
store_temp_reg(reg_temp_hyst, temp_max_hyst);
static ssize_t
show_temp_offset(struct device *dev, struct device_attribute *attr, char *buf)
{
struct w83627ehf_data *data = w83627ehf_update_device(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
return sprintf(buf, "%d\n",
data->temp_offset[sensor_attr->index] * 1000);
}
static ssize_t
store_temp_offset(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
val = SENSORS_LIMIT(DIV_ROUND_CLOSEST(val, 1000), -128, 127);
mutex_lock(&data->update_lock);
data->temp_offset[nr] = val;
w83627ehf_write_value(data, W83627EHF_REG_TEMP_OFFSET[nr], val);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
show_temp_type(struct device *dev, struct device_attribute *attr, char *buf)
{
struct w83627ehf_data *data = w83627ehf_update_device(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
return sprintf(buf, "%d\n", (int)data->temp_type[nr]);
}
static struct sensor_device_attribute sda_temp_input[] = {
SENSOR_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0),
SENSOR_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1),
SENSOR_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2),
SENSOR_ATTR(temp4_input, S_IRUGO, show_temp, NULL, 3),
SENSOR_ATTR(temp5_input, S_IRUGO, show_temp, NULL, 4),
SENSOR_ATTR(temp6_input, S_IRUGO, show_temp, NULL, 5),
SENSOR_ATTR(temp7_input, S_IRUGO, show_temp, NULL, 6),
SENSOR_ATTR(temp8_input, S_IRUGO, show_temp, NULL, 7),
SENSOR_ATTR(temp9_input, S_IRUGO, show_temp, NULL, 8),
};
static struct sensor_device_attribute sda_temp_label[] = {
SENSOR_ATTR(temp1_label, S_IRUGO, show_temp_label, NULL, 0),
SENSOR_ATTR(temp2_label, S_IRUGO, show_temp_label, NULL, 1),
SENSOR_ATTR(temp3_label, S_IRUGO, show_temp_label, NULL, 2),
SENSOR_ATTR(temp4_label, S_IRUGO, show_temp_label, NULL, 3),
SENSOR_ATTR(temp5_label, S_IRUGO, show_temp_label, NULL, 4),
SENSOR_ATTR(temp6_label, S_IRUGO, show_temp_label, NULL, 5),
SENSOR_ATTR(temp7_label, S_IRUGO, show_temp_label, NULL, 6),
SENSOR_ATTR(temp8_label, S_IRUGO, show_temp_label, NULL, 7),
SENSOR_ATTR(temp9_label, S_IRUGO, show_temp_label, NULL, 8),
};
static struct sensor_device_attribute sda_temp_max[] = {
SENSOR_ATTR(temp1_max, S_IRUGO | S_IWUSR, show_temp_max,
store_temp_max, 0),
SENSOR_ATTR(temp2_max, S_IRUGO | S_IWUSR, show_temp_max,
store_temp_max, 1),
SENSOR_ATTR(temp3_max, S_IRUGO | S_IWUSR, show_temp_max,
store_temp_max, 2),
SENSOR_ATTR(temp4_max, S_IRUGO | S_IWUSR, show_temp_max,
store_temp_max, 3),
SENSOR_ATTR(temp5_max, S_IRUGO | S_IWUSR, show_temp_max,
store_temp_max, 4),
SENSOR_ATTR(temp6_max, S_IRUGO | S_IWUSR, show_temp_max,
store_temp_max, 5),
SENSOR_ATTR(temp7_max, S_IRUGO | S_IWUSR, show_temp_max,
store_temp_max, 6),
SENSOR_ATTR(temp8_max, S_IRUGO | S_IWUSR, show_temp_max,
store_temp_max, 7),
SENSOR_ATTR(temp9_max, S_IRUGO | S_IWUSR, show_temp_max,
store_temp_max, 8),
};
static struct sensor_device_attribute sda_temp_max_hyst[] = {
SENSOR_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
store_temp_max_hyst, 0),
SENSOR_ATTR(temp2_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
store_temp_max_hyst, 1),
SENSOR_ATTR(temp3_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
store_temp_max_hyst, 2),
SENSOR_ATTR(temp4_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
store_temp_max_hyst, 3),
SENSOR_ATTR(temp5_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
store_temp_max_hyst, 4),
SENSOR_ATTR(temp6_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
store_temp_max_hyst, 5),
SENSOR_ATTR(temp7_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
store_temp_max_hyst, 6),
SENSOR_ATTR(temp8_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
store_temp_max_hyst, 7),
SENSOR_ATTR(temp9_max_hyst, S_IRUGO | S_IWUSR, show_temp_max_hyst,
store_temp_max_hyst, 8),
};
static struct sensor_device_attribute sda_temp_alarm[] = {
SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
};
static struct sensor_device_attribute sda_temp_type[] = {
SENSOR_ATTR(temp1_type, S_IRUGO, show_temp_type, NULL, 0),
SENSOR_ATTR(temp2_type, S_IRUGO, show_temp_type, NULL, 1),
SENSOR_ATTR(temp3_type, S_IRUGO, show_temp_type, NULL, 2),
};
static struct sensor_device_attribute sda_temp_offset[] = {
SENSOR_ATTR(temp1_offset, S_IRUGO | S_IWUSR, show_temp_offset,
store_temp_offset, 0),
SENSOR_ATTR(temp2_offset, S_IRUGO | S_IWUSR, show_temp_offset,
store_temp_offset, 1),
SENSOR_ATTR(temp3_offset, S_IRUGO | S_IWUSR, show_temp_offset,
store_temp_offset, 2),
};
#define show_pwm_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct w83627ehf_data *data = w83627ehf_update_device(dev); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
return sprintf(buf, "%d\n", data->reg[nr]); \
}
show_pwm_reg(pwm_mode)
show_pwm_reg(pwm_enable)
show_pwm_reg(pwm)
static ssize_t
store_pwm_mode(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
struct w83627ehf_sio_data *sio_data = dev->platform_data;
int nr = sensor_attr->index;
unsigned long val;
int err;
u16 reg;
err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
if (val > 1)
return -EINVAL;
/* On NCT67766F, DC mode is only supported for pwm1 */
if (sio_data->kind == nct6776 && nr && val != 1)
return -EINVAL;
mutex_lock(&data->update_lock);
reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
data->pwm_mode[nr] = val;
reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[nr]);
if (!val)
reg |= 1 << W83627EHF_PWM_MODE_SHIFT[nr];
w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
store_pwm(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
val = SENSORS_LIMIT(val, 0, 255);
mutex_lock(&data->update_lock);
data->pwm[nr] = val;
w83627ehf_write_value(data, data->REG_PWM[nr], val);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
store_pwm_enable(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
struct w83627ehf_sio_data *sio_data = dev->platform_data;
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
unsigned long val;
int err;
u16 reg;
err = kstrtoul(buf, 10, &val);
if (err < 0)
return err;
if (!val || (val > 4 && val != data->pwm_enable_orig[nr]))
return -EINVAL;
/* SmartFan III mode is not supported on NCT6776F */
if (sio_data->kind == nct6776 && val == 4)
return -EINVAL;
mutex_lock(&data->update_lock);
data->pwm_enable[nr] = val;
if (sio_data->kind == nct6775 || sio_data->kind == nct6776) {
reg = w83627ehf_read_value(data,
NCT6775_REG_FAN_MODE[nr]);
reg &= 0x0f;
reg |= (val - 1) << 4;
w83627ehf_write_value(data,
NCT6775_REG_FAN_MODE[nr], reg);
} else {
reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[nr]);
reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[nr]);
reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[nr];
w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[nr], reg);
}
mutex_unlock(&data->update_lock);
return count;
}
#define show_tol_temp(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct w83627ehf_data *data = w83627ehf_update_device(dev); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
return sprintf(buf, "%d\n", data->reg[nr] * 1000); \
}
show_tol_temp(tolerance)
show_tol_temp(target_temp)
static ssize_t
store_target_temp(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
val = SENSORS_LIMIT(DIV_ROUND_CLOSEST(val, 1000), 0, 127);
mutex_lock(&data->update_lock);
data->target_temp[nr] = val;
w83627ehf_write_value(data, data->REG_TARGET[nr], val);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
store_tolerance(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
struct w83627ehf_sio_data *sio_data = dev->platform_data;
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
u16 reg;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
/* Limit the temp to 0C - 15C */
val = SENSORS_LIMIT(DIV_ROUND_CLOSEST(val, 1000), 0, 15);
mutex_lock(&data->update_lock);
if (sio_data->kind == nct6775 || sio_data->kind == nct6776) {
/* Limit tolerance further for NCT6776F */
if (sio_data->kind == nct6776 && val > 7)
val = 7;
reg = w83627ehf_read_value(data, NCT6775_REG_FAN_MODE[nr]);
reg = (reg & 0xf0) | val;
w83627ehf_write_value(data, NCT6775_REG_FAN_MODE[nr], reg);
} else {
reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
if (nr == 1)
reg = (reg & 0x0f) | (val << 4);
else
reg = (reg & 0xf0) | val;
w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
}
data->tolerance[nr] = val;
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute sda_pwm[] = {
SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0),
SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1),
SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 2),
SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 3),
};
static struct sensor_device_attribute sda_pwm_mode[] = {
SENSOR_ATTR(pwm1_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
store_pwm_mode, 0),
SENSOR_ATTR(pwm2_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
store_pwm_mode, 1),
SENSOR_ATTR(pwm3_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
store_pwm_mode, 2),
SENSOR_ATTR(pwm4_mode, S_IWUSR | S_IRUGO, show_pwm_mode,
store_pwm_mode, 3),
};
static struct sensor_device_attribute sda_pwm_enable[] = {
SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
store_pwm_enable, 0),
SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
store_pwm_enable, 1),
SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
store_pwm_enable, 2),
SENSOR_ATTR(pwm4_enable, S_IWUSR | S_IRUGO, show_pwm_enable,
store_pwm_enable, 3),
};
static struct sensor_device_attribute sda_target_temp[] = {
SENSOR_ATTR(pwm1_target, S_IWUSR | S_IRUGO, show_target_temp,
store_target_temp, 0),
SENSOR_ATTR(pwm2_target, S_IWUSR | S_IRUGO, show_target_temp,
store_target_temp, 1),
SENSOR_ATTR(pwm3_target, S_IWUSR | S_IRUGO, show_target_temp,
store_target_temp, 2),
SENSOR_ATTR(pwm4_target, S_IWUSR | S_IRUGO, show_target_temp,
store_target_temp, 3),
};
static struct sensor_device_attribute sda_tolerance[] = {
SENSOR_ATTR(pwm1_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
store_tolerance, 0),
SENSOR_ATTR(pwm2_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
store_tolerance, 1),
SENSOR_ATTR(pwm3_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
store_tolerance, 2),
SENSOR_ATTR(pwm4_tolerance, S_IWUSR | S_IRUGO, show_tolerance,
store_tolerance, 3),
};
/* Smart Fan registers */
#define fan_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct w83627ehf_data *data = w83627ehf_update_device(dev); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
return sprintf(buf, "%d\n", data->reg[nr]); \
} \
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct w83627ehf_data *data = dev_get_drvdata(dev); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
unsigned long val; \
int err; \
err = kstrtoul(buf, 10, &val); \
if (err < 0) \
return err; \
val = SENSORS_LIMIT(val, 1, 255); \
mutex_lock(&data->update_lock); \
data->reg[nr] = val; \
w83627ehf_write_value(data, data->REG_##REG[nr], val); \
mutex_unlock(&data->update_lock); \
return count; \
}
fan_functions(fan_start_output, FAN_START_OUTPUT)
fan_functions(fan_stop_output, FAN_STOP_OUTPUT)
fan_functions(fan_max_output, FAN_MAX_OUTPUT)
fan_functions(fan_step_output, FAN_STEP_OUTPUT)
#define fan_time_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct w83627ehf_data *data = w83627ehf_update_device(dev); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
return sprintf(buf, "%d\n", \
step_time_from_reg(data->reg[nr], \
data->pwm_mode[nr])); \
} \
\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct w83627ehf_data *data = dev_get_drvdata(dev); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
unsigned long val; \
int err; \
err = kstrtoul(buf, 10, &val); \
if (err < 0) \
return err; \
val = step_time_to_reg(val, data->pwm_mode[nr]); \
mutex_lock(&data->update_lock); \
data->reg[nr] = val; \
w83627ehf_write_value(data, data->REG_##REG[nr], val); \
mutex_unlock(&data->update_lock); \
return count; \
} \
fan_time_functions(fan_stop_time, FAN_STOP_TIME)
static ssize_t show_name(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%s\n", data->name);
}
static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
static struct sensor_device_attribute sda_sf3_arrays_fan4[] = {
SENSOR_ATTR(pwm4_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
store_fan_stop_time, 3),
SENSOR_ATTR(pwm4_start_output, S_IWUSR | S_IRUGO, show_fan_start_output,
store_fan_start_output, 3),
SENSOR_ATTR(pwm4_stop_output, S_IWUSR | S_IRUGO, show_fan_stop_output,
store_fan_stop_output, 3),
SENSOR_ATTR(pwm4_max_output, S_IWUSR | S_IRUGO, show_fan_max_output,
store_fan_max_output, 3),
SENSOR_ATTR(pwm4_step_output, S_IWUSR | S_IRUGO, show_fan_step_output,
store_fan_step_output, 3),
};
static struct sensor_device_attribute sda_sf3_arrays_fan3[] = {
SENSOR_ATTR(pwm3_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
store_fan_stop_time, 2),
SENSOR_ATTR(pwm3_start_output, S_IWUSR | S_IRUGO, show_fan_start_output,
store_fan_start_output, 2),
SENSOR_ATTR(pwm3_stop_output, S_IWUSR | S_IRUGO, show_fan_stop_output,
store_fan_stop_output, 2),
};
static struct sensor_device_attribute sda_sf3_arrays[] = {
SENSOR_ATTR(pwm1_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
store_fan_stop_time, 0),
SENSOR_ATTR(pwm2_stop_time, S_IWUSR | S_IRUGO, show_fan_stop_time,
store_fan_stop_time, 1),
SENSOR_ATTR(pwm1_start_output, S_IWUSR | S_IRUGO, show_fan_start_output,
store_fan_start_output, 0),
SENSOR_ATTR(pwm2_start_output, S_IWUSR | S_IRUGO, show_fan_start_output,
store_fan_start_output, 1),
SENSOR_ATTR(pwm1_stop_output, S_IWUSR | S_IRUGO, show_fan_stop_output,
store_fan_stop_output, 0),
SENSOR_ATTR(pwm2_stop_output, S_IWUSR | S_IRUGO, show_fan_stop_output,
store_fan_stop_output, 1),
};
/*
* pwm1 and pwm3 don't support max and step settings on all chips.
* Need to check support while generating/removing attribute files.
*/
static struct sensor_device_attribute sda_sf3_max_step_arrays[] = {
SENSOR_ATTR(pwm1_max_output, S_IWUSR | S_IRUGO, show_fan_max_output,
store_fan_max_output, 0),
SENSOR_ATTR(pwm1_step_output, S_IWUSR | S_IRUGO, show_fan_step_output,
store_fan_step_output, 0),
SENSOR_ATTR(pwm2_max_output, S_IWUSR | S_IRUGO, show_fan_max_output,
store_fan_max_output, 1),
SENSOR_ATTR(pwm2_step_output, S_IWUSR | S_IRUGO, show_fan_step_output,
store_fan_step_output, 1),
SENSOR_ATTR(pwm3_max_output, S_IWUSR | S_IRUGO, show_fan_max_output,
store_fan_max_output, 2),
SENSOR_ATTR(pwm3_step_output, S_IWUSR | S_IRUGO, show_fan_step_output,
store_fan_step_output, 2),
};
static ssize_t
show_vid(struct device *dev, struct device_attribute *attr, char *buf)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
/* Case open detection */
static ssize_t
show_caseopen(struct device *dev, struct device_attribute *attr, char *buf)
{
struct w83627ehf_data *data = w83627ehf_update_device(dev);
return sprintf(buf, "%d\n",
!!(data->caseopen & to_sensor_dev_attr_2(attr)->index));
}
static ssize_t
clear_caseopen(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
unsigned long val;
u16 reg, mask;
if (kstrtoul(buf, 10, &val) || val != 0)
return -EINVAL;
mask = to_sensor_dev_attr_2(attr)->nr;
mutex_lock(&data->update_lock);
reg = w83627ehf_read_value(data, W83627EHF_REG_CASEOPEN_CLR);
w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg | mask);
w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg & ~mask);
data->valid = 0; /* Force cache refresh */
mutex_unlock(&data->update_lock);
return count;
}
static struct sensor_device_attribute_2 sda_caseopen[] = {
SENSOR_ATTR_2(intrusion0_alarm, S_IWUSR | S_IRUGO, show_caseopen,
clear_caseopen, 0x80, 0x10),
SENSOR_ATTR_2(intrusion1_alarm, S_IWUSR | S_IRUGO, show_caseopen,
clear_caseopen, 0x40, 0x40),
};
/*
* Driver and device management
*/
static void w83627ehf_device_remove_files(struct device *dev)
{
/*
* some entries in the following arrays may not have been used in
* device_create_file(), but device_remove_file() will ignore them
*/
int i;
struct w83627ehf_data *data = dev_get_drvdata(dev);
for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++)
device_remove_file(dev, &sda_sf3_arrays[i].dev_attr);
for (i = 0; i < ARRAY_SIZE(sda_sf3_max_step_arrays); i++) {
struct sensor_device_attribute *attr =
&sda_sf3_max_step_arrays[i];
if (data->REG_FAN_STEP_OUTPUT &&
data->REG_FAN_STEP_OUTPUT[attr->index] != 0xff)
device_remove_file(dev, &attr->dev_attr);
}
for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan3); i++)
device_remove_file(dev, &sda_sf3_arrays_fan3[i].dev_attr);
for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++)
device_remove_file(dev, &sda_sf3_arrays_fan4[i].dev_attr);
for (i = 0; i < data->in_num; i++) {
if ((i == 6) && data->in6_skip)
continue;
device_remove_file(dev, &sda_in_input[i].dev_attr);
device_remove_file(dev, &sda_in_alarm[i].dev_attr);
device_remove_file(dev, &sda_in_min[i].dev_attr);
device_remove_file(dev, &sda_in_max[i].dev_attr);
}
for (i = 0; i < 5; i++) {
device_remove_file(dev, &sda_fan_input[i].dev_attr);
device_remove_file(dev, &sda_fan_alarm[i].dev_attr);
device_remove_file(dev, &sda_fan_div[i].dev_attr);
device_remove_file(dev, &sda_fan_min[i].dev_attr);
}
for (i = 0; i < data->pwm_num; i++) {
device_remove_file(dev, &sda_pwm[i].dev_attr);
device_remove_file(dev, &sda_pwm_mode[i].dev_attr);
device_remove_file(dev, &sda_pwm_enable[i].dev_attr);
device_remove_file(dev, &sda_target_temp[i].dev_attr);
device_remove_file(dev, &sda_tolerance[i].dev_attr);
}
for (i = 0; i < NUM_REG_TEMP; i++) {
if (!(data->have_temp & (1 << i)))
continue;
device_remove_file(dev, &sda_temp_input[i].dev_attr);
device_remove_file(dev, &sda_temp_label[i].dev_attr);
if (i == 2 && data->temp3_val_only)
continue;
device_remove_file(dev, &sda_temp_max[i].dev_attr);
device_remove_file(dev, &sda_temp_max_hyst[i].dev_attr);
if (i > 2)
continue;
device_remove_file(dev, &sda_temp_alarm[i].dev_attr);
device_remove_file(dev, &sda_temp_type[i].dev_attr);
device_remove_file(dev, &sda_temp_offset[i].dev_attr);
}
device_remove_file(dev, &sda_caseopen[0].dev_attr);
device_remove_file(dev, &sda_caseopen[1].dev_attr);
device_remove_file(dev, &dev_attr_name);
device_remove_file(dev, &dev_attr_cpu0_vid);
}
/* Get the monitoring functions started */
static inline void w83627ehf_init_device(struct w83627ehf_data *data,
enum kinds kind)
{
int i;
u8 tmp, diode;
/* Start monitoring is needed */
tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
if (!(tmp & 0x01))
w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
tmp | 0x01);
/* Enable temperature sensors if needed */
for (i = 0; i < NUM_REG_TEMP; i++) {
if (!(data->have_temp & (1 << i)))
continue;
if (!data->reg_temp_config[i])
continue;
tmp = w83627ehf_read_value(data,
data->reg_temp_config[i]);
if (tmp & 0x01)
w83627ehf_write_value(data,
data->reg_temp_config[i],
tmp & 0xfe);
}
/* Enable VBAT monitoring if needed */
tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
if (!(tmp & 0x01))
w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
/* Get thermal sensor types */
switch (kind) {
case w83627ehf:
diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
break;
case w83627uhg:
diode = 0x00;
break;
default:
diode = 0x70;
}
for (i = 0; i < 3; i++) {
const char *label = NULL;
if (data->temp_label)
label = data->temp_label[data->temp_src[i]];
/* Digital source overrides analog type */
if (label && strncmp(label, "PECI", 4) == 0)
data->temp_type[i] = 6;
else if (label && strncmp(label, "AMD", 3) == 0)
data->temp_type[i] = 5;
else if ((tmp & (0x02 << i)))
data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 3;
else
data->temp_type[i] = 4; /* thermistor */
}
}
static void w82627ehf_swap_tempreg(struct w83627ehf_data *data,
int r1, int r2)
{
u16 tmp;
tmp = data->temp_src[r1];
data->temp_src[r1] = data->temp_src[r2];
data->temp_src[r2] = tmp;
tmp = data->reg_temp[r1];
data->reg_temp[r1] = data->reg_temp[r2];
data->reg_temp[r2] = tmp;
tmp = data->reg_temp_over[r1];
data->reg_temp_over[r1] = data->reg_temp_over[r2];
data->reg_temp_over[r2] = tmp;
tmp = data->reg_temp_hyst[r1];
data->reg_temp_hyst[r1] = data->reg_temp_hyst[r2];
data->reg_temp_hyst[r2] = tmp;
tmp = data->reg_temp_config[r1];
data->reg_temp_config[r1] = data->reg_temp_config[r2];
data->reg_temp_config[r2] = tmp;
}
static void
w83627ehf_set_temp_reg_ehf(struct w83627ehf_data *data, int n_temp)
{
int i;
for (i = 0; i < n_temp; i++) {
data->reg_temp[i] = W83627EHF_REG_TEMP[i];
data->reg_temp_over[i] = W83627EHF_REG_TEMP_OVER[i];
data->reg_temp_hyst[i] = W83627EHF_REG_TEMP_HYST[i];
data->reg_temp_config[i] = W83627EHF_REG_TEMP_CONFIG[i];
}
}
static void
w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data *sio_data,
struct w83627ehf_data *data)
{
int fan3pin, fan4pin, fan4min, fan5pin, regval;
/* The W83627UHG is simple, only two fan inputs, no config */
if (sio_data->kind == w83627uhg) {
data->has_fan = 0x03; /* fan1 and fan2 */
data->has_fan_min = 0x03;
return;
}
superio_enter(sio_data->sioreg);
/* fan4 and fan5 share some pins with the GPIO and serial flash */
if (sio_data->kind == nct6775) {
/* On NCT6775, fan4 shares pins with the fdc interface */
fan3pin = 1;
fan4pin = !(superio_inb(sio_data->sioreg, 0x2A) & 0x80);
fan4min = 0;
fan5pin = 0;
} else if (sio_data->kind == nct6776) {
bool gpok = superio_inb(sio_data->sioreg, 0x27) & 0x80;
superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
regval = superio_inb(sio_data->sioreg, SIO_REG_ENABLE);
if (regval & 0x80)
fan3pin = gpok;
else
fan3pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x40);
if (regval & 0x40)
fan4pin = gpok;
else
fan4pin = !!(superio_inb(sio_data->sioreg, 0x1C) & 0x01);
if (regval & 0x20)
fan5pin = gpok;
else
fan5pin = !!(superio_inb(sio_data->sioreg, 0x1C) & 0x02);
fan4min = fan4pin;
} else if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
fan3pin = 1;
fan4pin = superio_inb(sio_data->sioreg, 0x27) & 0x40;
fan5pin = superio_inb(sio_data->sioreg, 0x27) & 0x20;
fan4min = fan4pin;
} else {
fan3pin = 1;
fan4pin = !(superio_inb(sio_data->sioreg, 0x29) & 0x06);
fan5pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x02);
fan4min = fan4pin;
}
superio_exit(sio_data->sioreg);
data->has_fan = data->has_fan_min = 0x03; /* fan1 and fan2 */
data->has_fan |= (fan3pin << 2);
data->has_fan_min |= (fan3pin << 2);
if (sio_data->kind == nct6775 || sio_data->kind == nct6776) {
/*
* NCT6775F and NCT6776F don't have the W83627EHF_REG_FANDIV1
* register
*/
data->has_fan |= (fan4pin << 3) | (fan5pin << 4);
data->has_fan_min |= (fan4min << 3) | (fan5pin << 4);
} else {
/*
* It looks like fan4 and fan5 pins can be alternatively used
* as fan on/off switches, but fan5 control is write only :/
* We assume that if the serial interface is disabled, designers
* connected fan5 as input unless they are emitting log 1, which
* is not the default.
*/
regval = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
if ((regval & (1 << 2)) && fan4pin) {
data->has_fan |= (1 << 3);
data->has_fan_min |= (1 << 3);
}
if (!(regval & (1 << 1)) && fan5pin) {
data->has_fan |= (1 << 4);
data->has_fan_min |= (1 << 4);
}
}
}
static int w83627ehf_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct w83627ehf_sio_data *sio_data = dev->platform_data;
struct w83627ehf_data *data;
struct resource *res;
u8 en_vrm10;
int i, err = 0;
res = platform_get_resource(pdev, IORESOURCE_IO, 0);
if (!request_region(res->start, IOREGION_LENGTH, DRVNAME)) {
err = -EBUSY;
dev_err(dev, "Failed to request region 0x%lx-0x%lx\n",
(unsigned long)res->start,
(unsigned long)res->start + IOREGION_LENGTH - 1);
goto exit;
}
data = devm_kzalloc(&pdev->dev, sizeof(struct w83627ehf_data),
GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto exit_release;
}
data->addr = res->start;
mutex_init(&data->lock);
mutex_init(&data->update_lock);
data->name = w83627ehf_device_names[sio_data->kind];
data->bank = 0xff; /* Force initial bank selection */
platform_set_drvdata(pdev, data);
/* 627EHG and 627EHF have 10 voltage inputs; 627DHG and 667HG have 9 */
data->in_num = (sio_data->kind == w83627ehf) ? 10 : 9;
/* 667HG, NCT6775F, and NCT6776F have 3 pwms, and 627UHG has only 2 */
switch (sio_data->kind) {
default:
data->pwm_num = 4;
break;
case w83667hg:
case w83667hg_b:
case nct6775:
case nct6776:
data->pwm_num = 3;
break;
case w83627uhg:
data->pwm_num = 2;
break;
}
/* Default to 3 temperature inputs, code below will adjust as needed */
data->have_temp = 0x07;
/* Deal with temperature register setup first. */
if (sio_data->kind == nct6775 || sio_data->kind == nct6776) {
int mask = 0;
/*
* Display temperature sensor output only if it monitors
* a source other than one already reported. Always display
* first three temperature registers, though.
*/
for (i = 0; i < NUM_REG_TEMP; i++) {
u8 src;
data->reg_temp[i] = NCT6775_REG_TEMP[i];
data->reg_temp_over[i] = NCT6775_REG_TEMP_OVER[i];
data->reg_temp_hyst[i] = NCT6775_REG_TEMP_HYST[i];
data->reg_temp_config[i] = NCT6775_REG_TEMP_CONFIG[i];
src = w83627ehf_read_value(data,
NCT6775_REG_TEMP_SOURCE[i]);
src &= 0x1f;
if (src && !(mask & (1 << src))) {
data->have_temp |= 1 << i;
mask |= 1 << src;
}
data->temp_src[i] = src;
/*
* Now do some register swapping if index 0..2 don't
* point to SYSTIN(1), CPUIN(2), and AUXIN(3).
* Idea is to have the first three attributes
* report SYSTIN, CPUIN, and AUXIN if possible
* without overriding the basic system configuration.
*/
if (i > 0 && data->temp_src[0] != 1
&& data->temp_src[i] == 1)
w82627ehf_swap_tempreg(data, 0, i);
if (i > 1 && data->temp_src[1] != 2
&& data->temp_src[i] == 2)
w82627ehf_swap_tempreg(data, 1, i);
if (i > 2 && data->temp_src[2] != 3
&& data->temp_src[i] == 3)
w82627ehf_swap_tempreg(data, 2, i);
}
if (sio_data->kind == nct6776) {
/*
* On NCT6776, AUXTIN and VIN3 pins are shared.
* Only way to detect it is to check if AUXTIN is used
* as a temperature source, and if that source is
* enabled.
*
* If that is the case, disable in6, which reports VIN3.
* Otherwise disable temp3.
*/
if (data->temp_src[2] == 3) {
u8 reg;
if (data->reg_temp_config[2])
reg = w83627ehf_read_value(data,
data->reg_temp_config[2]);
else
reg = 0; /* Assume AUXTIN is used */
if (reg & 0x01)
data->have_temp &= ~(1 << 2);
else
data->in6_skip = 1;
}
data->temp_label = nct6776_temp_label;
} else {
data->temp_label = nct6775_temp_label;
}
data->have_temp_offset = data->have_temp & 0x07;
for (i = 0; i < 3; i++) {
if (data->temp_src[i] > 3)
data->have_temp_offset &= ~(1 << i);
}
} else if (sio_data->kind == w83667hg_b) {
u8 reg;
w83627ehf_set_temp_reg_ehf(data, 4);
/*
* Temperature sources are selected with bank 0, registers 0x49
* and 0x4a.
*/
reg = w83627ehf_read_value(data, 0x4a);
data->temp_src[0] = reg >> 5;
reg = w83627ehf_read_value(data, 0x49);
data->temp_src[1] = reg & 0x07;
data->temp_src[2] = (reg >> 4) & 0x07;
/*
* W83667HG-B has another temperature register at 0x7e.
* The temperature source is selected with register 0x7d.
* Support it if the source differs from already reported
* sources.
*/
reg = w83627ehf_read_value(data, 0x7d);
reg &= 0x07;
if (reg != data->temp_src[0] && reg != data->temp_src[1]
&& reg != data->temp_src[2]) {
data->temp_src[3] = reg;
data->have_temp |= 1 << 3;
}
/*
* Chip supports either AUXTIN or VIN3. Try to find out which
* one.
*/
reg = w83627ehf_read_value(data, W83627EHF_REG_TEMP_CONFIG[2]);
if (data->temp_src[2] == 2 && (reg & 0x01))
data->have_temp &= ~(1 << 2);
if ((data->temp_src[2] == 2 && (data->have_temp & (1 << 2)))
|| (data->temp_src[3] == 2 && (data->have_temp & (1 << 3))))
data->in6_skip = 1;
data->temp_label = w83667hg_b_temp_label;
data->have_temp_offset = data->have_temp & 0x07;
for (i = 0; i < 3; i++) {
if (data->temp_src[i] > 2)
data->have_temp_offset &= ~(1 << i);
}
} else if (sio_data->kind == w83627uhg) {
u8 reg;
w83627ehf_set_temp_reg_ehf(data, 3);
/*
* Temperature sources for temp2 and temp3 are selected with
* bank 0, registers 0x49 and 0x4a.
*/
data->temp_src[0] = 0; /* SYSTIN */
reg = w83627ehf_read_value(data, 0x49) & 0x07;
/* Adjust to have the same mapping as other source registers */
if (reg == 0)
data->temp_src[1] = 1;
else if (reg >= 2 && reg <= 5)
data->temp_src[1] = reg + 2;
else /* should never happen */
data->have_temp &= ~(1 << 1);
reg = w83627ehf_read_value(data, 0x4a);
data->temp_src[2] = reg >> 5;
/*
* Skip temp3 if source is invalid or the same as temp1
* or temp2.
*/
if (data->temp_src[2] == 2 || data->temp_src[2] == 3 ||
data->temp_src[2] == data->temp_src[0] ||
((data->have_temp & (1 << 1)) &&
data->temp_src[2] == data->temp_src[1]))
data->have_temp &= ~(1 << 2);
else
data->temp3_val_only = 1; /* No limit regs */
data->in6_skip = 1; /* No VIN3 */
data->temp_label = w83667hg_b_temp_label;
data->have_temp_offset = data->have_temp & 0x03;
for (i = 0; i < 3; i++) {
if (data->temp_src[i] > 1)
data->have_temp_offset &= ~(1 << i);
}
} else {
w83627ehf_set_temp_reg_ehf(data, 3);
/* Temperature sources are fixed */
if (sio_data->kind == w83667hg) {
u8 reg;
/*
* Chip supports either AUXTIN or VIN3. Try to find
* out which one.
*/
reg = w83627ehf_read_value(data,
W83627EHF_REG_TEMP_CONFIG[2]);
if (reg & 0x01)
data->have_temp &= ~(1 << 2);
else
data->in6_skip = 1;
}
data->have_temp_offset = data->have_temp & 0x07;
}
if (sio_data->kind == nct6775) {
data->has_fan_div = true;
data->fan_from_reg = fan_from_reg16;
data->fan_from_reg_min = fan_from_reg8;
data->REG_PWM = NCT6775_REG_PWM;
data->REG_TARGET = NCT6775_REG_TARGET;
data->REG_FAN = NCT6775_REG_FAN;
data->REG_FAN_MIN = W83627EHF_REG_FAN_MIN;
data->REG_FAN_START_OUTPUT = NCT6775_REG_FAN_START_OUTPUT;
data->REG_FAN_STOP_OUTPUT = NCT6775_REG_FAN_STOP_OUTPUT;
data->REG_FAN_STOP_TIME = NCT6775_REG_FAN_STOP_TIME;
data->REG_FAN_MAX_OUTPUT = NCT6775_REG_FAN_MAX_OUTPUT;
data->REG_FAN_STEP_OUTPUT = NCT6775_REG_FAN_STEP_OUTPUT;
} else if (sio_data->kind == nct6776) {
data->has_fan_div = false;
data->fan_from_reg = fan_from_reg13;
data->fan_from_reg_min = fan_from_reg13;
data->REG_PWM = NCT6775_REG_PWM;
data->REG_TARGET = NCT6775_REG_TARGET;
data->REG_FAN = NCT6775_REG_FAN;
data->REG_FAN_MIN = NCT6776_REG_FAN_MIN;
data->REG_FAN_START_OUTPUT = NCT6775_REG_FAN_START_OUTPUT;
data->REG_FAN_STOP_OUTPUT = NCT6775_REG_FAN_STOP_OUTPUT;
data->REG_FAN_STOP_TIME = NCT6775_REG_FAN_STOP_TIME;
} else if (sio_data->kind == w83667hg_b) {
data->has_fan_div = true;
data->fan_from_reg = fan_from_reg8;
data->fan_from_reg_min = fan_from_reg8;
data->REG_PWM = W83627EHF_REG_PWM;
data->REG_TARGET = W83627EHF_REG_TARGET;
data->REG_FAN = W83627EHF_REG_FAN;
data->REG_FAN_MIN = W83627EHF_REG_FAN_MIN;
data->REG_FAN_START_OUTPUT = W83627EHF_REG_FAN_START_OUTPUT;
data->REG_FAN_STOP_OUTPUT = W83627EHF_REG_FAN_STOP_OUTPUT;
data->REG_FAN_STOP_TIME = W83627EHF_REG_FAN_STOP_TIME;
data->REG_FAN_MAX_OUTPUT =
W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B;
data->REG_FAN_STEP_OUTPUT =
W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B;
} else {
data->has_fan_div = true;
data->fan_from_reg = fan_from_reg8;
data->fan_from_reg_min = fan_from_reg8;
data->REG_PWM = W83627EHF_REG_PWM;
data->REG_TARGET = W83627EHF_REG_TARGET;
data->REG_FAN = W83627EHF_REG_FAN;
data->REG_FAN_MIN = W83627EHF_REG_FAN_MIN;
data->REG_FAN_START_OUTPUT = W83627EHF_REG_FAN_START_OUTPUT;
data->REG_FAN_STOP_OUTPUT = W83627EHF_REG_FAN_STOP_OUTPUT;
data->REG_FAN_STOP_TIME = W83627EHF_REG_FAN_STOP_TIME;
data->REG_FAN_MAX_OUTPUT =
W83627EHF_REG_FAN_MAX_OUTPUT_COMMON;
data->REG_FAN_STEP_OUTPUT =
W83627EHF_REG_FAN_STEP_OUTPUT_COMMON;
}
/* Setup input voltage scaling factors */
if (sio_data->kind == w83627uhg)
data->scale_in = scale_in_w83627uhg;
else
data->scale_in = scale_in_common;
/* Initialize the chip */
w83627ehf_init_device(data, sio_data->kind);
data->vrm = vid_which_vrm();
superio_enter(sio_data->sioreg);
/* Read VID value */
if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b ||
sio_data->kind == nct6775 || sio_data->kind == nct6776) {
/*
* W83667HG has different pins for VID input and output, so
* we can get the VID input values directly at logical device D
* 0xe3.
*/
superio_select(sio_data->sioreg, W83667HG_LD_VID);
data->vid = superio_inb(sio_data->sioreg, 0xe3);
err = device_create_file(dev, &dev_attr_cpu0_vid);
if (err)
goto exit_release;
} else if (sio_data->kind != w83627uhg) {
superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
/*
* Set VID input sensibility if needed. In theory the
* BIOS should have set it, but in practice it's not
* always the case. We only do it for the W83627EHF/EHG
* because the W83627DHG is more complex in this
* respect.
*/
if (sio_data->kind == w83627ehf) {
en_vrm10 = superio_inb(sio_data->sioreg,
SIO_REG_EN_VRM10);
if ((en_vrm10 & 0x08) && data->vrm == 90) {
dev_warn(dev, "Setting VID input "
"voltage to TTL\n");
superio_outb(sio_data->sioreg,
SIO_REG_EN_VRM10,
en_vrm10 & ~0x08);
} else if (!(en_vrm10 & 0x08)
&& data->vrm == 100) {
dev_warn(dev, "Setting VID input "
"voltage to VRM10\n");
superio_outb(sio_data->sioreg,
SIO_REG_EN_VRM10,
en_vrm10 | 0x08);
}
}
data->vid = superio_inb(sio_data->sioreg,
SIO_REG_VID_DATA);
if (sio_data->kind == w83627ehf) /* 6 VID pins only */
data->vid &= 0x3f;
err = device_create_file(dev, &dev_attr_cpu0_vid);
if (err)
goto exit_release;
} else {
dev_info(dev, "VID pins in output mode, CPU VID not "
"available\n");
}
}
if (fan_debounce &&
(sio_data->kind == nct6775 || sio_data->kind == nct6776)) {
u8 tmp;
superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
tmp = superio_inb(sio_data->sioreg, NCT6775_REG_FAN_DEBOUNCE);
if (sio_data->kind == nct6776)
superio_outb(sio_data->sioreg, NCT6775_REG_FAN_DEBOUNCE,
0x3e | tmp);
else
superio_outb(sio_data->sioreg, NCT6775_REG_FAN_DEBOUNCE,
0x1e | tmp);
pr_info("Enabled fan debounce for chip %s\n", data->name);
}
superio_exit(sio_data->sioreg);
w83627ehf_check_fan_inputs(sio_data, data);
/* Read fan clock dividers immediately */
w83627ehf_update_fan_div_common(dev, data);
/* Read pwm data to save original values */
w83627ehf_update_pwm_common(dev, data);
for (i = 0; i < data->pwm_num; i++)
data->pwm_enable_orig[i] = data->pwm_enable[i];
/* Register sysfs hooks */
for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays); i++) {
err = device_create_file(dev, &sda_sf3_arrays[i].dev_attr);
if (err)
goto exit_remove;
}
for (i = 0; i < ARRAY_SIZE(sda_sf3_max_step_arrays); i++) {
struct sensor_device_attribute *attr =
&sda_sf3_max_step_arrays[i];
if (data->REG_FAN_STEP_OUTPUT &&
data->REG_FAN_STEP_OUTPUT[attr->index] != 0xff) {
err = device_create_file(dev, &attr->dev_attr);
if (err)
goto exit_remove;
}
}
/* if fan3 and fan4 are enabled create the sf3 files for them */
if ((data->has_fan & (1 << 2)) && data->pwm_num >= 3)
for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan3); i++) {
err = device_create_file(dev,
&sda_sf3_arrays_fan3[i].dev_attr);
if (err)
goto exit_remove;
}
if ((data->has_fan & (1 << 3)) && data->pwm_num >= 4)
for (i = 0; i < ARRAY_SIZE(sda_sf3_arrays_fan4); i++) {
err = device_create_file(dev,
&sda_sf3_arrays_fan4[i].dev_attr);
if (err)
goto exit_remove;
}
for (i = 0; i < data->in_num; i++) {
if ((i == 6) && data->in6_skip)
continue;
if ((err = device_create_file(dev, &sda_in_input[i].dev_attr))
|| (err = device_create_file(dev,
&sda_in_alarm[i].dev_attr))
|| (err = device_create_file(dev,
&sda_in_min[i].dev_attr))
|| (err = device_create_file(dev,
&sda_in_max[i].dev_attr)))
goto exit_remove;
}
for (i = 0; i < 5; i++) {
if (data->has_fan & (1 << i)) {
if ((err = device_create_file(dev,
&sda_fan_input[i].dev_attr))
|| (err = device_create_file(dev,
&sda_fan_alarm[i].dev_attr)))
goto exit_remove;
if (sio_data->kind != nct6776) {
err = device_create_file(dev,
&sda_fan_div[i].dev_attr);
if (err)
goto exit_remove;
}
if (data->has_fan_min & (1 << i)) {
err = device_create_file(dev,
&sda_fan_min[i].dev_attr);
if (err)
goto exit_remove;
}
if (i < data->pwm_num &&
((err = device_create_file(dev,
&sda_pwm[i].dev_attr))
|| (err = device_create_file(dev,
&sda_pwm_mode[i].dev_attr))
|| (err = device_create_file(dev,
&sda_pwm_enable[i].dev_attr))
|| (err = device_create_file(dev,
&sda_target_temp[i].dev_attr))
|| (err = device_create_file(dev,
&sda_tolerance[i].dev_attr))))
goto exit_remove;
}
}
for (i = 0; i < NUM_REG_TEMP; i++) {
if (!(data->have_temp & (1 << i)))
continue;
err = device_create_file(dev, &sda_temp_input[i].dev_attr);
if (err)
goto exit_remove;
if (data->temp_label) {
err = device_create_file(dev,
&sda_temp_label[i].dev_attr);
if (err)
goto exit_remove;
}
if (i == 2 && data->temp3_val_only)
continue;
if (data->reg_temp_over[i]) {
err = device_create_file(dev,
&sda_temp_max[i].dev_attr);
if (err)
goto exit_remove;
}
if (data->reg_temp_hyst[i]) {
err = device_create_file(dev,
&sda_temp_max_hyst[i].dev_attr);
if (err)
goto exit_remove;
}
if (i > 2)
continue;
if ((err = device_create_file(dev,
&sda_temp_alarm[i].dev_attr))
|| (err = device_create_file(dev,
&sda_temp_type[i].dev_attr)))
goto exit_remove;
if (data->have_temp_offset & (1 << i)) {
err = device_create_file(dev,
&sda_temp_offset[i].dev_attr);
if (err)
goto exit_remove;
}
}
err = device_create_file(dev, &sda_caseopen[0].dev_attr);
if (err)
goto exit_remove;
if (sio_data->kind == nct6776) {
err = device_create_file(dev, &sda_caseopen[1].dev_attr);
if (err)
goto exit_remove;
}
err = device_create_file(dev, &dev_attr_name);
if (err)
goto exit_remove;
data->hwmon_dev = hwmon_device_register(dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove;
}
return 0;
exit_remove:
w83627ehf_device_remove_files(dev);
exit_release:
platform_set_drvdata(pdev, NULL);
release_region(res->start, IOREGION_LENGTH);
exit:
return err;
}
static int w83627ehf_remove(struct platform_device *pdev)
{
struct w83627ehf_data *data = platform_get_drvdata(pdev);
hwmon_device_unregister(data->hwmon_dev);
w83627ehf_device_remove_files(&pdev->dev);
release_region(data->addr, IOREGION_LENGTH);
platform_set_drvdata(pdev, NULL);
return 0;
}
#ifdef CONFIG_PM
static int w83627ehf_suspend(struct device *dev)
{
struct w83627ehf_data *data = w83627ehf_update_device(dev);
struct w83627ehf_sio_data *sio_data = dev->platform_data;
mutex_lock(&data->update_lock);
data->vbat = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
if (sio_data->kind == nct6775) {
data->fandiv1 = w83627ehf_read_value(data, NCT6775_REG_FANDIV1);
data->fandiv2 = w83627ehf_read_value(data, NCT6775_REG_FANDIV2);
}
mutex_unlock(&data->update_lock);
return 0;
}
static int w83627ehf_resume(struct device *dev)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
struct w83627ehf_sio_data *sio_data = dev->platform_data;
int i;
mutex_lock(&data->update_lock);
data->bank = 0xff; /* Force initial bank selection */
/* Restore limits */
for (i = 0; i < data->in_num; i++) {
if ((i == 6) && data->in6_skip)
continue;
w83627ehf_write_value(data, W83627EHF_REG_IN_MIN(i),
data->in_min[i]);
w83627ehf_write_value(data, W83627EHF_REG_IN_MAX(i),
data->in_max[i]);
}
for (i = 0; i < 5; i++) {
if (!(data->has_fan_min & (1 << i)))
continue;
w83627ehf_write_value(data, data->REG_FAN_MIN[i],
data->fan_min[i]);
}
for (i = 0; i < NUM_REG_TEMP; i++) {
if (!(data->have_temp & (1 << i)))
continue;
if (data->reg_temp_over[i])
w83627ehf_write_temp(data, data->reg_temp_over[i],
data->temp_max[i]);
if (data->reg_temp_hyst[i])
w83627ehf_write_temp(data, data->reg_temp_hyst[i],
data->temp_max_hyst[i]);
if (i > 2)
continue;
if (data->have_temp_offset & (1 << i))
w83627ehf_write_value(data,
W83627EHF_REG_TEMP_OFFSET[i],
data->temp_offset[i]);
}
/* Restore other settings */
w83627ehf_write_value(data, W83627EHF_REG_VBAT, data->vbat);
if (sio_data->kind == nct6775) {
w83627ehf_write_value(data, NCT6775_REG_FANDIV1, data->fandiv1);
w83627ehf_write_value(data, NCT6775_REG_FANDIV2, data->fandiv2);
}
/* Force re-reading all values */
data->valid = 0;
mutex_unlock(&data->update_lock);
return 0;
}
static const struct dev_pm_ops w83627ehf_dev_pm_ops = {
.suspend = w83627ehf_suspend,
.resume = w83627ehf_resume,
};
#define W83627EHF_DEV_PM_OPS (&w83627ehf_dev_pm_ops)
#else
#define W83627EHF_DEV_PM_OPS NULL
#endif /* CONFIG_PM */
static struct platform_driver w83627ehf_driver = {
.driver = {
.owner = THIS_MODULE,
.name = DRVNAME,
.pm = W83627EHF_DEV_PM_OPS,
},
.probe = w83627ehf_probe,
.remove = w83627ehf_remove,
};
/* w83627ehf_find() looks for a '627 in the Super-I/O config space */
static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
struct w83627ehf_sio_data *sio_data)
{
static const char sio_name_W83627EHF[] __initconst = "W83627EHF";
static const char sio_name_W83627EHG[] __initconst = "W83627EHG";
static const char sio_name_W83627DHG[] __initconst = "W83627DHG";
static const char sio_name_W83627DHG_P[] __initconst = "W83627DHG-P";
static const char sio_name_W83627UHG[] __initconst = "W83627UHG";
static const char sio_name_W83667HG[] __initconst = "W83667HG";
static const char sio_name_W83667HG_B[] __initconst = "W83667HG-B";
static const char sio_name_NCT6775[] __initconst = "NCT6775F";
static const char sio_name_NCT6776[] __initconst = "NCT6776F";
u16 val;
const char *sio_name;
superio_enter(sioaddr);
if (force_id)
val = force_id;
else
val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
| superio_inb(sioaddr, SIO_REG_DEVID + 1);
switch (val & SIO_ID_MASK) {
case SIO_W83627EHF_ID:
sio_data->kind = w83627ehf;
sio_name = sio_name_W83627EHF;
break;
case SIO_W83627EHG_ID:
sio_data->kind = w83627ehf;
sio_name = sio_name_W83627EHG;
break;
case SIO_W83627DHG_ID:
sio_data->kind = w83627dhg;
sio_name = sio_name_W83627DHG;
break;
case SIO_W83627DHG_P_ID:
sio_data->kind = w83627dhg_p;
sio_name = sio_name_W83627DHG_P;
break;
case SIO_W83627UHG_ID:
sio_data->kind = w83627uhg;
sio_name = sio_name_W83627UHG;
break;
case SIO_W83667HG_ID:
sio_data->kind = w83667hg;
sio_name = sio_name_W83667HG;
break;
case SIO_W83667HG_B_ID:
sio_data->kind = w83667hg_b;
sio_name = sio_name_W83667HG_B;
break;
case SIO_NCT6775_ID:
sio_data->kind = nct6775;
sio_name = sio_name_NCT6775;
break;
case SIO_NCT6776_ID:
sio_data->kind = nct6776;
sio_name = sio_name_NCT6776;
break;
default:
if (val != 0xffff)
pr_debug("unsupported chip ID: 0x%04x\n", val);
superio_exit(sioaddr);
return -ENODEV;
}
/* We have a known chip, find the HWM I/O address */
superio_select(sioaddr, W83627EHF_LD_HWM);
val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
| superio_inb(sioaddr, SIO_REG_ADDR + 1);
*addr = val & IOREGION_ALIGNMENT;
if (*addr == 0) {
pr_err("Refusing to enable a Super-I/O device with a base I/O port 0\n");
superio_exit(sioaddr);
return -ENODEV;
}
/* Activate logical device if needed */
val = superio_inb(sioaddr, SIO_REG_ENABLE);
if (!(val & 0x01)) {
pr_warn("Forcibly enabling Super-I/O. "
"Sensor is probably unusable.\n");
superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
}
superio_exit(sioaddr);
pr_info("Found %s chip at %#x\n", sio_name, *addr);
sio_data->sioreg = sioaddr;
return 0;
}
/*
* when Super-I/O functions move to a separate file, the Super-I/O
* bus will manage the lifetime of the device and this module will only keep
* track of the w83627ehf driver. But since we platform_device_alloc(), we
* must keep track of the device
*/
static struct platform_device *pdev;
static int __init sensors_w83627ehf_init(void)
{
int err;
unsigned short address;
struct resource res;
struct w83627ehf_sio_data sio_data;
/*
* initialize sio_data->kind and sio_data->sioreg.
*
* when Super-I/O functions move to a separate file, the Super-I/O
* driver will probe 0x2e and 0x4e and auto-detect the presence of a
* w83627ehf hardware monitor, and call probe()
*/
if (w83627ehf_find(0x2e, &address, &sio_data) &&
w83627ehf_find(0x4e, &address, &sio_data))
return -ENODEV;
err = platform_driver_register(&w83627ehf_driver);
if (err)
goto exit;
pdev = platform_device_alloc(DRVNAME, address);
if (!pdev) {
err = -ENOMEM;
pr_err("Device allocation failed\n");
goto exit_unregister;
}
err = platform_device_add_data(pdev, &sio_data,
sizeof(struct w83627ehf_sio_data));
if (err) {
pr_err("Platform data allocation failed\n");
goto exit_device_put;
}
memset(&res, 0, sizeof(res));
res.name = DRVNAME;
res.start = address + IOREGION_OFFSET;
res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
res.flags = IORESOURCE_IO;
err = acpi_check_resource_conflict(&res);
if (err)
goto exit_device_put;
err = platform_device_add_resources(pdev, &res, 1);
if (err) {
pr_err("Device resource addition failed (%d)\n", err);
goto exit_device_put;
}
/* platform_device_add calls probe() */
err = platform_device_add(pdev);
if (err) {
pr_err("Device addition failed (%d)\n", err);
goto exit_device_put;
}
return 0;
exit_device_put:
platform_device_put(pdev);
exit_unregister:
platform_driver_unregister(&w83627ehf_driver);
exit:
return err;
}
static void __exit sensors_w83627ehf_exit(void)
{
platform_device_unregister(pdev);
platform_driver_unregister(&w83627ehf_driver);
}
MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
MODULE_DESCRIPTION("W83627EHF driver");
MODULE_LICENSE("GPL");
module_init(sensors_w83627ehf_init);
module_exit(sensors_w83627ehf_exit);