mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-16 13:34:30 +00:00
dcf70df204
To garbage collect inflight AF_UNIX sockets, we must define the cyclic reference appropriately. This is a bit tricky if the loop consists of embryo sockets. Suppose that the fd of AF_UNIX socket A is passed to D and the fd B to C and that C and D are embryo sockets of A and B, respectively. It may appear that there are two separate graphs, A (-> D) and B (-> C), but this is not correct. A --. .-- B X C <-' `-> D Now, D holds A's refcount, and C has B's refcount, so unix_release() will never be called for A and B when we close() them. However, no one can call close() for D and C to free skbs holding refcounts of A and B because C/D is in A/B's receive queue, which should have been purged by unix_release() for A and B. So, here's another type of cyclic reference. When a fd of an AF_UNIX socket is passed to an embryo socket, the reference is indirectly held by its parent listening socket. .-> A .-> B | `- sk_receive_queue | `- sk_receive_queue | `- skb | `- skb | `- sk == C | `- sk == D | `- sk_receive_queue | `- sk_receive_queue | `- skb +---------' `- skb +-. | | `---------------------------------------------------------' Technically, the graph must be denoted as A <-> B instead of A (-> D) and B (-> C) to find such a cyclic reference without touching each socket's receive queue. .-> A --. .-- B <-. | X | == A <-> B `-- C <-' `-> D --' We apply this fixup during GC by fetching the real successor by unix_edge_successor(). When we call accept(), we clear unix_sock.listener under unix_gc_lock not to confuse GC. Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Acked-by: Paolo Abeni <pabeni@redhat.com> Link: https://lore.kernel.org/r/20240325202425.60930-9-kuniyu@amazon.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
656 lines
17 KiB
C
656 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* NET3: Garbage Collector For AF_UNIX sockets
|
|
*
|
|
* Garbage Collector:
|
|
* Copyright (C) Barak A. Pearlmutter.
|
|
*
|
|
* Chopped about by Alan Cox 22/3/96 to make it fit the AF_UNIX socket problem.
|
|
* If it doesn't work blame me, it worked when Barak sent it.
|
|
*
|
|
* Assumptions:
|
|
*
|
|
* - object w/ a bit
|
|
* - free list
|
|
*
|
|
* Current optimizations:
|
|
*
|
|
* - explicit stack instead of recursion
|
|
* - tail recurse on first born instead of immediate push/pop
|
|
* - we gather the stuff that should not be killed into tree
|
|
* and stack is just a path from root to the current pointer.
|
|
*
|
|
* Future optimizations:
|
|
*
|
|
* - don't just push entire root set; process in place
|
|
*
|
|
* Fixes:
|
|
* Alan Cox 07 Sept 1997 Vmalloc internal stack as needed.
|
|
* Cope with changing max_files.
|
|
* Al Viro 11 Oct 1998
|
|
* Graph may have cycles. That is, we can send the descriptor
|
|
* of foo to bar and vice versa. Current code chokes on that.
|
|
* Fix: move SCM_RIGHTS ones into the separate list and then
|
|
* skb_free() them all instead of doing explicit fput's.
|
|
* Another problem: since fput() may block somebody may
|
|
* create a new unix_socket when we are in the middle of sweep
|
|
* phase. Fix: revert the logic wrt MARKED. Mark everything
|
|
* upon the beginning and unmark non-junk ones.
|
|
*
|
|
* [12 Oct 1998] AAARGH! New code purges all SCM_RIGHTS
|
|
* sent to connect()'ed but still not accept()'ed sockets.
|
|
* Fixed. Old code had slightly different problem here:
|
|
* extra fput() in situation when we passed the descriptor via
|
|
* such socket and closed it (descriptor). That would happen on
|
|
* each unix_gc() until the accept(). Since the struct file in
|
|
* question would go to the free list and might be reused...
|
|
* That might be the reason of random oopses on filp_close()
|
|
* in unrelated processes.
|
|
*
|
|
* AV 28 Feb 1999
|
|
* Kill the explicit allocation of stack. Now we keep the tree
|
|
* with root in dummy + pointer (gc_current) to one of the nodes.
|
|
* Stack is represented as path from gc_current to dummy. Unmark
|
|
* now means "add to tree". Push == "make it a son of gc_current".
|
|
* Pop == "move gc_current to parent". We keep only pointers to
|
|
* parents (->gc_tree).
|
|
* AV 1 Mar 1999
|
|
* Damn. Added missing check for ->dead in listen queues scanning.
|
|
*
|
|
* Miklos Szeredi 25 Jun 2007
|
|
* Reimplement with a cycle collecting algorithm. This should
|
|
* solve several problems with the previous code, like being racy
|
|
* wrt receive and holding up unrelated socket operations.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/un.h>
|
|
#include <linux/net.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/wait.h>
|
|
|
|
#include <net/sock.h>
|
|
#include <net/af_unix.h>
|
|
#include <net/scm.h>
|
|
#include <net/tcp_states.h>
|
|
|
|
struct unix_sock *unix_get_socket(struct file *filp)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
|
|
/* Socket ? */
|
|
if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) {
|
|
struct socket *sock = SOCKET_I(inode);
|
|
const struct proto_ops *ops;
|
|
struct sock *sk = sock->sk;
|
|
|
|
ops = READ_ONCE(sock->ops);
|
|
|
|
/* PF_UNIX ? */
|
|
if (sk && ops && ops->family == PF_UNIX)
|
|
return unix_sk(sk);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct unix_vertex *unix_edge_successor(struct unix_edge *edge)
|
|
{
|
|
/* If an embryo socket has a fd,
|
|
* the listener indirectly holds the fd's refcnt.
|
|
*/
|
|
if (edge->successor->listener)
|
|
return unix_sk(edge->successor->listener)->vertex;
|
|
|
|
return edge->successor->vertex;
|
|
}
|
|
|
|
static LIST_HEAD(unix_unvisited_vertices);
|
|
|
|
enum unix_vertex_index {
|
|
UNIX_VERTEX_INDEX_UNVISITED,
|
|
UNIX_VERTEX_INDEX_START,
|
|
};
|
|
|
|
static void unix_add_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
|
|
{
|
|
struct unix_vertex *vertex = edge->predecessor->vertex;
|
|
|
|
if (!vertex) {
|
|
vertex = list_first_entry(&fpl->vertices, typeof(*vertex), entry);
|
|
vertex->out_degree = 0;
|
|
INIT_LIST_HEAD(&vertex->edges);
|
|
|
|
list_move_tail(&vertex->entry, &unix_unvisited_vertices);
|
|
edge->predecessor->vertex = vertex;
|
|
}
|
|
|
|
vertex->out_degree++;
|
|
list_add_tail(&edge->vertex_entry, &vertex->edges);
|
|
}
|
|
|
|
static void unix_del_edge(struct scm_fp_list *fpl, struct unix_edge *edge)
|
|
{
|
|
struct unix_vertex *vertex = edge->predecessor->vertex;
|
|
|
|
list_del(&edge->vertex_entry);
|
|
vertex->out_degree--;
|
|
|
|
if (!vertex->out_degree) {
|
|
edge->predecessor->vertex = NULL;
|
|
list_move_tail(&vertex->entry, &fpl->vertices);
|
|
}
|
|
}
|
|
|
|
static void unix_free_vertices(struct scm_fp_list *fpl)
|
|
{
|
|
struct unix_vertex *vertex, *next_vertex;
|
|
|
|
list_for_each_entry_safe(vertex, next_vertex, &fpl->vertices, entry) {
|
|
list_del(&vertex->entry);
|
|
kfree(vertex);
|
|
}
|
|
}
|
|
|
|
DEFINE_SPINLOCK(unix_gc_lock);
|
|
unsigned int unix_tot_inflight;
|
|
|
|
void unix_add_edges(struct scm_fp_list *fpl, struct unix_sock *receiver)
|
|
{
|
|
int i = 0, j = 0;
|
|
|
|
spin_lock(&unix_gc_lock);
|
|
|
|
if (!fpl->count_unix)
|
|
goto out;
|
|
|
|
do {
|
|
struct unix_sock *inflight = unix_get_socket(fpl->fp[j++]);
|
|
struct unix_edge *edge;
|
|
|
|
if (!inflight)
|
|
continue;
|
|
|
|
edge = fpl->edges + i++;
|
|
edge->predecessor = inflight;
|
|
edge->successor = receiver;
|
|
|
|
unix_add_edge(fpl, edge);
|
|
} while (i < fpl->count_unix);
|
|
|
|
WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + fpl->count_unix);
|
|
out:
|
|
WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight + fpl->count);
|
|
|
|
spin_unlock(&unix_gc_lock);
|
|
|
|
fpl->inflight = true;
|
|
|
|
unix_free_vertices(fpl);
|
|
}
|
|
|
|
void unix_del_edges(struct scm_fp_list *fpl)
|
|
{
|
|
int i = 0;
|
|
|
|
spin_lock(&unix_gc_lock);
|
|
|
|
if (!fpl->count_unix)
|
|
goto out;
|
|
|
|
do {
|
|
struct unix_edge *edge = fpl->edges + i++;
|
|
|
|
unix_del_edge(fpl, edge);
|
|
} while (i < fpl->count_unix);
|
|
|
|
WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - fpl->count_unix);
|
|
out:
|
|
WRITE_ONCE(fpl->user->unix_inflight, fpl->user->unix_inflight - fpl->count);
|
|
|
|
spin_unlock(&unix_gc_lock);
|
|
|
|
fpl->inflight = false;
|
|
}
|
|
|
|
void unix_update_edges(struct unix_sock *receiver)
|
|
{
|
|
spin_lock(&unix_gc_lock);
|
|
receiver->listener = NULL;
|
|
spin_unlock(&unix_gc_lock);
|
|
}
|
|
|
|
int unix_prepare_fpl(struct scm_fp_list *fpl)
|
|
{
|
|
struct unix_vertex *vertex;
|
|
int i;
|
|
|
|
if (!fpl->count_unix)
|
|
return 0;
|
|
|
|
for (i = 0; i < fpl->count_unix; i++) {
|
|
vertex = kmalloc(sizeof(*vertex), GFP_KERNEL);
|
|
if (!vertex)
|
|
goto err;
|
|
|
|
list_add(&vertex->entry, &fpl->vertices);
|
|
}
|
|
|
|
fpl->edges = kvmalloc_array(fpl->count_unix, sizeof(*fpl->edges),
|
|
GFP_KERNEL_ACCOUNT);
|
|
if (!fpl->edges)
|
|
goto err;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
unix_free_vertices(fpl);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void unix_destroy_fpl(struct scm_fp_list *fpl)
|
|
{
|
|
if (fpl->inflight)
|
|
unix_del_edges(fpl);
|
|
|
|
kvfree(fpl->edges);
|
|
unix_free_vertices(fpl);
|
|
}
|
|
|
|
static LIST_HEAD(unix_visited_vertices);
|
|
|
|
static void __unix_walk_scc(struct unix_vertex *vertex)
|
|
{
|
|
unsigned long index = UNIX_VERTEX_INDEX_START;
|
|
LIST_HEAD(vertex_stack);
|
|
struct unix_edge *edge;
|
|
LIST_HEAD(edge_stack);
|
|
|
|
next_vertex:
|
|
/* Push vertex to vertex_stack.
|
|
* The vertex will be popped when finalising SCC later.
|
|
*/
|
|
vertex->on_stack = true;
|
|
list_add(&vertex->scc_entry, &vertex_stack);
|
|
|
|
vertex->index = index;
|
|
vertex->lowlink = index;
|
|
index++;
|
|
|
|
/* Explore neighbour vertices (receivers of the current vertex's fd). */
|
|
list_for_each_entry(edge, &vertex->edges, vertex_entry) {
|
|
struct unix_vertex *next_vertex = unix_edge_successor(edge);
|
|
|
|
if (!next_vertex)
|
|
continue;
|
|
|
|
if (next_vertex->index == UNIX_VERTEX_INDEX_UNVISITED) {
|
|
/* Iterative deepening depth first search
|
|
*
|
|
* 1. Push a forward edge to edge_stack and set
|
|
* the successor to vertex for the next iteration.
|
|
*/
|
|
list_add(&edge->stack_entry, &edge_stack);
|
|
|
|
vertex = next_vertex;
|
|
goto next_vertex;
|
|
|
|
/* 2. Pop the edge directed to the current vertex
|
|
* and restore the ancestor for backtracking.
|
|
*/
|
|
prev_vertex:
|
|
edge = list_first_entry(&edge_stack, typeof(*edge), stack_entry);
|
|
list_del_init(&edge->stack_entry);
|
|
|
|
next_vertex = vertex;
|
|
vertex = edge->predecessor->vertex;
|
|
|
|
/* If the successor has a smaller lowlink, two vertices
|
|
* are in the same SCC, so propagate the smaller lowlink
|
|
* to skip SCC finalisation.
|
|
*/
|
|
vertex->lowlink = min(vertex->lowlink, next_vertex->lowlink);
|
|
} else if (next_vertex->on_stack) {
|
|
/* Loop detected by a back/cross edge.
|
|
*
|
|
* The successor is on vertex_stack, so two vertices are
|
|
* in the same SCC. If the successor has a smaller index,
|
|
* propagate it to skip SCC finalisation.
|
|
*/
|
|
vertex->lowlink = min(vertex->lowlink, next_vertex->index);
|
|
} else {
|
|
/* The successor was already grouped as another SCC */
|
|
}
|
|
}
|
|
|
|
if (vertex->index == vertex->lowlink) {
|
|
struct list_head scc;
|
|
|
|
/* SCC finalised.
|
|
*
|
|
* If the lowlink was not updated, all the vertices above on
|
|
* vertex_stack are in the same SCC. Group them using scc_entry.
|
|
*/
|
|
__list_cut_position(&scc, &vertex_stack, &vertex->scc_entry);
|
|
|
|
list_for_each_entry_reverse(vertex, &scc, scc_entry) {
|
|
/* Don't restart DFS from this vertex in unix_walk_scc(). */
|
|
list_move_tail(&vertex->entry, &unix_visited_vertices);
|
|
|
|
vertex->on_stack = false;
|
|
}
|
|
|
|
list_del(&scc);
|
|
}
|
|
|
|
/* Need backtracking ? */
|
|
if (!list_empty(&edge_stack))
|
|
goto prev_vertex;
|
|
}
|
|
|
|
static void unix_walk_scc(void)
|
|
{
|
|
struct unix_vertex *vertex;
|
|
|
|
list_for_each_entry(vertex, &unix_unvisited_vertices, entry)
|
|
vertex->index = UNIX_VERTEX_INDEX_UNVISITED;
|
|
|
|
/* Visit every vertex exactly once.
|
|
* __unix_walk_scc() moves visited vertices to unix_visited_vertices.
|
|
*/
|
|
while (!list_empty(&unix_unvisited_vertices)) {
|
|
vertex = list_first_entry(&unix_unvisited_vertices, typeof(*vertex), entry);
|
|
__unix_walk_scc(vertex);
|
|
}
|
|
|
|
list_replace_init(&unix_visited_vertices, &unix_unvisited_vertices);
|
|
}
|
|
|
|
static LIST_HEAD(gc_candidates);
|
|
static LIST_HEAD(gc_inflight_list);
|
|
|
|
/* Keep the number of times in flight count for the file
|
|
* descriptor if it is for an AF_UNIX socket.
|
|
*/
|
|
void unix_inflight(struct user_struct *user, struct file *filp)
|
|
{
|
|
struct unix_sock *u = unix_get_socket(filp);
|
|
|
|
spin_lock(&unix_gc_lock);
|
|
|
|
if (u) {
|
|
if (!u->inflight) {
|
|
WARN_ON_ONCE(!list_empty(&u->link));
|
|
list_add_tail(&u->link, &gc_inflight_list);
|
|
} else {
|
|
WARN_ON_ONCE(list_empty(&u->link));
|
|
}
|
|
u->inflight++;
|
|
}
|
|
|
|
spin_unlock(&unix_gc_lock);
|
|
}
|
|
|
|
void unix_notinflight(struct user_struct *user, struct file *filp)
|
|
{
|
|
struct unix_sock *u = unix_get_socket(filp);
|
|
|
|
spin_lock(&unix_gc_lock);
|
|
|
|
if (u) {
|
|
WARN_ON_ONCE(!u->inflight);
|
|
WARN_ON_ONCE(list_empty(&u->link));
|
|
|
|
u->inflight--;
|
|
if (!u->inflight)
|
|
list_del_init(&u->link);
|
|
}
|
|
|
|
spin_unlock(&unix_gc_lock);
|
|
}
|
|
|
|
static void scan_inflight(struct sock *x, void (*func)(struct unix_sock *),
|
|
struct sk_buff_head *hitlist)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct sk_buff *next;
|
|
|
|
spin_lock(&x->sk_receive_queue.lock);
|
|
skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
|
|
/* Do we have file descriptors ? */
|
|
if (UNIXCB(skb).fp) {
|
|
bool hit = false;
|
|
/* Process the descriptors of this socket */
|
|
int nfd = UNIXCB(skb).fp->count;
|
|
struct file **fp = UNIXCB(skb).fp->fp;
|
|
|
|
while (nfd--) {
|
|
/* Get the socket the fd matches if it indeed does so */
|
|
struct unix_sock *u = unix_get_socket(*fp++);
|
|
|
|
/* Ignore non-candidates, they could have been added
|
|
* to the queues after starting the garbage collection
|
|
*/
|
|
if (u && test_bit(UNIX_GC_CANDIDATE, &u->gc_flags)) {
|
|
hit = true;
|
|
|
|
func(u);
|
|
}
|
|
}
|
|
if (hit && hitlist != NULL) {
|
|
__skb_unlink(skb, &x->sk_receive_queue);
|
|
__skb_queue_tail(hitlist, skb);
|
|
}
|
|
}
|
|
}
|
|
spin_unlock(&x->sk_receive_queue.lock);
|
|
}
|
|
|
|
static void scan_children(struct sock *x, void (*func)(struct unix_sock *),
|
|
struct sk_buff_head *hitlist)
|
|
{
|
|
if (x->sk_state != TCP_LISTEN) {
|
|
scan_inflight(x, func, hitlist);
|
|
} else {
|
|
struct sk_buff *skb;
|
|
struct sk_buff *next;
|
|
struct unix_sock *u;
|
|
LIST_HEAD(embryos);
|
|
|
|
/* For a listening socket collect the queued embryos
|
|
* and perform a scan on them as well.
|
|
*/
|
|
spin_lock(&x->sk_receive_queue.lock);
|
|
skb_queue_walk_safe(&x->sk_receive_queue, skb, next) {
|
|
u = unix_sk(skb->sk);
|
|
|
|
/* An embryo cannot be in-flight, so it's safe
|
|
* to use the list link.
|
|
*/
|
|
WARN_ON_ONCE(!list_empty(&u->link));
|
|
list_add_tail(&u->link, &embryos);
|
|
}
|
|
spin_unlock(&x->sk_receive_queue.lock);
|
|
|
|
while (!list_empty(&embryos)) {
|
|
u = list_entry(embryos.next, struct unix_sock, link);
|
|
scan_inflight(&u->sk, func, hitlist);
|
|
list_del_init(&u->link);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void dec_inflight(struct unix_sock *usk)
|
|
{
|
|
usk->inflight--;
|
|
}
|
|
|
|
static void inc_inflight(struct unix_sock *usk)
|
|
{
|
|
usk->inflight++;
|
|
}
|
|
|
|
static void inc_inflight_move_tail(struct unix_sock *u)
|
|
{
|
|
u->inflight++;
|
|
|
|
/* If this still might be part of a cycle, move it to the end
|
|
* of the list, so that it's checked even if it was already
|
|
* passed over
|
|
*/
|
|
if (test_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags))
|
|
list_move_tail(&u->link, &gc_candidates);
|
|
}
|
|
|
|
static bool gc_in_progress;
|
|
|
|
static void __unix_gc(struct work_struct *work)
|
|
{
|
|
struct sk_buff_head hitlist;
|
|
struct unix_sock *u, *next;
|
|
LIST_HEAD(not_cycle_list);
|
|
struct list_head cursor;
|
|
|
|
spin_lock(&unix_gc_lock);
|
|
|
|
unix_walk_scc();
|
|
|
|
/* First, select candidates for garbage collection. Only
|
|
* in-flight sockets are considered, and from those only ones
|
|
* which don't have any external reference.
|
|
*
|
|
* Holding unix_gc_lock will protect these candidates from
|
|
* being detached, and hence from gaining an external
|
|
* reference. Since there are no possible receivers, all
|
|
* buffers currently on the candidates' queues stay there
|
|
* during the garbage collection.
|
|
*
|
|
* We also know that no new candidate can be added onto the
|
|
* receive queues. Other, non candidate sockets _can_ be
|
|
* added to queue, so we must make sure only to touch
|
|
* candidates.
|
|
*/
|
|
list_for_each_entry_safe(u, next, &gc_inflight_list, link) {
|
|
long total_refs;
|
|
|
|
total_refs = file_count(u->sk.sk_socket->file);
|
|
|
|
WARN_ON_ONCE(!u->inflight);
|
|
WARN_ON_ONCE(total_refs < u->inflight);
|
|
if (total_refs == u->inflight) {
|
|
list_move_tail(&u->link, &gc_candidates);
|
|
__set_bit(UNIX_GC_CANDIDATE, &u->gc_flags);
|
|
__set_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags);
|
|
}
|
|
}
|
|
|
|
/* Now remove all internal in-flight reference to children of
|
|
* the candidates.
|
|
*/
|
|
list_for_each_entry(u, &gc_candidates, link)
|
|
scan_children(&u->sk, dec_inflight, NULL);
|
|
|
|
/* Restore the references for children of all candidates,
|
|
* which have remaining references. Do this recursively, so
|
|
* only those remain, which form cyclic references.
|
|
*
|
|
* Use a "cursor" link, to make the list traversal safe, even
|
|
* though elements might be moved about.
|
|
*/
|
|
list_add(&cursor, &gc_candidates);
|
|
while (cursor.next != &gc_candidates) {
|
|
u = list_entry(cursor.next, struct unix_sock, link);
|
|
|
|
/* Move cursor to after the current position. */
|
|
list_move(&cursor, &u->link);
|
|
|
|
if (u->inflight) {
|
|
list_move_tail(&u->link, ¬_cycle_list);
|
|
__clear_bit(UNIX_GC_MAYBE_CYCLE, &u->gc_flags);
|
|
scan_children(&u->sk, inc_inflight_move_tail, NULL);
|
|
}
|
|
}
|
|
list_del(&cursor);
|
|
|
|
/* Now gc_candidates contains only garbage. Restore original
|
|
* inflight counters for these as well, and remove the skbuffs
|
|
* which are creating the cycle(s).
|
|
*/
|
|
skb_queue_head_init(&hitlist);
|
|
list_for_each_entry(u, &gc_candidates, link) {
|
|
scan_children(&u->sk, inc_inflight, &hitlist);
|
|
|
|
#if IS_ENABLED(CONFIG_AF_UNIX_OOB)
|
|
if (u->oob_skb) {
|
|
kfree_skb(u->oob_skb);
|
|
u->oob_skb = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* not_cycle_list contains those sockets which do not make up a
|
|
* cycle. Restore these to the inflight list.
|
|
*/
|
|
while (!list_empty(¬_cycle_list)) {
|
|
u = list_entry(not_cycle_list.next, struct unix_sock, link);
|
|
__clear_bit(UNIX_GC_CANDIDATE, &u->gc_flags);
|
|
list_move_tail(&u->link, &gc_inflight_list);
|
|
}
|
|
|
|
spin_unlock(&unix_gc_lock);
|
|
|
|
/* Here we are. Hitlist is filled. Die. */
|
|
__skb_queue_purge(&hitlist);
|
|
|
|
spin_lock(&unix_gc_lock);
|
|
|
|
/* All candidates should have been detached by now. */
|
|
WARN_ON_ONCE(!list_empty(&gc_candidates));
|
|
|
|
/* Paired with READ_ONCE() in wait_for_unix_gc(). */
|
|
WRITE_ONCE(gc_in_progress, false);
|
|
|
|
spin_unlock(&unix_gc_lock);
|
|
}
|
|
|
|
static DECLARE_WORK(unix_gc_work, __unix_gc);
|
|
|
|
void unix_gc(void)
|
|
{
|
|
WRITE_ONCE(gc_in_progress, true);
|
|
queue_work(system_unbound_wq, &unix_gc_work);
|
|
}
|
|
|
|
#define UNIX_INFLIGHT_TRIGGER_GC 16000
|
|
#define UNIX_INFLIGHT_SANE_USER (SCM_MAX_FD * 8)
|
|
|
|
void wait_for_unix_gc(struct scm_fp_list *fpl)
|
|
{
|
|
/* If number of inflight sockets is insane,
|
|
* force a garbage collect right now.
|
|
*
|
|
* Paired with the WRITE_ONCE() in unix_inflight(),
|
|
* unix_notinflight(), and __unix_gc().
|
|
*/
|
|
if (READ_ONCE(unix_tot_inflight) > UNIX_INFLIGHT_TRIGGER_GC &&
|
|
!READ_ONCE(gc_in_progress))
|
|
unix_gc();
|
|
|
|
/* Penalise users who want to send AF_UNIX sockets
|
|
* but whose sockets have not been received yet.
|
|
*/
|
|
if (!fpl || !fpl->count_unix ||
|
|
READ_ONCE(fpl->user->unix_inflight) < UNIX_INFLIGHT_SANE_USER)
|
|
return;
|
|
|
|
if (READ_ONCE(gc_in_progress))
|
|
flush_work(&unix_gc_work);
|
|
}
|