mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-13 09:20:17 +00:00
20a36e39d5
This patch updates the existing Intel IvyBridge (model 58) support with proper PEBS event constraints. It cannot reuse the same as SandyBridge because some events (0xd3) are specific to IvyBridge. Also there is no UOPS_DISPATCHED.THREAD on IVB, so do not populate the PERF_COUNT_HW_STALLED_CYCLES_BACKEND mapping. Signed-off-by: Stephane Eranian <eranian@google.com> Cc: peterz@infradead.org Cc: ak@linux.intel.com Link: http://lkml.kernel.org/r/20120910230701.GA5898@quad Signed-off-by: Ingo Molnar <mingo@kernel.org>
2149 lines
58 KiB
C
2149 lines
58 KiB
C
/*
|
|
* Per core/cpu state
|
|
*
|
|
* Used to coordinate shared registers between HT threads or
|
|
* among events on a single PMU.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/stddef.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
|
|
#include <asm/hardirq.h>
|
|
#include <asm/apic.h>
|
|
|
|
#include "perf_event.h"
|
|
|
|
/*
|
|
* Intel PerfMon, used on Core and later.
|
|
*/
|
|
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
|
|
{
|
|
[PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
|
|
[PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
|
|
[PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
|
|
[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
|
|
};
|
|
|
|
static struct event_constraint intel_core_event_constraints[] __read_mostly =
|
|
{
|
|
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
|
|
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
|
|
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
|
|
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
|
|
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
|
|
INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
|
|
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
|
|
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
|
|
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
|
|
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
|
|
INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
|
|
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
|
|
INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
|
|
INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
|
|
INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
|
|
INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
|
|
INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
|
|
INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
|
|
INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
|
|
INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
|
|
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
|
|
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
|
|
{
|
|
INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
|
|
INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
|
|
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
|
|
INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
|
|
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
|
|
{
|
|
INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
|
|
INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
|
|
{
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
|
|
INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
|
|
INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static u64 intel_pmu_event_map(int hw_event)
|
|
{
|
|
return intel_perfmon_event_map[hw_event];
|
|
}
|
|
|
|
#define SNB_DMND_DATA_RD (1ULL << 0)
|
|
#define SNB_DMND_RFO (1ULL << 1)
|
|
#define SNB_DMND_IFETCH (1ULL << 2)
|
|
#define SNB_DMND_WB (1ULL << 3)
|
|
#define SNB_PF_DATA_RD (1ULL << 4)
|
|
#define SNB_PF_RFO (1ULL << 5)
|
|
#define SNB_PF_IFETCH (1ULL << 6)
|
|
#define SNB_LLC_DATA_RD (1ULL << 7)
|
|
#define SNB_LLC_RFO (1ULL << 8)
|
|
#define SNB_LLC_IFETCH (1ULL << 9)
|
|
#define SNB_BUS_LOCKS (1ULL << 10)
|
|
#define SNB_STRM_ST (1ULL << 11)
|
|
#define SNB_OTHER (1ULL << 15)
|
|
#define SNB_RESP_ANY (1ULL << 16)
|
|
#define SNB_NO_SUPP (1ULL << 17)
|
|
#define SNB_LLC_HITM (1ULL << 18)
|
|
#define SNB_LLC_HITE (1ULL << 19)
|
|
#define SNB_LLC_HITS (1ULL << 20)
|
|
#define SNB_LLC_HITF (1ULL << 21)
|
|
#define SNB_LOCAL (1ULL << 22)
|
|
#define SNB_REMOTE (0xffULL << 23)
|
|
#define SNB_SNP_NONE (1ULL << 31)
|
|
#define SNB_SNP_NOT_NEEDED (1ULL << 32)
|
|
#define SNB_SNP_MISS (1ULL << 33)
|
|
#define SNB_NO_FWD (1ULL << 34)
|
|
#define SNB_SNP_FWD (1ULL << 35)
|
|
#define SNB_HITM (1ULL << 36)
|
|
#define SNB_NON_DRAM (1ULL << 37)
|
|
|
|
#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
|
|
#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
|
|
#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
|
|
|
|
#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
|
|
SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
|
|
SNB_HITM)
|
|
|
|
#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
|
|
#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
|
|
|
|
#define SNB_L3_ACCESS SNB_RESP_ANY
|
|
#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
|
|
|
|
static __initconst const u64 snb_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 snb_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
|
|
[ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
|
|
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
|
|
};
|
|
|
|
static __initconst const u64 westmere_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
|
|
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
/*
|
|
* Use RFO, not WRITEBACK, because a write miss would typically occur
|
|
* on RFO.
|
|
*/
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
|
|
* See IA32 SDM Vol 3B 30.6.1.3
|
|
*/
|
|
|
|
#define NHM_DMND_DATA_RD (1 << 0)
|
|
#define NHM_DMND_RFO (1 << 1)
|
|
#define NHM_DMND_IFETCH (1 << 2)
|
|
#define NHM_DMND_WB (1 << 3)
|
|
#define NHM_PF_DATA_RD (1 << 4)
|
|
#define NHM_PF_DATA_RFO (1 << 5)
|
|
#define NHM_PF_IFETCH (1 << 6)
|
|
#define NHM_OFFCORE_OTHER (1 << 7)
|
|
#define NHM_UNCORE_HIT (1 << 8)
|
|
#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
|
|
#define NHM_OTHER_CORE_HITM (1 << 10)
|
|
/* reserved */
|
|
#define NHM_REMOTE_CACHE_FWD (1 << 12)
|
|
#define NHM_REMOTE_DRAM (1 << 13)
|
|
#define NHM_LOCAL_DRAM (1 << 14)
|
|
#define NHM_NON_DRAM (1 << 15)
|
|
|
|
#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
|
|
#define NHM_REMOTE (NHM_REMOTE_DRAM)
|
|
|
|
#define NHM_DMND_READ (NHM_DMND_DATA_RD)
|
|
#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
|
|
#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
|
|
|
|
#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
|
|
#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
|
|
#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
|
|
|
|
static __initconst const u64 nehalem_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 nehalem_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
|
|
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
/*
|
|
* Use RFO, not WRITEBACK, because a write miss would typically occur
|
|
* on RFO.
|
|
*/
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 core2_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
|
|
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
|
|
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
|
|
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
|
|
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 atom_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
|
|
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
|
|
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
|
|
{
|
|
/* user explicitly requested branch sampling */
|
|
if (has_branch_stack(event))
|
|
return true;
|
|
|
|
/* implicit branch sampling to correct PEBS skid */
|
|
if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void intel_pmu_disable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
|
|
|
|
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
|
|
intel_pmu_disable_bts();
|
|
|
|
intel_pmu_pebs_disable_all();
|
|
intel_pmu_lbr_disable_all();
|
|
}
|
|
|
|
static void intel_pmu_enable_all(int added)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
intel_pmu_pebs_enable_all();
|
|
intel_pmu_lbr_enable_all();
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
|
|
x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
|
|
|
|
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
|
|
struct perf_event *event =
|
|
cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
|
|
|
|
if (WARN_ON_ONCE(!event))
|
|
return;
|
|
|
|
intel_pmu_enable_bts(event->hw.config);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Workaround for:
|
|
* Intel Errata AAK100 (model 26)
|
|
* Intel Errata AAP53 (model 30)
|
|
* Intel Errata BD53 (model 44)
|
|
*
|
|
* The official story:
|
|
* These chips need to be 'reset' when adding counters by programming the
|
|
* magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
|
|
* in sequence on the same PMC or on different PMCs.
|
|
*
|
|
* In practise it appears some of these events do in fact count, and
|
|
* we need to programm all 4 events.
|
|
*/
|
|
static void intel_pmu_nhm_workaround(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
static const unsigned long nhm_magic[4] = {
|
|
0x4300B5,
|
|
0x4300D2,
|
|
0x4300B1,
|
|
0x4300B1
|
|
};
|
|
struct perf_event *event;
|
|
int i;
|
|
|
|
/*
|
|
* The Errata requires below steps:
|
|
* 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
|
|
* 2) Configure 4 PERFEVTSELx with the magic events and clear
|
|
* the corresponding PMCx;
|
|
* 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
|
|
* 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
|
|
* 5) Clear 4 pairs of ERFEVTSELx and PMCx;
|
|
*/
|
|
|
|
/*
|
|
* The real steps we choose are a little different from above.
|
|
* A) To reduce MSR operations, we don't run step 1) as they
|
|
* are already cleared before this function is called;
|
|
* B) Call x86_perf_event_update to save PMCx before configuring
|
|
* PERFEVTSELx with magic number;
|
|
* C) With step 5), we do clear only when the PERFEVTSELx is
|
|
* not used currently.
|
|
* D) Call x86_perf_event_set_period to restore PMCx;
|
|
*/
|
|
|
|
/* We always operate 4 pairs of PERF Counters */
|
|
for (i = 0; i < 4; i++) {
|
|
event = cpuc->events[i];
|
|
if (event)
|
|
x86_perf_event_update(event);
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
|
|
wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
|
|
}
|
|
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
event = cpuc->events[i];
|
|
|
|
if (event) {
|
|
x86_perf_event_set_period(event);
|
|
__x86_pmu_enable_event(&event->hw,
|
|
ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
} else
|
|
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
|
|
}
|
|
}
|
|
|
|
static void intel_pmu_nhm_enable_all(int added)
|
|
{
|
|
if (added)
|
|
intel_pmu_nhm_workaround();
|
|
intel_pmu_enable_all(added);
|
|
}
|
|
|
|
static inline u64 intel_pmu_get_status(void)
|
|
{
|
|
u64 status;
|
|
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
|
|
|
|
return status;
|
|
}
|
|
|
|
static inline void intel_pmu_ack_status(u64 ack)
|
|
{
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
|
|
}
|
|
|
|
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
|
|
{
|
|
int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
|
|
u64 ctrl_val, mask;
|
|
|
|
mask = 0xfULL << (idx * 4);
|
|
|
|
rdmsrl(hwc->config_base, ctrl_val);
|
|
ctrl_val &= ~mask;
|
|
wrmsrl(hwc->config_base, ctrl_val);
|
|
}
|
|
|
|
static void intel_pmu_disable_event(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
|
|
intel_pmu_disable_bts();
|
|
intel_pmu_drain_bts_buffer();
|
|
return;
|
|
}
|
|
|
|
cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
|
|
cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
|
|
|
|
/*
|
|
* must disable before any actual event
|
|
* because any event may be combined with LBR
|
|
*/
|
|
if (intel_pmu_needs_lbr_smpl(event))
|
|
intel_pmu_lbr_disable(event);
|
|
|
|
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
|
|
intel_pmu_disable_fixed(hwc);
|
|
return;
|
|
}
|
|
|
|
x86_pmu_disable_event(event);
|
|
|
|
if (unlikely(event->attr.precise_ip))
|
|
intel_pmu_pebs_disable(event);
|
|
}
|
|
|
|
static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
|
|
{
|
|
int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
|
|
u64 ctrl_val, bits, mask;
|
|
|
|
/*
|
|
* Enable IRQ generation (0x8),
|
|
* and enable ring-3 counting (0x2) and ring-0 counting (0x1)
|
|
* if requested:
|
|
*/
|
|
bits = 0x8ULL;
|
|
if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
|
|
bits |= 0x2;
|
|
if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
|
|
bits |= 0x1;
|
|
|
|
/*
|
|
* ANY bit is supported in v3 and up
|
|
*/
|
|
if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
|
|
bits |= 0x4;
|
|
|
|
bits <<= (idx * 4);
|
|
mask = 0xfULL << (idx * 4);
|
|
|
|
rdmsrl(hwc->config_base, ctrl_val);
|
|
ctrl_val &= ~mask;
|
|
ctrl_val |= bits;
|
|
wrmsrl(hwc->config_base, ctrl_val);
|
|
}
|
|
|
|
static void intel_pmu_enable_event(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
|
|
if (!__this_cpu_read(cpu_hw_events.enabled))
|
|
return;
|
|
|
|
intel_pmu_enable_bts(hwc->config);
|
|
return;
|
|
}
|
|
/*
|
|
* must enabled before any actual event
|
|
* because any event may be combined with LBR
|
|
*/
|
|
if (intel_pmu_needs_lbr_smpl(event))
|
|
intel_pmu_lbr_enable(event);
|
|
|
|
if (event->attr.exclude_host)
|
|
cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
|
|
if (event->attr.exclude_guest)
|
|
cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
|
|
|
|
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
|
|
intel_pmu_enable_fixed(hwc);
|
|
return;
|
|
}
|
|
|
|
if (unlikely(event->attr.precise_ip))
|
|
intel_pmu_pebs_enable(event);
|
|
|
|
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
}
|
|
|
|
/*
|
|
* Save and restart an expired event. Called by NMI contexts,
|
|
* so it has to be careful about preempting normal event ops:
|
|
*/
|
|
int intel_pmu_save_and_restart(struct perf_event *event)
|
|
{
|
|
x86_perf_event_update(event);
|
|
return x86_perf_event_set_period(event);
|
|
}
|
|
|
|
static void intel_pmu_reset(void)
|
|
{
|
|
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
|
|
unsigned long flags;
|
|
int idx;
|
|
|
|
if (!x86_pmu.num_counters)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
|
|
pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
|
|
wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
|
|
}
|
|
for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
|
|
wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
|
|
|
|
if (ds)
|
|
ds->bts_index = ds->bts_buffer_base;
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* This handler is triggered by the local APIC, so the APIC IRQ handling
|
|
* rules apply:
|
|
*/
|
|
static int intel_pmu_handle_irq(struct pt_regs *regs)
|
|
{
|
|
struct perf_sample_data data;
|
|
struct cpu_hw_events *cpuc;
|
|
int bit, loops;
|
|
u64 status;
|
|
int handled;
|
|
|
|
cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
/*
|
|
* Some chipsets need to unmask the LVTPC in a particular spot
|
|
* inside the nmi handler. As a result, the unmasking was pushed
|
|
* into all the nmi handlers.
|
|
*
|
|
* This handler doesn't seem to have any issues with the unmasking
|
|
* so it was left at the top.
|
|
*/
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
|
|
intel_pmu_disable_all();
|
|
handled = intel_pmu_drain_bts_buffer();
|
|
status = intel_pmu_get_status();
|
|
if (!status) {
|
|
intel_pmu_enable_all(0);
|
|
return handled;
|
|
}
|
|
|
|
loops = 0;
|
|
again:
|
|
intel_pmu_ack_status(status);
|
|
if (++loops > 100) {
|
|
WARN_ONCE(1, "perfevents: irq loop stuck!\n");
|
|
perf_event_print_debug();
|
|
intel_pmu_reset();
|
|
goto done;
|
|
}
|
|
|
|
inc_irq_stat(apic_perf_irqs);
|
|
|
|
intel_pmu_lbr_read();
|
|
|
|
/*
|
|
* PEBS overflow sets bit 62 in the global status register
|
|
*/
|
|
if (__test_and_clear_bit(62, (unsigned long *)&status)) {
|
|
handled++;
|
|
x86_pmu.drain_pebs(regs);
|
|
}
|
|
|
|
for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
|
|
struct perf_event *event = cpuc->events[bit];
|
|
|
|
handled++;
|
|
|
|
if (!test_bit(bit, cpuc->active_mask))
|
|
continue;
|
|
|
|
if (!intel_pmu_save_and_restart(event))
|
|
continue;
|
|
|
|
perf_sample_data_init(&data, 0, event->hw.last_period);
|
|
|
|
if (has_branch_stack(event))
|
|
data.br_stack = &cpuc->lbr_stack;
|
|
|
|
if (perf_event_overflow(event, &data, regs))
|
|
x86_pmu_stop(event, 0);
|
|
}
|
|
|
|
/*
|
|
* Repeat if there is more work to be done:
|
|
*/
|
|
status = intel_pmu_get_status();
|
|
if (status)
|
|
goto again;
|
|
|
|
done:
|
|
intel_pmu_enable_all(0);
|
|
return handled;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_bts_constraints(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
unsigned int hw_event, bts_event;
|
|
|
|
if (event->attr.freq)
|
|
return NULL;
|
|
|
|
hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
|
|
bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
|
|
|
|
if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
|
|
return &bts_constraint;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int intel_alt_er(int idx)
|
|
{
|
|
if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
|
|
return idx;
|
|
|
|
if (idx == EXTRA_REG_RSP_0)
|
|
return EXTRA_REG_RSP_1;
|
|
|
|
if (idx == EXTRA_REG_RSP_1)
|
|
return EXTRA_REG_RSP_0;
|
|
|
|
return idx;
|
|
}
|
|
|
|
static void intel_fixup_er(struct perf_event *event, int idx)
|
|
{
|
|
event->hw.extra_reg.idx = idx;
|
|
|
|
if (idx == EXTRA_REG_RSP_0) {
|
|
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
|
|
event->hw.config |= 0x01b7;
|
|
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
|
|
} else if (idx == EXTRA_REG_RSP_1) {
|
|
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
|
|
event->hw.config |= 0x01bb;
|
|
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* manage allocation of shared extra msr for certain events
|
|
*
|
|
* sharing can be:
|
|
* per-cpu: to be shared between the various events on a single PMU
|
|
* per-core: per-cpu + shared by HT threads
|
|
*/
|
|
static struct event_constraint *
|
|
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event,
|
|
struct hw_perf_event_extra *reg)
|
|
{
|
|
struct event_constraint *c = &emptyconstraint;
|
|
struct er_account *era;
|
|
unsigned long flags;
|
|
int idx = reg->idx;
|
|
|
|
/*
|
|
* reg->alloc can be set due to existing state, so for fake cpuc we
|
|
* need to ignore this, otherwise we might fail to allocate proper fake
|
|
* state for this extra reg constraint. Also see the comment below.
|
|
*/
|
|
if (reg->alloc && !cpuc->is_fake)
|
|
return NULL; /* call x86_get_event_constraint() */
|
|
|
|
again:
|
|
era = &cpuc->shared_regs->regs[idx];
|
|
/*
|
|
* we use spin_lock_irqsave() to avoid lockdep issues when
|
|
* passing a fake cpuc
|
|
*/
|
|
raw_spin_lock_irqsave(&era->lock, flags);
|
|
|
|
if (!atomic_read(&era->ref) || era->config == reg->config) {
|
|
|
|
/*
|
|
* If its a fake cpuc -- as per validate_{group,event}() we
|
|
* shouldn't touch event state and we can avoid doing so
|
|
* since both will only call get_event_constraints() once
|
|
* on each event, this avoids the need for reg->alloc.
|
|
*
|
|
* Not doing the ER fixup will only result in era->reg being
|
|
* wrong, but since we won't actually try and program hardware
|
|
* this isn't a problem either.
|
|
*/
|
|
if (!cpuc->is_fake) {
|
|
if (idx != reg->idx)
|
|
intel_fixup_er(event, idx);
|
|
|
|
/*
|
|
* x86_schedule_events() can call get_event_constraints()
|
|
* multiple times on events in the case of incremental
|
|
* scheduling(). reg->alloc ensures we only do the ER
|
|
* allocation once.
|
|
*/
|
|
reg->alloc = 1;
|
|
}
|
|
|
|
/* lock in msr value */
|
|
era->config = reg->config;
|
|
era->reg = reg->reg;
|
|
|
|
/* one more user */
|
|
atomic_inc(&era->ref);
|
|
|
|
/*
|
|
* need to call x86_get_event_constraint()
|
|
* to check if associated event has constraints
|
|
*/
|
|
c = NULL;
|
|
} else {
|
|
idx = intel_alt_er(idx);
|
|
if (idx != reg->idx) {
|
|
raw_spin_unlock_irqrestore(&era->lock, flags);
|
|
goto again;
|
|
}
|
|
}
|
|
raw_spin_unlock_irqrestore(&era->lock, flags);
|
|
|
|
return c;
|
|
}
|
|
|
|
static void
|
|
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
|
|
struct hw_perf_event_extra *reg)
|
|
{
|
|
struct er_account *era;
|
|
|
|
/*
|
|
* Only put constraint if extra reg was actually allocated. Also takes
|
|
* care of event which do not use an extra shared reg.
|
|
*
|
|
* Also, if this is a fake cpuc we shouldn't touch any event state
|
|
* (reg->alloc) and we don't care about leaving inconsistent cpuc state
|
|
* either since it'll be thrown out.
|
|
*/
|
|
if (!reg->alloc || cpuc->is_fake)
|
|
return;
|
|
|
|
era = &cpuc->shared_regs->regs[reg->idx];
|
|
|
|
/* one fewer user */
|
|
atomic_dec(&era->ref);
|
|
|
|
/* allocate again next time */
|
|
reg->alloc = 0;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c = NULL, *d;
|
|
struct hw_perf_event_extra *xreg, *breg;
|
|
|
|
xreg = &event->hw.extra_reg;
|
|
if (xreg->idx != EXTRA_REG_NONE) {
|
|
c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
|
|
if (c == &emptyconstraint)
|
|
return c;
|
|
}
|
|
breg = &event->hw.branch_reg;
|
|
if (breg->idx != EXTRA_REG_NONE) {
|
|
d = __intel_shared_reg_get_constraints(cpuc, event, breg);
|
|
if (d == &emptyconstraint) {
|
|
__intel_shared_reg_put_constraints(cpuc, xreg);
|
|
c = d;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
struct event_constraint *
|
|
x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
if (x86_pmu.event_constraints) {
|
|
for_each_event_constraint(c, x86_pmu.event_constraints) {
|
|
if ((event->hw.config & c->cmask) == c->code)
|
|
return c;
|
|
}
|
|
}
|
|
|
|
return &unconstrained;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
c = intel_bts_constraints(event);
|
|
if (c)
|
|
return c;
|
|
|
|
c = intel_pebs_constraints(event);
|
|
if (c)
|
|
return c;
|
|
|
|
c = intel_shared_regs_constraints(cpuc, event);
|
|
if (c)
|
|
return c;
|
|
|
|
return x86_get_event_constraints(cpuc, event);
|
|
}
|
|
|
|
static void
|
|
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
struct hw_perf_event_extra *reg;
|
|
|
|
reg = &event->hw.extra_reg;
|
|
if (reg->idx != EXTRA_REG_NONE)
|
|
__intel_shared_reg_put_constraints(cpuc, reg);
|
|
|
|
reg = &event->hw.branch_reg;
|
|
if (reg->idx != EXTRA_REG_NONE)
|
|
__intel_shared_reg_put_constraints(cpuc, reg);
|
|
}
|
|
|
|
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
intel_put_shared_regs_event_constraints(cpuc, event);
|
|
}
|
|
|
|
static void intel_pebs_aliases_core2(struct perf_event *event)
|
|
{
|
|
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
|
|
/*
|
|
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
|
|
* (0x003c) so that we can use it with PEBS.
|
|
*
|
|
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
|
|
* PEBS capable. However we can use INST_RETIRED.ANY_P
|
|
* (0x00c0), which is a PEBS capable event, to get the same
|
|
* count.
|
|
*
|
|
* INST_RETIRED.ANY_P counts the number of cycles that retires
|
|
* CNTMASK instructions. By setting CNTMASK to a value (16)
|
|
* larger than the maximum number of instructions that can be
|
|
* retired per cycle (4) and then inverting the condition, we
|
|
* count all cycles that retire 16 or less instructions, which
|
|
* is every cycle.
|
|
*
|
|
* Thereby we gain a PEBS capable cycle counter.
|
|
*/
|
|
u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
|
|
|
|
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
|
|
event->hw.config = alt_config;
|
|
}
|
|
}
|
|
|
|
static void intel_pebs_aliases_snb(struct perf_event *event)
|
|
{
|
|
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
|
|
/*
|
|
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
|
|
* (0x003c) so that we can use it with PEBS.
|
|
*
|
|
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
|
|
* PEBS capable. However we can use UOPS_RETIRED.ALL
|
|
* (0x01c2), which is a PEBS capable event, to get the same
|
|
* count.
|
|
*
|
|
* UOPS_RETIRED.ALL counts the number of cycles that retires
|
|
* CNTMASK micro-ops. By setting CNTMASK to a value (16)
|
|
* larger than the maximum number of micro-ops that can be
|
|
* retired per cycle (4) and then inverting the condition, we
|
|
* count all cycles that retire 16 or less micro-ops, which
|
|
* is every cycle.
|
|
*
|
|
* Thereby we gain a PEBS capable cycle counter.
|
|
*/
|
|
u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
|
|
|
|
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
|
|
event->hw.config = alt_config;
|
|
}
|
|
}
|
|
|
|
static int intel_pmu_hw_config(struct perf_event *event)
|
|
{
|
|
int ret = x86_pmu_hw_config(event);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (event->attr.precise_ip && x86_pmu.pebs_aliases)
|
|
x86_pmu.pebs_aliases(event);
|
|
|
|
if (intel_pmu_needs_lbr_smpl(event)) {
|
|
ret = intel_pmu_setup_lbr_filter(event);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (event->attr.type != PERF_TYPE_RAW)
|
|
return 0;
|
|
|
|
if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
|
|
return 0;
|
|
|
|
if (x86_pmu.version < 3)
|
|
return -EINVAL;
|
|
|
|
if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
|
|
{
|
|
if (x86_pmu.guest_get_msrs)
|
|
return x86_pmu.guest_get_msrs(nr);
|
|
*nr = 0;
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
|
|
|
|
static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
|
|
|
|
arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
|
|
arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
|
|
arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
|
|
/*
|
|
* If PMU counter has PEBS enabled it is not enough to disable counter
|
|
* on a guest entry since PEBS memory write can overshoot guest entry
|
|
* and corrupt guest memory. Disabling PEBS solves the problem.
|
|
*/
|
|
arr[1].msr = MSR_IA32_PEBS_ENABLE;
|
|
arr[1].host = cpuc->pebs_enabled;
|
|
arr[1].guest = 0;
|
|
|
|
*nr = 2;
|
|
return arr;
|
|
}
|
|
|
|
static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
struct perf_event *event = cpuc->events[idx];
|
|
|
|
arr[idx].msr = x86_pmu_config_addr(idx);
|
|
arr[idx].host = arr[idx].guest = 0;
|
|
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
|
|
arr[idx].host = arr[idx].guest =
|
|
event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
|
|
if (event->attr.exclude_host)
|
|
arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
else if (event->attr.exclude_guest)
|
|
arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
}
|
|
|
|
*nr = x86_pmu.num_counters;
|
|
return arr;
|
|
}
|
|
|
|
static void core_pmu_enable_event(struct perf_event *event)
|
|
{
|
|
if (!event->attr.exclude_host)
|
|
x86_pmu_enable_event(event);
|
|
}
|
|
|
|
static void core_pmu_enable_all(int added)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
|
|
|
|
if (!test_bit(idx, cpuc->active_mask) ||
|
|
cpuc->events[idx]->attr.exclude_host)
|
|
continue;
|
|
|
|
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
}
|
|
}
|
|
|
|
PMU_FORMAT_ATTR(event, "config:0-7" );
|
|
PMU_FORMAT_ATTR(umask, "config:8-15" );
|
|
PMU_FORMAT_ATTR(edge, "config:18" );
|
|
PMU_FORMAT_ATTR(pc, "config:19" );
|
|
PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
|
|
PMU_FORMAT_ATTR(inv, "config:23" );
|
|
PMU_FORMAT_ATTR(cmask, "config:24-31" );
|
|
|
|
static struct attribute *intel_arch_formats_attr[] = {
|
|
&format_attr_event.attr,
|
|
&format_attr_umask.attr,
|
|
&format_attr_edge.attr,
|
|
&format_attr_pc.attr,
|
|
&format_attr_inv.attr,
|
|
&format_attr_cmask.attr,
|
|
NULL,
|
|
};
|
|
|
|
static __initconst const struct x86_pmu core_pmu = {
|
|
.name = "core",
|
|
.handle_irq = x86_pmu_handle_irq,
|
|
.disable_all = x86_pmu_disable_all,
|
|
.enable_all = core_pmu_enable_all,
|
|
.enable = core_pmu_enable_event,
|
|
.disable = x86_pmu_disable_event,
|
|
.hw_config = x86_pmu_hw_config,
|
|
.schedule_events = x86_schedule_events,
|
|
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
|
|
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
|
|
.event_map = intel_pmu_event_map,
|
|
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
|
|
.apic = 1,
|
|
/*
|
|
* Intel PMCs cannot be accessed sanely above 32 bit width,
|
|
* so we install an artificial 1<<31 period regardless of
|
|
* the generic event period:
|
|
*/
|
|
.max_period = (1ULL << 31) - 1,
|
|
.get_event_constraints = intel_get_event_constraints,
|
|
.put_event_constraints = intel_put_event_constraints,
|
|
.event_constraints = intel_core_event_constraints,
|
|
.guest_get_msrs = core_guest_get_msrs,
|
|
.format_attrs = intel_arch_formats_attr,
|
|
};
|
|
|
|
struct intel_shared_regs *allocate_shared_regs(int cpu)
|
|
{
|
|
struct intel_shared_regs *regs;
|
|
int i;
|
|
|
|
regs = kzalloc_node(sizeof(struct intel_shared_regs),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
if (regs) {
|
|
/*
|
|
* initialize the locks to keep lockdep happy
|
|
*/
|
|
for (i = 0; i < EXTRA_REG_MAX; i++)
|
|
raw_spin_lock_init(®s->regs[i].lock);
|
|
|
|
regs->core_id = -1;
|
|
}
|
|
return regs;
|
|
}
|
|
|
|
static int intel_pmu_cpu_prepare(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
|
|
if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
|
|
return NOTIFY_OK;
|
|
|
|
cpuc->shared_regs = allocate_shared_regs(cpu);
|
|
if (!cpuc->shared_regs)
|
|
return NOTIFY_BAD;
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static void intel_pmu_cpu_starting(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
int core_id = topology_core_id(cpu);
|
|
int i;
|
|
|
|
init_debug_store_on_cpu(cpu);
|
|
/*
|
|
* Deal with CPUs that don't clear their LBRs on power-up.
|
|
*/
|
|
intel_pmu_lbr_reset();
|
|
|
|
cpuc->lbr_sel = NULL;
|
|
|
|
if (!cpuc->shared_regs)
|
|
return;
|
|
|
|
if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
|
|
for_each_cpu(i, topology_thread_cpumask(cpu)) {
|
|
struct intel_shared_regs *pc;
|
|
|
|
pc = per_cpu(cpu_hw_events, i).shared_regs;
|
|
if (pc && pc->core_id == core_id) {
|
|
cpuc->kfree_on_online = cpuc->shared_regs;
|
|
cpuc->shared_regs = pc;
|
|
break;
|
|
}
|
|
}
|
|
cpuc->shared_regs->core_id = core_id;
|
|
cpuc->shared_regs->refcnt++;
|
|
}
|
|
|
|
if (x86_pmu.lbr_sel_map)
|
|
cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
|
|
}
|
|
|
|
static void intel_pmu_cpu_dying(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
struct intel_shared_regs *pc;
|
|
|
|
pc = cpuc->shared_regs;
|
|
if (pc) {
|
|
if (pc->core_id == -1 || --pc->refcnt == 0)
|
|
kfree(pc);
|
|
cpuc->shared_regs = NULL;
|
|
}
|
|
|
|
fini_debug_store_on_cpu(cpu);
|
|
}
|
|
|
|
static void intel_pmu_flush_branch_stack(void)
|
|
{
|
|
/*
|
|
* Intel LBR does not tag entries with the
|
|
* PID of the current task, then we need to
|
|
* flush it on ctxsw
|
|
* For now, we simply reset it
|
|
*/
|
|
if (x86_pmu.lbr_nr)
|
|
intel_pmu_lbr_reset();
|
|
}
|
|
|
|
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
|
|
|
|
static struct attribute *intel_arch3_formats_attr[] = {
|
|
&format_attr_event.attr,
|
|
&format_attr_umask.attr,
|
|
&format_attr_edge.attr,
|
|
&format_attr_pc.attr,
|
|
&format_attr_any.attr,
|
|
&format_attr_inv.attr,
|
|
&format_attr_cmask.attr,
|
|
|
|
&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
|
|
NULL,
|
|
};
|
|
|
|
static __initconst const struct x86_pmu intel_pmu = {
|
|
.name = "Intel",
|
|
.handle_irq = intel_pmu_handle_irq,
|
|
.disable_all = intel_pmu_disable_all,
|
|
.enable_all = intel_pmu_enable_all,
|
|
.enable = intel_pmu_enable_event,
|
|
.disable = intel_pmu_disable_event,
|
|
.hw_config = intel_pmu_hw_config,
|
|
.schedule_events = x86_schedule_events,
|
|
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
|
|
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
|
|
.event_map = intel_pmu_event_map,
|
|
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
|
|
.apic = 1,
|
|
/*
|
|
* Intel PMCs cannot be accessed sanely above 32 bit width,
|
|
* so we install an artificial 1<<31 period regardless of
|
|
* the generic event period:
|
|
*/
|
|
.max_period = (1ULL << 31) - 1,
|
|
.get_event_constraints = intel_get_event_constraints,
|
|
.put_event_constraints = intel_put_event_constraints,
|
|
.pebs_aliases = intel_pebs_aliases_core2,
|
|
|
|
.format_attrs = intel_arch3_formats_attr,
|
|
|
|
.cpu_prepare = intel_pmu_cpu_prepare,
|
|
.cpu_starting = intel_pmu_cpu_starting,
|
|
.cpu_dying = intel_pmu_cpu_dying,
|
|
.guest_get_msrs = intel_guest_get_msrs,
|
|
.flush_branch_stack = intel_pmu_flush_branch_stack,
|
|
};
|
|
|
|
static __init void intel_clovertown_quirk(void)
|
|
{
|
|
/*
|
|
* PEBS is unreliable due to:
|
|
*
|
|
* AJ67 - PEBS may experience CPL leaks
|
|
* AJ68 - PEBS PMI may be delayed by one event
|
|
* AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
|
|
* AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
|
|
*
|
|
* AJ67 could be worked around by restricting the OS/USR flags.
|
|
* AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
|
|
*
|
|
* AJ106 could possibly be worked around by not allowing LBR
|
|
* usage from PEBS, including the fixup.
|
|
* AJ68 could possibly be worked around by always programming
|
|
* a pebs_event_reset[0] value and coping with the lost events.
|
|
*
|
|
* But taken together it might just make sense to not enable PEBS on
|
|
* these chips.
|
|
*/
|
|
pr_warn("PEBS disabled due to CPU errata\n");
|
|
x86_pmu.pebs = 0;
|
|
x86_pmu.pebs_constraints = NULL;
|
|
}
|
|
|
|
static int intel_snb_pebs_broken(int cpu)
|
|
{
|
|
u32 rev = UINT_MAX; /* default to broken for unknown models */
|
|
|
|
switch (cpu_data(cpu).x86_model) {
|
|
case 42: /* SNB */
|
|
rev = 0x28;
|
|
break;
|
|
|
|
case 45: /* SNB-EP */
|
|
switch (cpu_data(cpu).x86_mask) {
|
|
case 6: rev = 0x618; break;
|
|
case 7: rev = 0x70c; break;
|
|
}
|
|
}
|
|
|
|
return (cpu_data(cpu).microcode < rev);
|
|
}
|
|
|
|
static void intel_snb_check_microcode(void)
|
|
{
|
|
int pebs_broken = 0;
|
|
int cpu;
|
|
|
|
get_online_cpus();
|
|
for_each_online_cpu(cpu) {
|
|
if ((pebs_broken = intel_snb_pebs_broken(cpu)))
|
|
break;
|
|
}
|
|
put_online_cpus();
|
|
|
|
if (pebs_broken == x86_pmu.pebs_broken)
|
|
return;
|
|
|
|
/*
|
|
* Serialized by the microcode lock..
|
|
*/
|
|
if (x86_pmu.pebs_broken) {
|
|
pr_info("PEBS enabled due to microcode update\n");
|
|
x86_pmu.pebs_broken = 0;
|
|
} else {
|
|
pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
|
|
x86_pmu.pebs_broken = 1;
|
|
}
|
|
}
|
|
|
|
static __init void intel_sandybridge_quirk(void)
|
|
{
|
|
x86_pmu.check_microcode = intel_snb_check_microcode;
|
|
intel_snb_check_microcode();
|
|
}
|
|
|
|
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
|
|
{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
|
|
{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
|
|
{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
|
|
{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
|
|
{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
|
|
{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
|
|
{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
|
|
};
|
|
|
|
static __init void intel_arch_events_quirk(void)
|
|
{
|
|
int bit;
|
|
|
|
/* disable event that reported as not presend by cpuid */
|
|
for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
|
|
intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
|
|
pr_warn("CPUID marked event: \'%s\' unavailable\n",
|
|
intel_arch_events_map[bit].name);
|
|
}
|
|
}
|
|
|
|
static __init void intel_nehalem_quirk(void)
|
|
{
|
|
union cpuid10_ebx ebx;
|
|
|
|
ebx.full = x86_pmu.events_maskl;
|
|
if (ebx.split.no_branch_misses_retired) {
|
|
/*
|
|
* Erratum AAJ80 detected, we work it around by using
|
|
* the BR_MISP_EXEC.ANY event. This will over-count
|
|
* branch-misses, but it's still much better than the
|
|
* architectural event which is often completely bogus:
|
|
*/
|
|
intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
|
|
ebx.split.no_branch_misses_retired = 0;
|
|
x86_pmu.events_maskl = ebx.full;
|
|
pr_info("CPU erratum AAJ80 worked around\n");
|
|
}
|
|
}
|
|
|
|
__init int intel_pmu_init(void)
|
|
{
|
|
union cpuid10_edx edx;
|
|
union cpuid10_eax eax;
|
|
union cpuid10_ebx ebx;
|
|
struct event_constraint *c;
|
|
unsigned int unused;
|
|
int version;
|
|
|
|
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
|
|
switch (boot_cpu_data.x86) {
|
|
case 0x6:
|
|
return p6_pmu_init();
|
|
case 0xf:
|
|
return p4_pmu_init();
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Check whether the Architectural PerfMon supports
|
|
* Branch Misses Retired hw_event or not.
|
|
*/
|
|
cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
|
|
if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
|
|
return -ENODEV;
|
|
|
|
version = eax.split.version_id;
|
|
if (version < 2)
|
|
x86_pmu = core_pmu;
|
|
else
|
|
x86_pmu = intel_pmu;
|
|
|
|
x86_pmu.version = version;
|
|
x86_pmu.num_counters = eax.split.num_counters;
|
|
x86_pmu.cntval_bits = eax.split.bit_width;
|
|
x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
|
|
|
|
x86_pmu.events_maskl = ebx.full;
|
|
x86_pmu.events_mask_len = eax.split.mask_length;
|
|
|
|
x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
|
|
|
|
/*
|
|
* Quirk: v2 perfmon does not report fixed-purpose events, so
|
|
* assume at least 3 events:
|
|
*/
|
|
if (version > 1)
|
|
x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
|
|
|
|
/*
|
|
* v2 and above have a perf capabilities MSR
|
|
*/
|
|
if (version > 1) {
|
|
u64 capabilities;
|
|
|
|
rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
|
|
x86_pmu.intel_cap.capabilities = capabilities;
|
|
}
|
|
|
|
intel_ds_init();
|
|
|
|
x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
|
|
|
|
/*
|
|
* Install the hw-cache-events table:
|
|
*/
|
|
switch (boot_cpu_data.x86_model) {
|
|
case 14: /* 65 nm core solo/duo, "Yonah" */
|
|
pr_cont("Core events, ");
|
|
break;
|
|
|
|
case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
|
|
x86_add_quirk(intel_clovertown_quirk);
|
|
case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
|
|
case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
|
|
case 29: /* six-core 45 nm xeon "Dunnington" */
|
|
memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
|
|
intel_pmu_lbr_init_core();
|
|
|
|
x86_pmu.event_constraints = intel_core2_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
|
|
pr_cont("Core2 events, ");
|
|
break;
|
|
|
|
case 26: /* 45 nm nehalem, "Bloomfield" */
|
|
case 30: /* 45 nm nehalem, "Lynnfield" */
|
|
case 46: /* 45 nm nehalem-ex, "Beckton" */
|
|
memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_nhm();
|
|
|
|
x86_pmu.event_constraints = intel_nehalem_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
|
|
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
|
|
x86_pmu.extra_regs = intel_nehalem_extra_regs;
|
|
|
|
/* UOPS_ISSUED.STALLED_CYCLES */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
|
|
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
|
|
|
|
x86_add_quirk(intel_nehalem_quirk);
|
|
|
|
pr_cont("Nehalem events, ");
|
|
break;
|
|
|
|
case 28: /* Atom */
|
|
case 54: /* Cedariew */
|
|
memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
|
|
intel_pmu_lbr_init_atom();
|
|
|
|
x86_pmu.event_constraints = intel_gen_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
|
|
pr_cont("Atom events, ");
|
|
break;
|
|
|
|
case 37: /* 32 nm nehalem, "Clarkdale" */
|
|
case 44: /* 32 nm nehalem, "Gulftown" */
|
|
case 47: /* 32 nm Xeon E7 */
|
|
memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_nhm();
|
|
|
|
x86_pmu.event_constraints = intel_westmere_event_constraints;
|
|
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
|
|
x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_westmere_extra_regs;
|
|
x86_pmu.er_flags |= ERF_HAS_RSP_1;
|
|
|
|
/* UOPS_ISSUED.STALLED_CYCLES */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
|
|
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
|
|
|
|
pr_cont("Westmere events, ");
|
|
break;
|
|
|
|
case 42: /* SandyBridge */
|
|
case 45: /* SandyBridge, "Romely-EP" */
|
|
x86_add_quirk(intel_sandybridge_quirk);
|
|
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_snb();
|
|
|
|
x86_pmu.event_constraints = intel_snb_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
|
|
x86_pmu.extra_regs = intel_snb_extra_regs;
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.er_flags |= ERF_HAS_RSP_1;
|
|
x86_pmu.er_flags |= ERF_NO_HT_SHARING;
|
|
|
|
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
|
|
X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
|
|
|
|
pr_cont("SandyBridge events, ");
|
|
break;
|
|
case 58: /* IvyBridge */
|
|
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_snb();
|
|
|
|
x86_pmu.event_constraints = intel_snb_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
|
|
x86_pmu.extra_regs = intel_snb_extra_regs;
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.er_flags |= ERF_HAS_RSP_1;
|
|
x86_pmu.er_flags |= ERF_NO_HT_SHARING;
|
|
|
|
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
|
|
pr_cont("IvyBridge events, ");
|
|
break;
|
|
|
|
|
|
default:
|
|
switch (x86_pmu.version) {
|
|
case 1:
|
|
x86_pmu.event_constraints = intel_v1_event_constraints;
|
|
pr_cont("generic architected perfmon v1, ");
|
|
break;
|
|
default:
|
|
/*
|
|
* default constraints for v2 and up
|
|
*/
|
|
x86_pmu.event_constraints = intel_gen_event_constraints;
|
|
pr_cont("generic architected perfmon, ");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
|
|
WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
|
|
x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
|
|
x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
|
|
}
|
|
x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
|
|
|
|
if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
|
|
WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
|
|
x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
|
|
x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
|
|
}
|
|
|
|
x86_pmu.intel_ctrl |=
|
|
((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
|
|
|
|
if (x86_pmu.event_constraints) {
|
|
/*
|
|
* event on fixed counter2 (REF_CYCLES) only works on this
|
|
* counter, so do not extend mask to generic counters
|
|
*/
|
|
for_each_event_constraint(c, x86_pmu.event_constraints) {
|
|
if (c->cmask != X86_RAW_EVENT_MASK
|
|
|| c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
|
|
continue;
|
|
}
|
|
|
|
c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
|
|
c->weight += x86_pmu.num_counters;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|