linux-next/mm/mmu_notifier.c
Jason Gunthorpe df2ec7641b mm/mmu_notifiers: use the right return code for WARN_ON
The return code from the op callback is actually in _ret, while the
WARN_ON was checking ret which causes it to misfire.

Link: http://lkml.kernel.org/r/20191025175502.GA31127@ziepe.ca
Fixes: 8402ce61be ("mm/mmu_notifiers: check if mmu notifier callbacks are allowed to fail")
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-06 08:47:50 -08:00

547 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/mm/mmu_notifier.c
*
* Copyright (C) 2008 Qumranet, Inc.
* Copyright (C) 2008 SGI
* Christoph Lameter <cl@linux.com>
*/
#include <linux/rculist.h>
#include <linux/mmu_notifier.h>
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/srcu.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/slab.h>
/* global SRCU for all MMs */
DEFINE_STATIC_SRCU(srcu);
#ifdef CONFIG_LOCKDEP
struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
.name = "mmu_notifier_invalidate_range_start"
};
#endif
/*
* This function can't run concurrently against mmu_notifier_register
* because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
* runs with mm_users == 0. Other tasks may still invoke mmu notifiers
* in parallel despite there being no task using this mm any more,
* through the vmas outside of the exit_mmap context, such as with
* vmtruncate. This serializes against mmu_notifier_unregister with
* the mmu_notifier_mm->lock in addition to SRCU and it serializes
* against the other mmu notifiers with SRCU. struct mmu_notifier_mm
* can't go away from under us as exit_mmap holds an mm_count pin
* itself.
*/
void __mmu_notifier_release(struct mm_struct *mm)
{
struct mmu_notifier *mn;
int id;
/*
* SRCU here will block mmu_notifier_unregister until
* ->release returns.
*/
id = srcu_read_lock(&srcu);
hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist)
/*
* If ->release runs before mmu_notifier_unregister it must be
* handled, as it's the only way for the driver to flush all
* existing sptes and stop the driver from establishing any more
* sptes before all the pages in the mm are freed.
*/
if (mn->ops->release)
mn->ops->release(mn, mm);
spin_lock(&mm->mmu_notifier_mm->lock);
while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) {
mn = hlist_entry(mm->mmu_notifier_mm->list.first,
struct mmu_notifier,
hlist);
/*
* We arrived before mmu_notifier_unregister so
* mmu_notifier_unregister will do nothing other than to wait
* for ->release to finish and for mmu_notifier_unregister to
* return.
*/
hlist_del_init_rcu(&mn->hlist);
}
spin_unlock(&mm->mmu_notifier_mm->lock);
srcu_read_unlock(&srcu, id);
/*
* synchronize_srcu here prevents mmu_notifier_release from returning to
* exit_mmap (which would proceed with freeing all pages in the mm)
* until the ->release method returns, if it was invoked by
* mmu_notifier_unregister.
*
* The mmu_notifier_mm can't go away from under us because one mm_count
* is held by exit_mmap.
*/
synchronize_srcu(&srcu);
}
/*
* If no young bitflag is supported by the hardware, ->clear_flush_young can
* unmap the address and return 1 or 0 depending if the mapping previously
* existed or not.
*/
int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
struct mmu_notifier *mn;
int young = 0, id;
id = srcu_read_lock(&srcu);
hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
if (mn->ops->clear_flush_young)
young |= mn->ops->clear_flush_young(mn, mm, start, end);
}
srcu_read_unlock(&srcu, id);
return young;
}
int __mmu_notifier_clear_young(struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
struct mmu_notifier *mn;
int young = 0, id;
id = srcu_read_lock(&srcu);
hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
if (mn->ops->clear_young)
young |= mn->ops->clear_young(mn, mm, start, end);
}
srcu_read_unlock(&srcu, id);
return young;
}
int __mmu_notifier_test_young(struct mm_struct *mm,
unsigned long address)
{
struct mmu_notifier *mn;
int young = 0, id;
id = srcu_read_lock(&srcu);
hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
if (mn->ops->test_young) {
young = mn->ops->test_young(mn, mm, address);
if (young)
break;
}
}
srcu_read_unlock(&srcu, id);
return young;
}
void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
pte_t pte)
{
struct mmu_notifier *mn;
int id;
id = srcu_read_lock(&srcu);
hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
if (mn->ops->change_pte)
mn->ops->change_pte(mn, mm, address, pte);
}
srcu_read_unlock(&srcu, id);
}
int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
{
struct mmu_notifier *mn;
int ret = 0;
int id;
id = srcu_read_lock(&srcu);
hlist_for_each_entry_rcu(mn, &range->mm->mmu_notifier_mm->list, hlist) {
if (mn->ops->invalidate_range_start) {
int _ret;
if (!mmu_notifier_range_blockable(range))
non_block_start();
_ret = mn->ops->invalidate_range_start(mn, range);
if (!mmu_notifier_range_blockable(range))
non_block_end();
if (_ret) {
pr_info("%pS callback failed with %d in %sblockable context.\n",
mn->ops->invalidate_range_start, _ret,
!mmu_notifier_range_blockable(range) ? "non-" : "");
WARN_ON(mmu_notifier_range_blockable(range) ||
_ret != -EAGAIN);
ret = _ret;
}
}
}
srcu_read_unlock(&srcu, id);
return ret;
}
void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
bool only_end)
{
struct mmu_notifier *mn;
int id;
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
id = srcu_read_lock(&srcu);
hlist_for_each_entry_rcu(mn, &range->mm->mmu_notifier_mm->list, hlist) {
/*
* Call invalidate_range here too to avoid the need for the
* subsystem of having to register an invalidate_range_end
* call-back when there is invalidate_range already. Usually a
* subsystem registers either invalidate_range_start()/end() or
* invalidate_range(), so this will be no additional overhead
* (besides the pointer check).
*
* We skip call to invalidate_range() if we know it is safe ie
* call site use mmu_notifier_invalidate_range_only_end() which
* is safe to do when we know that a call to invalidate_range()
* already happen under page table lock.
*/
if (!only_end && mn->ops->invalidate_range)
mn->ops->invalidate_range(mn, range->mm,
range->start,
range->end);
if (mn->ops->invalidate_range_end) {
if (!mmu_notifier_range_blockable(range))
non_block_start();
mn->ops->invalidate_range_end(mn, range);
if (!mmu_notifier_range_blockable(range))
non_block_end();
}
}
srcu_read_unlock(&srcu, id);
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
}
void __mmu_notifier_invalidate_range(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
struct mmu_notifier *mn;
int id;
id = srcu_read_lock(&srcu);
hlist_for_each_entry_rcu(mn, &mm->mmu_notifier_mm->list, hlist) {
if (mn->ops->invalidate_range)
mn->ops->invalidate_range(mn, mm, start, end);
}
srcu_read_unlock(&srcu, id);
}
/*
* Same as mmu_notifier_register but here the caller must hold the
* mmap_sem in write mode.
*/
int __mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
{
struct mmu_notifier_mm *mmu_notifier_mm = NULL;
int ret;
lockdep_assert_held_write(&mm->mmap_sem);
BUG_ON(atomic_read(&mm->mm_users) <= 0);
if (IS_ENABLED(CONFIG_LOCKDEP)) {
fs_reclaim_acquire(GFP_KERNEL);
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
fs_reclaim_release(GFP_KERNEL);
}
mn->mm = mm;
mn->users = 1;
if (!mm->mmu_notifier_mm) {
/*
* kmalloc cannot be called under mm_take_all_locks(), but we
* know that mm->mmu_notifier_mm can't change while we hold
* the write side of the mmap_sem.
*/
mmu_notifier_mm =
kmalloc(sizeof(struct mmu_notifier_mm), GFP_KERNEL);
if (!mmu_notifier_mm)
return -ENOMEM;
INIT_HLIST_HEAD(&mmu_notifier_mm->list);
spin_lock_init(&mmu_notifier_mm->lock);
}
ret = mm_take_all_locks(mm);
if (unlikely(ret))
goto out_clean;
/* Pairs with the mmdrop in mmu_notifier_unregister_* */
mmgrab(mm);
/*
* Serialize the update against mmu_notifier_unregister. A
* side note: mmu_notifier_release can't run concurrently with
* us because we hold the mm_users pin (either implicitly as
* current->mm or explicitly with get_task_mm() or similar).
* We can't race against any other mmu notifier method either
* thanks to mm_take_all_locks().
*/
if (mmu_notifier_mm)
mm->mmu_notifier_mm = mmu_notifier_mm;
spin_lock(&mm->mmu_notifier_mm->lock);
hlist_add_head_rcu(&mn->hlist, &mm->mmu_notifier_mm->list);
spin_unlock(&mm->mmu_notifier_mm->lock);
mm_drop_all_locks(mm);
BUG_ON(atomic_read(&mm->mm_users) <= 0);
return 0;
out_clean:
kfree(mmu_notifier_mm);
return ret;
}
EXPORT_SYMBOL_GPL(__mmu_notifier_register);
/**
* mmu_notifier_register - Register a notifier on a mm
* @mn: The notifier to attach
* @mm: The mm to attach the notifier to
*
* Must not hold mmap_sem nor any other VM related lock when calling
* this registration function. Must also ensure mm_users can't go down
* to zero while this runs to avoid races with mmu_notifier_release,
* so mm has to be current->mm or the mm should be pinned safely such
* as with get_task_mm(). If the mm is not current->mm, the mm_users
* pin should be released by calling mmput after mmu_notifier_register
* returns.
*
* mmu_notifier_unregister() or mmu_notifier_put() must be always called to
* unregister the notifier.
*
* While the caller has a mmu_notifier get the mn->mm pointer will remain
* valid, and can be converted to an active mm pointer via mmget_not_zero().
*/
int mmu_notifier_register(struct mmu_notifier *mn, struct mm_struct *mm)
{
int ret;
down_write(&mm->mmap_sem);
ret = __mmu_notifier_register(mn, mm);
up_write(&mm->mmap_sem);
return ret;
}
EXPORT_SYMBOL_GPL(mmu_notifier_register);
static struct mmu_notifier *
find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
{
struct mmu_notifier *mn;
spin_lock(&mm->mmu_notifier_mm->lock);
hlist_for_each_entry_rcu (mn, &mm->mmu_notifier_mm->list, hlist) {
if (mn->ops != ops)
continue;
if (likely(mn->users != UINT_MAX))
mn->users++;
else
mn = ERR_PTR(-EOVERFLOW);
spin_unlock(&mm->mmu_notifier_mm->lock);
return mn;
}
spin_unlock(&mm->mmu_notifier_mm->lock);
return NULL;
}
/**
* mmu_notifier_get_locked - Return the single struct mmu_notifier for
* the mm & ops
* @ops: The operations struct being subscribe with
* @mm : The mm to attach notifiers too
*
* This function either allocates a new mmu_notifier via
* ops->alloc_notifier(), or returns an already existing notifier on the
* list. The value of the ops pointer is used to determine when two notifiers
* are the same.
*
* Each call to mmu_notifier_get() must be paired with a call to
* mmu_notifier_put(). The caller must hold the write side of mm->mmap_sem.
*
* While the caller has a mmu_notifier get the mm pointer will remain valid,
* and can be converted to an active mm pointer via mmget_not_zero().
*/
struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
struct mm_struct *mm)
{
struct mmu_notifier *mn;
int ret;
lockdep_assert_held_write(&mm->mmap_sem);
if (mm->mmu_notifier_mm) {
mn = find_get_mmu_notifier(mm, ops);
if (mn)
return mn;
}
mn = ops->alloc_notifier(mm);
if (IS_ERR(mn))
return mn;
mn->ops = ops;
ret = __mmu_notifier_register(mn, mm);
if (ret)
goto out_free;
return mn;
out_free:
mn->ops->free_notifier(mn);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
/* this is called after the last mmu_notifier_unregister() returned */
void __mmu_notifier_mm_destroy(struct mm_struct *mm)
{
BUG_ON(!hlist_empty(&mm->mmu_notifier_mm->list));
kfree(mm->mmu_notifier_mm);
mm->mmu_notifier_mm = LIST_POISON1; /* debug */
}
/*
* This releases the mm_count pin automatically and frees the mm
* structure if it was the last user of it. It serializes against
* running mmu notifiers with SRCU and against mmu_notifier_unregister
* with the unregister lock + SRCU. All sptes must be dropped before
* calling mmu_notifier_unregister. ->release or any other notifier
* method may be invoked concurrently with mmu_notifier_unregister,
* and only after mmu_notifier_unregister returned we're guaranteed
* that ->release or any other method can't run anymore.
*/
void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm)
{
BUG_ON(atomic_read(&mm->mm_count) <= 0);
if (!hlist_unhashed(&mn->hlist)) {
/*
* SRCU here will force exit_mmap to wait for ->release to
* finish before freeing the pages.
*/
int id;
id = srcu_read_lock(&srcu);
/*
* exit_mmap will block in mmu_notifier_release to guarantee
* that ->release is called before freeing the pages.
*/
if (mn->ops->release)
mn->ops->release(mn, mm);
srcu_read_unlock(&srcu, id);
spin_lock(&mm->mmu_notifier_mm->lock);
/*
* Can not use list_del_rcu() since __mmu_notifier_release
* can delete it before we hold the lock.
*/
hlist_del_init_rcu(&mn->hlist);
spin_unlock(&mm->mmu_notifier_mm->lock);
}
/*
* Wait for any running method to finish, of course including
* ->release if it was run by mmu_notifier_release instead of us.
*/
synchronize_srcu(&srcu);
BUG_ON(atomic_read(&mm->mm_count) <= 0);
mmdrop(mm);
}
EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
static void mmu_notifier_free_rcu(struct rcu_head *rcu)
{
struct mmu_notifier *mn = container_of(rcu, struct mmu_notifier, rcu);
struct mm_struct *mm = mn->mm;
mn->ops->free_notifier(mn);
/* Pairs with the get in __mmu_notifier_register() */
mmdrop(mm);
}
/**
* mmu_notifier_put - Release the reference on the notifier
* @mn: The notifier to act on
*
* This function must be paired with each mmu_notifier_get(), it releases the
* reference obtained by the get. If this is the last reference then process
* to free the notifier will be run asynchronously.
*
* Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
* when the mm_struct is destroyed. Instead free_notifier is always called to
* release any resources held by the user.
*
* As ops->release is not guaranteed to be called, the user must ensure that
* all sptes are dropped, and no new sptes can be established before
* mmu_notifier_put() is called.
*
* This function can be called from the ops->release callback, however the
* caller must still ensure it is called pairwise with mmu_notifier_get().
*
* Modules calling this function must call mmu_notifier_synchronize() in
* their __exit functions to ensure the async work is completed.
*/
void mmu_notifier_put(struct mmu_notifier *mn)
{
struct mm_struct *mm = mn->mm;
spin_lock(&mm->mmu_notifier_mm->lock);
if (WARN_ON(!mn->users) || --mn->users)
goto out_unlock;
hlist_del_init_rcu(&mn->hlist);
spin_unlock(&mm->mmu_notifier_mm->lock);
call_srcu(&srcu, &mn->rcu, mmu_notifier_free_rcu);
return;
out_unlock:
spin_unlock(&mm->mmu_notifier_mm->lock);
}
EXPORT_SYMBOL_GPL(mmu_notifier_put);
/**
* mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
*
* This function ensures that all outstanding async SRU work from
* mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
* associated with an unused mmu_notifier will no longer be called.
*
* Before using the caller must ensure that all of its mmu_notifiers have been
* fully released via mmu_notifier_put().
*
* Modules using the mmu_notifier_put() API should call this in their __exit
* function to avoid module unloading races.
*/
void mmu_notifier_synchronize(void)
{
synchronize_srcu(&srcu);
}
EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
bool
mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
{
if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
return false;
/* Return true if the vma still have the read flag set. */
return range->vma->vm_flags & VM_READ;
}
EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);