linux-next/drivers/cpufreq/mediatek-cpufreq.c
Daniel Golle f85534113f cpufreq: mediatek: correct voltages for MT7622 and MT7623
The MT6380 regulator typically used together with MT7622 does not
support the current maximum processor and SRAM voltage in the cpufreq
driver (1360000uV).
For MT7622 limit processor and SRAM supply voltages to 1350000uV to
avoid having the tracking algorithm request unsupported voltages from
the regulator.

On MT7623 there is no separate SRAM supply and the maximum voltage used
is 1300000uV. Create dedicated platform data for MT7623 to cover that
case as well.

Fixes: 0883426fd07e3 ("cpufreq: mediatek: Raise proc and sram max voltage for MT7622/7623")
Suggested-by: Jia-wei Chang <Jia-wei.Chang@mediatek.com>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Reviewed-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
2023-06-19 09:53:28 +05:30

808 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015 Linaro Ltd.
* Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
*/
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/regulator/consumer.h>
struct mtk_cpufreq_platform_data {
int min_volt_shift;
int max_volt_shift;
int proc_max_volt;
int sram_min_volt;
int sram_max_volt;
bool ccifreq_supported;
};
/*
* The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
* on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
* Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
* voltage inputs need to be controlled under a hardware limitation:
* 100mV < Vsram - Vproc < 200mV
*
* When scaling the clock frequency of a CPU clock domain, the clock source
* needs to be switched to another stable PLL clock temporarily until
* the original PLL becomes stable at target frequency.
*/
struct mtk_cpu_dvfs_info {
struct cpumask cpus;
struct device *cpu_dev;
struct device *cci_dev;
struct regulator *proc_reg;
struct regulator *sram_reg;
struct clk *cpu_clk;
struct clk *inter_clk;
struct list_head list_head;
int intermediate_voltage;
bool need_voltage_tracking;
int vproc_on_boot;
int pre_vproc;
/* Avoid race condition for regulators between notify and policy */
struct mutex reg_lock;
struct notifier_block opp_nb;
unsigned int opp_cpu;
unsigned long current_freq;
const struct mtk_cpufreq_platform_data *soc_data;
int vtrack_max;
bool ccifreq_bound;
};
static struct platform_device *cpufreq_pdev;
static LIST_HEAD(dvfs_info_list);
static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
{
struct mtk_cpu_dvfs_info *info;
list_for_each_entry(info, &dvfs_info_list, list_head) {
if (cpumask_test_cpu(cpu, &info->cpus))
return info;
}
return NULL;
}
static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
int new_vproc)
{
const struct mtk_cpufreq_platform_data *soc_data = info->soc_data;
struct regulator *proc_reg = info->proc_reg;
struct regulator *sram_reg = info->sram_reg;
int pre_vproc, pre_vsram, new_vsram, vsram, vproc, ret;
int retry = info->vtrack_max;
pre_vproc = regulator_get_voltage(proc_reg);
if (pre_vproc < 0) {
dev_err(info->cpu_dev,
"invalid Vproc value: %d\n", pre_vproc);
return pre_vproc;
}
pre_vsram = regulator_get_voltage(sram_reg);
if (pre_vsram < 0) {
dev_err(info->cpu_dev, "invalid Vsram value: %d\n", pre_vsram);
return pre_vsram;
}
new_vsram = clamp(new_vproc + soc_data->min_volt_shift,
soc_data->sram_min_volt, soc_data->sram_max_volt);
do {
if (pre_vproc <= new_vproc) {
vsram = clamp(pre_vproc + soc_data->max_volt_shift,
soc_data->sram_min_volt, new_vsram);
ret = regulator_set_voltage(sram_reg, vsram,
soc_data->sram_max_volt);
if (ret)
return ret;
if (vsram == soc_data->sram_max_volt ||
new_vsram == soc_data->sram_min_volt)
vproc = new_vproc;
else
vproc = vsram - soc_data->min_volt_shift;
ret = regulator_set_voltage(proc_reg, vproc,
soc_data->proc_max_volt);
if (ret) {
regulator_set_voltage(sram_reg, pre_vsram,
soc_data->sram_max_volt);
return ret;
}
} else if (pre_vproc > new_vproc) {
vproc = max(new_vproc,
pre_vsram - soc_data->max_volt_shift);
ret = regulator_set_voltage(proc_reg, vproc,
soc_data->proc_max_volt);
if (ret)
return ret;
if (vproc == new_vproc)
vsram = new_vsram;
else
vsram = max(new_vsram,
vproc + soc_data->min_volt_shift);
ret = regulator_set_voltage(sram_reg, vsram,
soc_data->sram_max_volt);
if (ret) {
regulator_set_voltage(proc_reg, pre_vproc,
soc_data->proc_max_volt);
return ret;
}
}
pre_vproc = vproc;
pre_vsram = vsram;
if (--retry < 0) {
dev_err(info->cpu_dev,
"over loop count, failed to set voltage\n");
return -EINVAL;
}
} while (vproc != new_vproc || vsram != new_vsram);
return 0;
}
static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
{
const struct mtk_cpufreq_platform_data *soc_data = info->soc_data;
int ret;
if (info->need_voltage_tracking)
ret = mtk_cpufreq_voltage_tracking(info, vproc);
else
ret = regulator_set_voltage(info->proc_reg, vproc,
soc_data->proc_max_volt);
if (!ret)
info->pre_vproc = vproc;
return ret;
}
static bool is_ccifreq_ready(struct mtk_cpu_dvfs_info *info)
{
struct device_link *sup_link;
if (info->ccifreq_bound)
return true;
sup_link = device_link_add(info->cpu_dev, info->cci_dev,
DL_FLAG_AUTOREMOVE_CONSUMER);
if (!sup_link) {
dev_err(info->cpu_dev, "cpu%d: sup_link is NULL\n", info->opp_cpu);
return false;
}
if (sup_link->supplier->links.status != DL_DEV_DRIVER_BOUND)
return false;
info->ccifreq_bound = true;
return true;
}
static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int index)
{
struct cpufreq_frequency_table *freq_table = policy->freq_table;
struct clk *cpu_clk = policy->clk;
struct clk *armpll = clk_get_parent(cpu_clk);
struct mtk_cpu_dvfs_info *info = policy->driver_data;
struct device *cpu_dev = info->cpu_dev;
struct dev_pm_opp *opp;
long freq_hz, pre_freq_hz;
int vproc, pre_vproc, inter_vproc, target_vproc, ret;
inter_vproc = info->intermediate_voltage;
pre_freq_hz = clk_get_rate(cpu_clk);
mutex_lock(&info->reg_lock);
if (unlikely(info->pre_vproc <= 0))
pre_vproc = regulator_get_voltage(info->proc_reg);
else
pre_vproc = info->pre_vproc;
if (pre_vproc < 0) {
dev_err(cpu_dev, "invalid Vproc value: %d\n", pre_vproc);
ret = pre_vproc;
goto out;
}
freq_hz = freq_table[index].frequency * 1000;
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
if (IS_ERR(opp)) {
dev_err(cpu_dev, "cpu%d: failed to find OPP for %ld\n",
policy->cpu, freq_hz);
ret = PTR_ERR(opp);
goto out;
}
vproc = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
/*
* If MediaTek cci is supported but is not ready, we will use the value
* of max(target cpu voltage, booting voltage) to prevent high freqeuncy
* low voltage crash.
*/
if (info->soc_data->ccifreq_supported && !is_ccifreq_ready(info))
vproc = max(vproc, info->vproc_on_boot);
/*
* If the new voltage or the intermediate voltage is higher than the
* current voltage, scale up voltage first.
*/
target_vproc = max(inter_vproc, vproc);
if (pre_vproc <= target_vproc) {
ret = mtk_cpufreq_set_voltage(info, target_vproc);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to scale up voltage!\n", policy->cpu);
mtk_cpufreq_set_voltage(info, pre_vproc);
goto out;
}
}
/* Reparent the CPU clock to intermediate clock. */
ret = clk_set_parent(cpu_clk, info->inter_clk);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to re-parent cpu clock!\n", policy->cpu);
mtk_cpufreq_set_voltage(info, pre_vproc);
goto out;
}
/* Set the original PLL to target rate. */
ret = clk_set_rate(armpll, freq_hz);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to scale cpu clock rate!\n", policy->cpu);
clk_set_parent(cpu_clk, armpll);
mtk_cpufreq_set_voltage(info, pre_vproc);
goto out;
}
/* Set parent of CPU clock back to the original PLL. */
ret = clk_set_parent(cpu_clk, armpll);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to re-parent cpu clock!\n", policy->cpu);
mtk_cpufreq_set_voltage(info, inter_vproc);
goto out;
}
/*
* If the new voltage is lower than the intermediate voltage or the
* original voltage, scale down to the new voltage.
*/
if (vproc < inter_vproc || vproc < pre_vproc) {
ret = mtk_cpufreq_set_voltage(info, vproc);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to scale down voltage!\n", policy->cpu);
clk_set_parent(cpu_clk, info->inter_clk);
clk_set_rate(armpll, pre_freq_hz);
clk_set_parent(cpu_clk, armpll);
goto out;
}
}
info->current_freq = freq_hz;
out:
mutex_unlock(&info->reg_lock);
return ret;
}
#define DYNAMIC_POWER "dynamic-power-coefficient"
static int mtk_cpufreq_opp_notifier(struct notifier_block *nb,
unsigned long event, void *data)
{
struct dev_pm_opp *opp = data;
struct dev_pm_opp *new_opp;
struct mtk_cpu_dvfs_info *info;
unsigned long freq, volt;
struct cpufreq_policy *policy;
int ret = 0;
info = container_of(nb, struct mtk_cpu_dvfs_info, opp_nb);
if (event == OPP_EVENT_ADJUST_VOLTAGE) {
freq = dev_pm_opp_get_freq(opp);
mutex_lock(&info->reg_lock);
if (info->current_freq == freq) {
volt = dev_pm_opp_get_voltage(opp);
ret = mtk_cpufreq_set_voltage(info, volt);
if (ret)
dev_err(info->cpu_dev,
"failed to scale voltage: %d\n", ret);
}
mutex_unlock(&info->reg_lock);
} else if (event == OPP_EVENT_DISABLE) {
freq = dev_pm_opp_get_freq(opp);
/* case of current opp item is disabled */
if (info->current_freq == freq) {
freq = 1;
new_opp = dev_pm_opp_find_freq_ceil(info->cpu_dev,
&freq);
if (IS_ERR(new_opp)) {
dev_err(info->cpu_dev,
"all opp items are disabled\n");
ret = PTR_ERR(new_opp);
return notifier_from_errno(ret);
}
dev_pm_opp_put(new_opp);
policy = cpufreq_cpu_get(info->opp_cpu);
if (policy) {
cpufreq_driver_target(policy, freq / 1000,
CPUFREQ_RELATION_L);
cpufreq_cpu_put(policy);
}
}
}
return notifier_from_errno(ret);
}
static struct device *of_get_cci(struct device *cpu_dev)
{
struct device_node *np;
struct platform_device *pdev;
np = of_parse_phandle(cpu_dev->of_node, "mediatek,cci", 0);
if (!np)
return ERR_PTR(-ENODEV);
pdev = of_find_device_by_node(np);
of_node_put(np);
if (!pdev)
return ERR_PTR(-ENODEV);
return &pdev->dev;
}
static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
{
struct device *cpu_dev;
struct dev_pm_opp *opp;
unsigned long rate;
int ret;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
dev_err(cpu_dev, "failed to get cpu%d device\n", cpu);
return -ENODEV;
}
info->cpu_dev = cpu_dev;
info->ccifreq_bound = false;
if (info->soc_data->ccifreq_supported) {
info->cci_dev = of_get_cci(info->cpu_dev);
if (IS_ERR(info->cci_dev)) {
ret = PTR_ERR(info->cci_dev);
dev_err(cpu_dev, "cpu%d: failed to get cci device\n", cpu);
return -ENODEV;
}
}
info->cpu_clk = clk_get(cpu_dev, "cpu");
if (IS_ERR(info->cpu_clk)) {
ret = PTR_ERR(info->cpu_clk);
return dev_err_probe(cpu_dev, ret,
"cpu%d: failed to get cpu clk\n", cpu);
}
info->inter_clk = clk_get(cpu_dev, "intermediate");
if (IS_ERR(info->inter_clk)) {
ret = PTR_ERR(info->inter_clk);
dev_err_probe(cpu_dev, ret,
"cpu%d: failed to get intermediate clk\n", cpu);
goto out_free_mux_clock;
}
info->proc_reg = regulator_get_optional(cpu_dev, "proc");
if (IS_ERR(info->proc_reg)) {
ret = PTR_ERR(info->proc_reg);
dev_err_probe(cpu_dev, ret,
"cpu%d: failed to get proc regulator\n", cpu);
goto out_free_inter_clock;
}
ret = regulator_enable(info->proc_reg);
if (ret) {
dev_warn(cpu_dev, "cpu%d: failed to enable vproc\n", cpu);
goto out_free_proc_reg;
}
/* Both presence and absence of sram regulator are valid cases. */
info->sram_reg = regulator_get_optional(cpu_dev, "sram");
if (IS_ERR(info->sram_reg)) {
ret = PTR_ERR(info->sram_reg);
if (ret == -EPROBE_DEFER)
goto out_disable_proc_reg;
info->sram_reg = NULL;
} else {
ret = regulator_enable(info->sram_reg);
if (ret) {
dev_warn(cpu_dev, "cpu%d: failed to enable vsram\n", cpu);
goto out_free_sram_reg;
}
}
/* Get OPP-sharing information from "operating-points-v2" bindings */
ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
if (ret) {
dev_err(cpu_dev,
"cpu%d: failed to get OPP-sharing information\n", cpu);
goto out_disable_sram_reg;
}
ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
if (ret) {
dev_warn(cpu_dev, "cpu%d: no OPP table\n", cpu);
goto out_disable_sram_reg;
}
ret = clk_prepare_enable(info->cpu_clk);
if (ret)
goto out_free_opp_table;
ret = clk_prepare_enable(info->inter_clk);
if (ret)
goto out_disable_mux_clock;
if (info->soc_data->ccifreq_supported) {
info->vproc_on_boot = regulator_get_voltage(info->proc_reg);
if (info->vproc_on_boot < 0) {
ret = info->vproc_on_boot;
dev_err(info->cpu_dev,
"invalid Vproc value: %d\n", info->vproc_on_boot);
goto out_disable_inter_clock;
}
}
/* Search a safe voltage for intermediate frequency. */
rate = clk_get_rate(info->inter_clk);
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
if (IS_ERR(opp)) {
dev_err(cpu_dev, "cpu%d: failed to get intermediate opp\n", cpu);
ret = PTR_ERR(opp);
goto out_disable_inter_clock;
}
info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
mutex_init(&info->reg_lock);
info->current_freq = clk_get_rate(info->cpu_clk);
info->opp_cpu = cpu;
info->opp_nb.notifier_call = mtk_cpufreq_opp_notifier;
ret = dev_pm_opp_register_notifier(cpu_dev, &info->opp_nb);
if (ret) {
dev_err(cpu_dev, "cpu%d: failed to register opp notifier\n", cpu);
goto out_disable_inter_clock;
}
/*
* If SRAM regulator is present, software "voltage tracking" is needed
* for this CPU power domain.
*/
info->need_voltage_tracking = (info->sram_reg != NULL);
/*
* We assume min voltage is 0 and tracking target voltage using
* min_volt_shift for each iteration.
* The vtrack_max is 3 times of expeted iteration count.
*/
info->vtrack_max = 3 * DIV_ROUND_UP(max(info->soc_data->sram_max_volt,
info->soc_data->proc_max_volt),
info->soc_data->min_volt_shift);
return 0;
out_disable_inter_clock:
clk_disable_unprepare(info->inter_clk);
out_disable_mux_clock:
clk_disable_unprepare(info->cpu_clk);
out_free_opp_table:
dev_pm_opp_of_cpumask_remove_table(&info->cpus);
out_disable_sram_reg:
if (info->sram_reg)
regulator_disable(info->sram_reg);
out_free_sram_reg:
if (info->sram_reg)
regulator_put(info->sram_reg);
out_disable_proc_reg:
regulator_disable(info->proc_reg);
out_free_proc_reg:
regulator_put(info->proc_reg);
out_free_inter_clock:
clk_put(info->inter_clk);
out_free_mux_clock:
clk_put(info->cpu_clk);
return ret;
}
static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
{
regulator_disable(info->proc_reg);
regulator_put(info->proc_reg);
if (info->sram_reg) {
regulator_disable(info->sram_reg);
regulator_put(info->sram_reg);
}
clk_disable_unprepare(info->cpu_clk);
clk_put(info->cpu_clk);
clk_disable_unprepare(info->inter_clk);
clk_put(info->inter_clk);
dev_pm_opp_of_cpumask_remove_table(&info->cpus);
dev_pm_opp_unregister_notifier(info->cpu_dev, &info->opp_nb);
}
static int mtk_cpufreq_init(struct cpufreq_policy *policy)
{
struct mtk_cpu_dvfs_info *info;
struct cpufreq_frequency_table *freq_table;
int ret;
info = mtk_cpu_dvfs_info_lookup(policy->cpu);
if (!info) {
pr_err("dvfs info for cpu%d is not initialized.\n",
policy->cpu);
return -EINVAL;
}
ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
if (ret) {
dev_err(info->cpu_dev,
"failed to init cpufreq table for cpu%d: %d\n",
policy->cpu, ret);
return ret;
}
cpumask_copy(policy->cpus, &info->cpus);
policy->freq_table = freq_table;
policy->driver_data = info;
policy->clk = info->cpu_clk;
return 0;
}
static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
{
struct mtk_cpu_dvfs_info *info = policy->driver_data;
dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
return 0;
}
static struct cpufreq_driver mtk_cpufreq_driver = {
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
CPUFREQ_IS_COOLING_DEV,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = mtk_cpufreq_set_target,
.get = cpufreq_generic_get,
.init = mtk_cpufreq_init,
.exit = mtk_cpufreq_exit,
.register_em = cpufreq_register_em_with_opp,
.name = "mtk-cpufreq",
.attr = cpufreq_generic_attr,
};
static int mtk_cpufreq_probe(struct platform_device *pdev)
{
const struct mtk_cpufreq_platform_data *data;
struct mtk_cpu_dvfs_info *info, *tmp;
int cpu, ret;
data = dev_get_platdata(&pdev->dev);
if (!data) {
dev_err(&pdev->dev,
"failed to get mtk cpufreq platform data\n");
return -ENODEV;
}
for_each_possible_cpu(cpu) {
info = mtk_cpu_dvfs_info_lookup(cpu);
if (info)
continue;
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info) {
ret = -ENOMEM;
goto release_dvfs_info_list;
}
info->soc_data = data;
ret = mtk_cpu_dvfs_info_init(info, cpu);
if (ret) {
dev_err(&pdev->dev,
"failed to initialize dvfs info for cpu%d\n",
cpu);
goto release_dvfs_info_list;
}
list_add(&info->list_head, &dvfs_info_list);
}
ret = cpufreq_register_driver(&mtk_cpufreq_driver);
if (ret) {
dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n");
goto release_dvfs_info_list;
}
return 0;
release_dvfs_info_list:
list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
mtk_cpu_dvfs_info_release(info);
list_del(&info->list_head);
}
return ret;
}
static struct platform_driver mtk_cpufreq_platdrv = {
.driver = {
.name = "mtk-cpufreq",
},
.probe = mtk_cpufreq_probe,
};
static const struct mtk_cpufreq_platform_data mt2701_platform_data = {
.min_volt_shift = 100000,
.max_volt_shift = 200000,
.proc_max_volt = 1150000,
.sram_min_volt = 0,
.sram_max_volt = 1150000,
.ccifreq_supported = false,
};
static const struct mtk_cpufreq_platform_data mt7622_platform_data = {
.min_volt_shift = 100000,
.max_volt_shift = 200000,
.proc_max_volt = 1350000,
.sram_min_volt = 0,
.sram_max_volt = 1350000,
.ccifreq_supported = false,
};
static const struct mtk_cpufreq_platform_data mt7623_platform_data = {
.min_volt_shift = 100000,
.max_volt_shift = 200000,
.proc_max_volt = 1300000,
.ccifreq_supported = false,
};
static const struct mtk_cpufreq_platform_data mt8183_platform_data = {
.min_volt_shift = 100000,
.max_volt_shift = 200000,
.proc_max_volt = 1150000,
.sram_min_volt = 0,
.sram_max_volt = 1150000,
.ccifreq_supported = true,
};
static const struct mtk_cpufreq_platform_data mt8186_platform_data = {
.min_volt_shift = 100000,
.max_volt_shift = 250000,
.proc_max_volt = 1118750,
.sram_min_volt = 850000,
.sram_max_volt = 1118750,
.ccifreq_supported = true,
};
static const struct mtk_cpufreq_platform_data mt8516_platform_data = {
.min_volt_shift = 100000,
.max_volt_shift = 200000,
.proc_max_volt = 1310000,
.sram_min_volt = 0,
.sram_max_volt = 1310000,
.ccifreq_supported = false,
};
/* List of machines supported by this driver */
static const struct of_device_id mtk_cpufreq_machines[] __initconst = {
{ .compatible = "mediatek,mt2701", .data = &mt2701_platform_data },
{ .compatible = "mediatek,mt2712", .data = &mt2701_platform_data },
{ .compatible = "mediatek,mt7622", .data = &mt7622_platform_data },
{ .compatible = "mediatek,mt7623", .data = &mt7623_platform_data },
{ .compatible = "mediatek,mt8167", .data = &mt8516_platform_data },
{ .compatible = "mediatek,mt817x", .data = &mt2701_platform_data },
{ .compatible = "mediatek,mt8173", .data = &mt2701_platform_data },
{ .compatible = "mediatek,mt8176", .data = &mt2701_platform_data },
{ .compatible = "mediatek,mt8183", .data = &mt8183_platform_data },
{ .compatible = "mediatek,mt8186", .data = &mt8186_platform_data },
{ .compatible = "mediatek,mt8365", .data = &mt2701_platform_data },
{ .compatible = "mediatek,mt8516", .data = &mt8516_platform_data },
{ }
};
MODULE_DEVICE_TABLE(of, mtk_cpufreq_machines);
static int __init mtk_cpufreq_driver_init(void)
{
struct device_node *np;
const struct of_device_id *match;
const struct mtk_cpufreq_platform_data *data;
int err;
np = of_find_node_by_path("/");
if (!np)
return -ENODEV;
match = of_match_node(mtk_cpufreq_machines, np);
of_node_put(np);
if (!match) {
pr_debug("Machine is not compatible with mtk-cpufreq\n");
return -ENODEV;
}
data = match->data;
err = platform_driver_register(&mtk_cpufreq_platdrv);
if (err)
return err;
/*
* Since there's no place to hold device registration code and no
* device tree based way to match cpufreq driver yet, both the driver
* and the device registration codes are put here to handle defer
* probing.
*/
cpufreq_pdev = platform_device_register_data(NULL, "mtk-cpufreq", -1,
data, sizeof(*data));
if (IS_ERR(cpufreq_pdev)) {
pr_err("failed to register mtk-cpufreq platform device\n");
platform_driver_unregister(&mtk_cpufreq_platdrv);
return PTR_ERR(cpufreq_pdev);
}
return 0;
}
module_init(mtk_cpufreq_driver_init)
static void __exit mtk_cpufreq_driver_exit(void)
{
platform_device_unregister(cpufreq_pdev);
platform_driver_unregister(&mtk_cpufreq_platdrv);
}
module_exit(mtk_cpufreq_driver_exit)
MODULE_DESCRIPTION("MediaTek CPUFreq driver");
MODULE_AUTHOR("Pi-Cheng Chen <pi-cheng.chen@linaro.org>");
MODULE_LICENSE("GPL v2");