Michael Buesch 5250703e31 b43: Fix PHY register routing
This fixes the PHY routing bit handling.
This is needed for N-PHY.
No functional change to A-PHY and G-PHY code.

Signed-off-by: Michael Buesch <mb@bu3sch.de>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-01-28 15:09:32 -08:00

1262 lines
33 KiB
C

/*
Broadcom B43 wireless driver
G PHY LO (LocalOscillator) Measuring and Control routines
Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
Copyright (c) 2005, 2006 Stefano Brivio <stefano.brivio@polimi.it>
Copyright (c) 2005-2007 Michael Buesch <mb@bu3sch.de>
Copyright (c) 2005, 2006 Danny van Dyk <kugelfang@gentoo.org>
Copyright (c) 2005, 2006 Andreas Jaggi <andreas.jaggi@waterwave.ch>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "b43.h"
#include "lo.h"
#include "phy.h"
#include "main.h"
#include <linux/delay.h>
#include <linux/sched.h>
/* Define to 1 to always calibrate all possible LO control pairs.
* This is a workaround until we fix the partial LO calibration optimization. */
#define B43_CALIB_ALL_LOCTLS 1
/* Write the LocalOscillator Control (adjust) value-pair. */
static void b43_lo_write(struct b43_wldev *dev, struct b43_loctl *control)
{
struct b43_phy *phy = &dev->phy;
u16 value;
u16 reg;
if (B43_DEBUG) {
if (unlikely(abs(control->i) > 16 || abs(control->q) > 16)) {
b43dbg(dev->wl, "Invalid LO control pair "
"(I: %d, Q: %d)\n", control->i, control->q);
dump_stack();
return;
}
}
value = (u8) (control->q);
value |= ((u8) (control->i)) << 8;
reg = (phy->type == B43_PHYTYPE_B) ? 0x002F : B43_PHY_LO_CTL;
b43_phy_write(dev, reg, value);
}
static int assert_rfatt_and_bbatt(const struct b43_rfatt *rfatt,
const struct b43_bbatt *bbatt,
struct b43_wldev *dev)
{
int err = 0;
/* Check the attenuation values against the LO control array sizes. */
if (unlikely(rfatt->att >= B43_NR_RF)) {
b43err(dev->wl, "rfatt(%u) >= size of LO array\n", rfatt->att);
err = -EINVAL;
}
if (unlikely(bbatt->att >= B43_NR_BB)) {
b43err(dev->wl, "bbatt(%u) >= size of LO array\n", bbatt->att);
err = -EINVAL;
}
return err;
}
#if !B43_CALIB_ALL_LOCTLS
static
struct b43_loctl *b43_get_lo_g_ctl_nopadmix(struct b43_wldev *dev,
const struct b43_rfatt *rfatt,
const struct b43_bbatt *bbatt)
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
if (assert_rfatt_and_bbatt(rfatt, bbatt, dev))
return &(lo->no_padmix[0][0]); /* Just prevent a crash */
return &(lo->no_padmix[bbatt->att][rfatt->att]);
}
#endif /* !B43_CALIB_ALL_LOCTLS */
struct b43_loctl *b43_get_lo_g_ctl(struct b43_wldev *dev,
const struct b43_rfatt *rfatt,
const struct b43_bbatt *bbatt)
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
if (assert_rfatt_and_bbatt(rfatt, bbatt, dev))
return &(lo->no_padmix[0][0]); /* Just prevent a crash */
if (rfatt->with_padmix)
return &(lo->with_padmix[bbatt->att][rfatt->att]);
return &(lo->no_padmix[bbatt->att][rfatt->att]);
}
/* Call a function for every possible LO control value-pair. */
static void b43_call_for_each_loctl(struct b43_wldev *dev,
void (*func) (struct b43_wldev *,
struct b43_loctl *))
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *ctl = phy->lo_control;
int i, j;
for (i = 0; i < B43_NR_BB; i++) {
for (j = 0; j < B43_NR_RF; j++)
func(dev, &(ctl->with_padmix[i][j]));
}
for (i = 0; i < B43_NR_BB; i++) {
for (j = 0; j < B43_NR_RF; j++)
func(dev, &(ctl->no_padmix[i][j]));
}
}
static u16 lo_b_r15_loop(struct b43_wldev *dev)
{
int i;
u16 ret = 0;
for (i = 0; i < 10; i++) {
b43_phy_write(dev, 0x0015, 0xAFA0);
udelay(1);
b43_phy_write(dev, 0x0015, 0xEFA0);
udelay(10);
b43_phy_write(dev, 0x0015, 0xFFA0);
udelay(40);
ret += b43_phy_read(dev, 0x002C);
}
return ret;
}
void b43_lo_b_measure(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
u16 regstack[12] = { 0 };
u16 mls;
u16 fval;
int i, j;
regstack[0] = b43_phy_read(dev, 0x0015);
regstack[1] = b43_radio_read16(dev, 0x0052) & 0xFFF0;
if (phy->radio_ver == 0x2053) {
regstack[2] = b43_phy_read(dev, 0x000A);
regstack[3] = b43_phy_read(dev, 0x002A);
regstack[4] = b43_phy_read(dev, 0x0035);
regstack[5] = b43_phy_read(dev, 0x0003);
regstack[6] = b43_phy_read(dev, 0x0001);
regstack[7] = b43_phy_read(dev, 0x0030);
regstack[8] = b43_radio_read16(dev, 0x0043);
regstack[9] = b43_radio_read16(dev, 0x007A);
regstack[10] = b43_read16(dev, 0x03EC);
regstack[11] = b43_radio_read16(dev, 0x0052) & 0x00F0;
b43_phy_write(dev, 0x0030, 0x00FF);
b43_write16(dev, 0x03EC, 0x3F3F);
b43_phy_write(dev, 0x0035, regstack[4] & 0xFF7F);
b43_radio_write16(dev, 0x007A, regstack[9] & 0xFFF0);
}
b43_phy_write(dev, 0x0015, 0xB000);
b43_phy_write(dev, 0x002B, 0x0004);
if (phy->radio_ver == 0x2053) {
b43_phy_write(dev, 0x002B, 0x0203);
b43_phy_write(dev, 0x002A, 0x08A3);
}
phy->minlowsig[0] = 0xFFFF;
for (i = 0; i < 4; i++) {
b43_radio_write16(dev, 0x0052, regstack[1] | i);
lo_b_r15_loop(dev);
}
for (i = 0; i < 10; i++) {
b43_radio_write16(dev, 0x0052, regstack[1] | i);
mls = lo_b_r15_loop(dev) / 10;
if (mls < phy->minlowsig[0]) {
phy->minlowsig[0] = mls;
phy->minlowsigpos[0] = i;
}
}
b43_radio_write16(dev, 0x0052, regstack[1] | phy->minlowsigpos[0]);
phy->minlowsig[1] = 0xFFFF;
for (i = -4; i < 5; i += 2) {
for (j = -4; j < 5; j += 2) {
if (j < 0)
fval = (0x0100 * i) + j + 0x0100;
else
fval = (0x0100 * i) + j;
b43_phy_write(dev, 0x002F, fval);
mls = lo_b_r15_loop(dev) / 10;
if (mls < phy->minlowsig[1]) {
phy->minlowsig[1] = mls;
phy->minlowsigpos[1] = fval;
}
}
}
phy->minlowsigpos[1] += 0x0101;
b43_phy_write(dev, 0x002F, phy->minlowsigpos[1]);
if (phy->radio_ver == 0x2053) {
b43_phy_write(dev, 0x000A, regstack[2]);
b43_phy_write(dev, 0x002A, regstack[3]);
b43_phy_write(dev, 0x0035, regstack[4]);
b43_phy_write(dev, 0x0003, regstack[5]);
b43_phy_write(dev, 0x0001, regstack[6]);
b43_phy_write(dev, 0x0030, regstack[7]);
b43_radio_write16(dev, 0x0043, regstack[8]);
b43_radio_write16(dev, 0x007A, regstack[9]);
b43_radio_write16(dev, 0x0052,
(b43_radio_read16(dev, 0x0052) & 0x000F)
| regstack[11]);
b43_write16(dev, 0x03EC, regstack[10]);
}
b43_phy_write(dev, 0x0015, regstack[0]);
}
static u16 lo_measure_feedthrough(struct b43_wldev *dev,
u16 lna, u16 pga, u16 trsw_rx)
{
struct b43_phy *phy = &dev->phy;
u16 rfover;
u16 feedthrough;
if (phy->gmode) {
lna <<= B43_PHY_RFOVERVAL_LNA_SHIFT;
pga <<= B43_PHY_RFOVERVAL_PGA_SHIFT;
B43_WARN_ON(lna & ~B43_PHY_RFOVERVAL_LNA);
B43_WARN_ON(pga & ~B43_PHY_RFOVERVAL_PGA);
/*FIXME This assertion fails B43_WARN_ON(trsw_rx & ~(B43_PHY_RFOVERVAL_TRSWRX |
B43_PHY_RFOVERVAL_BW));
*/
trsw_rx &= (B43_PHY_RFOVERVAL_TRSWRX | B43_PHY_RFOVERVAL_BW);
/* Construct the RF Override Value */
rfover = B43_PHY_RFOVERVAL_UNK;
rfover |= pga;
rfover |= lna;
rfover |= trsw_rx;
if ((dev->dev->bus->sprom.boardflags_lo & B43_BFL_EXTLNA)
&& phy->rev > 6)
rfover |= B43_PHY_RFOVERVAL_EXTLNA;
b43_phy_write(dev, B43_PHY_PGACTL, 0xE300);
b43_phy_write(dev, B43_PHY_RFOVERVAL, rfover);
udelay(10);
rfover |= B43_PHY_RFOVERVAL_BW_LBW;
b43_phy_write(dev, B43_PHY_RFOVERVAL, rfover);
udelay(10);
rfover |= B43_PHY_RFOVERVAL_BW_LPF;
b43_phy_write(dev, B43_PHY_RFOVERVAL, rfover);
udelay(10);
b43_phy_write(dev, B43_PHY_PGACTL, 0xF300);
} else {
pga |= B43_PHY_PGACTL_UNKNOWN;
b43_phy_write(dev, B43_PHY_PGACTL, pga);
udelay(10);
pga |= B43_PHY_PGACTL_LOWBANDW;
b43_phy_write(dev, B43_PHY_PGACTL, pga);
udelay(10);
pga |= B43_PHY_PGACTL_LPF;
b43_phy_write(dev, B43_PHY_PGACTL, pga);
}
udelay(21);
feedthrough = b43_phy_read(dev, B43_PHY_LO_LEAKAGE);
/* This is a good place to check if we need to relax a bit,
* as this is the main function called regularly
* in the LO calibration. */
cond_resched();
return feedthrough;
}
/* TXCTL Register and Value Table.
* Returns the "TXCTL Register".
* "value" is the "TXCTL Value".
* "pad_mix_gain" is the PAD Mixer Gain.
*/
static u16 lo_txctl_register_table(struct b43_wldev *dev,
u16 * value, u16 * pad_mix_gain)
{
struct b43_phy *phy = &dev->phy;
u16 reg, v, padmix;
if (phy->type == B43_PHYTYPE_B) {
v = 0x30;
if (phy->radio_rev <= 5) {
reg = 0x43;
padmix = 0;
} else {
reg = 0x52;
padmix = 5;
}
} else {
if (phy->rev >= 2 && phy->radio_rev == 8) {
reg = 0x43;
v = 0x10;
padmix = 2;
} else {
reg = 0x52;
v = 0x30;
padmix = 5;
}
}
if (value)
*value = v;
if (pad_mix_gain)
*pad_mix_gain = padmix;
return reg;
}
static void lo_measure_txctl_values(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
u16 reg, mask;
u16 trsw_rx, pga;
u16 radio_pctl_reg;
static const u8 tx_bias_values[] = {
0x09, 0x08, 0x0A, 0x01, 0x00,
0x02, 0x05, 0x04, 0x06,
};
static const u8 tx_magn_values[] = {
0x70, 0x40,
};
if (!has_loopback_gain(phy)) {
radio_pctl_reg = 6;
trsw_rx = 2;
pga = 0;
} else {
int lb_gain; /* Loopback gain (in dB) */
trsw_rx = 0;
lb_gain = phy->max_lb_gain / 2;
if (lb_gain > 10) {
radio_pctl_reg = 0;
pga = abs(10 - lb_gain) / 6;
pga = limit_value(pga, 0, 15);
} else {
int cmp_val;
int tmp;
pga = 0;
cmp_val = 0x24;
if ((phy->rev >= 2) &&
(phy->radio_ver == 0x2050) && (phy->radio_rev == 8))
cmp_val = 0x3C;
tmp = lb_gain;
if ((10 - lb_gain) < cmp_val)
tmp = (10 - lb_gain);
if (tmp < 0)
tmp += 6;
else
tmp += 3;
cmp_val /= 4;
tmp /= 4;
if (tmp >= cmp_val)
radio_pctl_reg = cmp_val;
else
radio_pctl_reg = tmp;
}
}
b43_radio_write16(dev, 0x43, (b43_radio_read16(dev, 0x43)
& 0xFFF0) | radio_pctl_reg);
b43_phy_set_baseband_attenuation(dev, 2);
reg = lo_txctl_register_table(dev, &mask, NULL);
mask = ~mask;
b43_radio_write16(dev, reg, b43_radio_read16(dev, reg)
& mask);
if (has_tx_magnification(phy)) {
int i, j;
int feedthrough;
int min_feedth = 0xFFFF;
u8 tx_magn, tx_bias;
for (i = 0; i < ARRAY_SIZE(tx_magn_values); i++) {
tx_magn = tx_magn_values[i];
b43_radio_write16(dev, 0x52,
(b43_radio_read16(dev, 0x52)
& 0xFF0F) | tx_magn);
for (j = 0; j < ARRAY_SIZE(tx_bias_values); j++) {
tx_bias = tx_bias_values[j];
b43_radio_write16(dev, 0x52,
(b43_radio_read16(dev, 0x52)
& 0xFFF0) | tx_bias);
feedthrough =
lo_measure_feedthrough(dev, 0, pga,
trsw_rx);
if (feedthrough < min_feedth) {
lo->tx_bias = tx_bias;
lo->tx_magn = tx_magn;
min_feedth = feedthrough;
}
if (lo->tx_bias == 0)
break;
}
b43_radio_write16(dev, 0x52,
(b43_radio_read16(dev, 0x52)
& 0xFF00) | lo->tx_bias | lo->
tx_magn);
}
} else {
lo->tx_magn = 0;
lo->tx_bias = 0;
b43_radio_write16(dev, 0x52, b43_radio_read16(dev, 0x52)
& 0xFFF0); /* TX bias == 0 */
}
}
static void lo_read_power_vector(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
u16 i;
u64 tmp;
u64 power_vector = 0;
int rf_offset, bb_offset;
struct b43_loctl *loctl;
for (i = 0; i < 8; i += 2) {
tmp = b43_shm_read16(dev, B43_SHM_SHARED, 0x310 + i);
/* Clear the top byte. We get holes in the bitmap... */
tmp &= 0xFF;
power_vector |= (tmp << (i * 8));
/* Clear the vector on the device. */
b43_shm_write16(dev, B43_SHM_SHARED, 0x310 + i, 0);
}
if (power_vector)
lo->power_vector = power_vector;
power_vector = lo->power_vector;
for (i = 0; i < 64; i++) {
if (power_vector & ((u64) 1ULL << i)) {
/* Now figure out which b43_loctl corresponds
* to this bit.
*/
rf_offset = i / lo->rfatt_list.len;
bb_offset = i % lo->rfatt_list.len; //FIXME?
loctl =
b43_get_lo_g_ctl(dev,
&lo->rfatt_list.list[rf_offset],
&lo->bbatt_list.list[bb_offset]);
/* And mark it as "used", as the device told us
* through the bitmap it is using it.
*/
loctl->used = 1;
}
}
}
/* 802.11/LO/GPHY/MeasuringGains */
static void lo_measure_gain_values(struct b43_wldev *dev,
s16 max_rx_gain, int use_trsw_rx)
{
struct b43_phy *phy = &dev->phy;
u16 tmp;
if (max_rx_gain < 0)
max_rx_gain = 0;
if (has_loopback_gain(phy)) {
int trsw_rx = 0;
int trsw_rx_gain;
if (use_trsw_rx) {
trsw_rx_gain = phy->trsw_rx_gain / 2;
if (max_rx_gain >= trsw_rx_gain) {
trsw_rx_gain = max_rx_gain - trsw_rx_gain;
trsw_rx = 0x20;
}
} else
trsw_rx_gain = max_rx_gain;
if (trsw_rx_gain < 9) {
phy->lna_lod_gain = 0;
} else {
phy->lna_lod_gain = 1;
trsw_rx_gain -= 8;
}
trsw_rx_gain = limit_value(trsw_rx_gain, 0, 0x2D);
phy->pga_gain = trsw_rx_gain / 3;
if (phy->pga_gain >= 5) {
phy->pga_gain -= 5;
phy->lna_gain = 2;
} else
phy->lna_gain = 0;
} else {
phy->lna_gain = 0;
phy->trsw_rx_gain = 0x20;
if (max_rx_gain >= 0x14) {
phy->lna_lod_gain = 1;
phy->pga_gain = 2;
} else if (max_rx_gain >= 0x12) {
phy->lna_lod_gain = 1;
phy->pga_gain = 1;
} else if (max_rx_gain >= 0xF) {
phy->lna_lod_gain = 1;
phy->pga_gain = 0;
} else {
phy->lna_lod_gain = 0;
phy->pga_gain = 0;
}
}
tmp = b43_radio_read16(dev, 0x7A);
if (phy->lna_lod_gain == 0)
tmp &= ~0x0008;
else
tmp |= 0x0008;
b43_radio_write16(dev, 0x7A, tmp);
}
struct lo_g_saved_values {
u8 old_channel;
/* Core registers */
u16 reg_3F4;
u16 reg_3E2;
/* PHY registers */
u16 phy_lo_mask;
u16 phy_extg_01;
u16 phy_dacctl_hwpctl;
u16 phy_dacctl;
u16 phy_cck_14;
u16 phy_hpwr_tssictl;
u16 phy_analogover;
u16 phy_analogoverval;
u16 phy_rfover;
u16 phy_rfoverval;
u16 phy_classctl;
u16 phy_cck_3E;
u16 phy_crs0;
u16 phy_pgactl;
u16 phy_cck_2A;
u16 phy_syncctl;
u16 phy_cck_30;
u16 phy_cck_06;
/* Radio registers */
u16 radio_43;
u16 radio_7A;
u16 radio_52;
};
static void lo_measure_setup(struct b43_wldev *dev,
struct lo_g_saved_values *sav)
{
struct ssb_sprom *sprom = &dev->dev->bus->sprom;
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
u16 tmp;
if (b43_has_hardware_pctl(phy)) {
sav->phy_lo_mask = b43_phy_read(dev, B43_PHY_LO_MASK);
sav->phy_extg_01 = b43_phy_read(dev, B43_PHY_EXTG(0x01));
sav->phy_dacctl_hwpctl = b43_phy_read(dev, B43_PHY_DACCTL);
sav->phy_cck_14 = b43_phy_read(dev, B43_PHY_CCK(0x14));
sav->phy_hpwr_tssictl = b43_phy_read(dev, B43_PHY_HPWR_TSSICTL);
b43_phy_write(dev, B43_PHY_HPWR_TSSICTL,
b43_phy_read(dev, B43_PHY_HPWR_TSSICTL)
| 0x100);
b43_phy_write(dev, B43_PHY_EXTG(0x01),
b43_phy_read(dev, B43_PHY_EXTG(0x01))
| 0x40);
b43_phy_write(dev, B43_PHY_DACCTL,
b43_phy_read(dev, B43_PHY_DACCTL)
| 0x40);
b43_phy_write(dev, B43_PHY_CCK(0x14),
b43_phy_read(dev, B43_PHY_CCK(0x14))
| 0x200);
}
if (phy->type == B43_PHYTYPE_B &&
phy->radio_ver == 0x2050 && phy->radio_rev < 6) {
b43_phy_write(dev, B43_PHY_CCK(0x16), 0x410);
b43_phy_write(dev, B43_PHY_CCK(0x17), 0x820);
}
if (!lo->rebuild && b43_has_hardware_pctl(phy))
lo_read_power_vector(dev);
if (phy->rev >= 2) {
sav->phy_analogover = b43_phy_read(dev, B43_PHY_ANALOGOVER);
sav->phy_analogoverval =
b43_phy_read(dev, B43_PHY_ANALOGOVERVAL);
sav->phy_rfover = b43_phy_read(dev, B43_PHY_RFOVER);
sav->phy_rfoverval = b43_phy_read(dev, B43_PHY_RFOVERVAL);
sav->phy_classctl = b43_phy_read(dev, B43_PHY_CLASSCTL);
sav->phy_cck_3E = b43_phy_read(dev, B43_PHY_CCK(0x3E));
sav->phy_crs0 = b43_phy_read(dev, B43_PHY_CRS0);
b43_phy_write(dev, B43_PHY_CLASSCTL,
b43_phy_read(dev, B43_PHY_CLASSCTL)
& 0xFFFC);
b43_phy_write(dev, B43_PHY_CRS0, b43_phy_read(dev, B43_PHY_CRS0)
& 0x7FFF);
b43_phy_write(dev, B43_PHY_ANALOGOVER,
b43_phy_read(dev, B43_PHY_ANALOGOVER)
| 0x0003);
b43_phy_write(dev, B43_PHY_ANALOGOVERVAL,
b43_phy_read(dev, B43_PHY_ANALOGOVERVAL)
& 0xFFFC);
if (phy->type == B43_PHYTYPE_G) {
if ((phy->rev >= 7) &&
(sprom->boardflags_lo & B43_BFL_EXTLNA)) {
b43_phy_write(dev, B43_PHY_RFOVER, 0x933);
} else {
b43_phy_write(dev, B43_PHY_RFOVER, 0x133);
}
} else {
b43_phy_write(dev, B43_PHY_RFOVER, 0);
}
b43_phy_write(dev, B43_PHY_CCK(0x3E), 0);
}
sav->reg_3F4 = b43_read16(dev, 0x3F4);
sav->reg_3E2 = b43_read16(dev, 0x3E2);
sav->radio_43 = b43_radio_read16(dev, 0x43);
sav->radio_7A = b43_radio_read16(dev, 0x7A);
sav->phy_pgactl = b43_phy_read(dev, B43_PHY_PGACTL);
sav->phy_cck_2A = b43_phy_read(dev, B43_PHY_CCK(0x2A));
sav->phy_syncctl = b43_phy_read(dev, B43_PHY_SYNCCTL);
sav->phy_dacctl = b43_phy_read(dev, B43_PHY_DACCTL);
if (!has_tx_magnification(phy)) {
sav->radio_52 = b43_radio_read16(dev, 0x52);
sav->radio_52 &= 0x00F0;
}
if (phy->type == B43_PHYTYPE_B) {
sav->phy_cck_30 = b43_phy_read(dev, B43_PHY_CCK(0x30));
sav->phy_cck_06 = b43_phy_read(dev, B43_PHY_CCK(0x06));
b43_phy_write(dev, B43_PHY_CCK(0x30), 0x00FF);
b43_phy_write(dev, B43_PHY_CCK(0x06), 0x3F3F);
} else {
b43_write16(dev, 0x3E2, b43_read16(dev, 0x3E2)
| 0x8000);
}
b43_write16(dev, 0x3F4, b43_read16(dev, 0x3F4)
& 0xF000);
tmp =
(phy->type == B43_PHYTYPE_G) ? B43_PHY_LO_MASK : B43_PHY_CCK(0x2E);
b43_phy_write(dev, tmp, 0x007F);
tmp = sav->phy_syncctl;
b43_phy_write(dev, B43_PHY_SYNCCTL, tmp & 0xFF7F);
tmp = sav->radio_7A;
b43_radio_write16(dev, 0x007A, tmp & 0xFFF0);
b43_phy_write(dev, B43_PHY_CCK(0x2A), 0x8A3);
if (phy->type == B43_PHYTYPE_G ||
(phy->type == B43_PHYTYPE_B &&
phy->radio_ver == 0x2050 && phy->radio_rev >= 6)) {
b43_phy_write(dev, B43_PHY_CCK(0x2B), 0x1003);
} else
b43_phy_write(dev, B43_PHY_CCK(0x2B), 0x0802);
if (phy->rev >= 2)
b43_dummy_transmission(dev);
b43_radio_selectchannel(dev, 6, 0);
b43_radio_read16(dev, 0x51); /* dummy read */
if (phy->type == B43_PHYTYPE_G)
b43_phy_write(dev, B43_PHY_CCK(0x2F), 0);
if (lo->rebuild)
lo_measure_txctl_values(dev);
if (phy->type == B43_PHYTYPE_G && phy->rev >= 3) {
b43_phy_write(dev, B43_PHY_LO_MASK, 0xC078);
} else {
if (phy->type == B43_PHYTYPE_B)
b43_phy_write(dev, B43_PHY_CCK(0x2E), 0x8078);
else
b43_phy_write(dev, B43_PHY_LO_MASK, 0x8078);
}
}
static void lo_measure_restore(struct b43_wldev *dev,
struct lo_g_saved_values *sav)
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
u16 tmp;
if (phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_PGACTL, 0xE300);
tmp = (phy->pga_gain << 8);
b43_phy_write(dev, B43_PHY_RFOVERVAL, tmp | 0xA0);
udelay(5);
b43_phy_write(dev, B43_PHY_RFOVERVAL, tmp | 0xA2);
udelay(2);
b43_phy_write(dev, B43_PHY_RFOVERVAL, tmp | 0xA3);
} else {
tmp = (phy->pga_gain | 0xEFA0);
b43_phy_write(dev, B43_PHY_PGACTL, tmp);
}
if (b43_has_hardware_pctl(phy)) {
b43_gphy_dc_lt_init(dev);
} else {
if (lo->rebuild)
b43_lo_g_adjust_to(dev, 3, 2, 0);
else
b43_lo_g_adjust(dev);
}
if (phy->type == B43_PHYTYPE_G) {
if (phy->rev >= 3)
b43_phy_write(dev, B43_PHY_CCK(0x2E), 0xC078);
else
b43_phy_write(dev, B43_PHY_CCK(0x2E), 0x8078);
if (phy->rev >= 2)
b43_phy_write(dev, B43_PHY_CCK(0x2F), 0x0202);
else
b43_phy_write(dev, B43_PHY_CCK(0x2F), 0x0101);
}
b43_write16(dev, 0x3F4, sav->reg_3F4);
b43_phy_write(dev, B43_PHY_PGACTL, sav->phy_pgactl);
b43_phy_write(dev, B43_PHY_CCK(0x2A), sav->phy_cck_2A);
b43_phy_write(dev, B43_PHY_SYNCCTL, sav->phy_syncctl);
b43_phy_write(dev, B43_PHY_DACCTL, sav->phy_dacctl);
b43_radio_write16(dev, 0x43, sav->radio_43);
b43_radio_write16(dev, 0x7A, sav->radio_7A);
if (!has_tx_magnification(phy)) {
tmp = sav->radio_52;
b43_radio_write16(dev, 0x52, (b43_radio_read16(dev, 0x52)
& 0xFF0F) | tmp);
}
b43_write16(dev, 0x3E2, sav->reg_3E2);
if (phy->type == B43_PHYTYPE_B &&
phy->radio_ver == 0x2050 && phy->radio_rev <= 5) {
b43_phy_write(dev, B43_PHY_CCK(0x30), sav->phy_cck_30);
b43_phy_write(dev, B43_PHY_CCK(0x06), sav->phy_cck_06);
}
if (phy->rev >= 2) {
b43_phy_write(dev, B43_PHY_ANALOGOVER, sav->phy_analogover);
b43_phy_write(dev, B43_PHY_ANALOGOVERVAL,
sav->phy_analogoverval);
b43_phy_write(dev, B43_PHY_CLASSCTL, sav->phy_classctl);
b43_phy_write(dev, B43_PHY_RFOVER, sav->phy_rfover);
b43_phy_write(dev, B43_PHY_RFOVERVAL, sav->phy_rfoverval);
b43_phy_write(dev, B43_PHY_CCK(0x3E), sav->phy_cck_3E);
b43_phy_write(dev, B43_PHY_CRS0, sav->phy_crs0);
}
if (b43_has_hardware_pctl(phy)) {
tmp = (sav->phy_lo_mask & 0xBFFF);
b43_phy_write(dev, B43_PHY_LO_MASK, tmp);
b43_phy_write(dev, B43_PHY_EXTG(0x01), sav->phy_extg_01);
b43_phy_write(dev, B43_PHY_DACCTL, sav->phy_dacctl_hwpctl);
b43_phy_write(dev, B43_PHY_CCK(0x14), sav->phy_cck_14);
b43_phy_write(dev, B43_PHY_HPWR_TSSICTL, sav->phy_hpwr_tssictl);
}
b43_radio_selectchannel(dev, sav->old_channel, 1);
}
struct b43_lo_g_statemachine {
int current_state;
int nr_measured;
int state_val_multiplier;
u16 lowest_feedth;
struct b43_loctl min_loctl;
};
/* Loop over each possible value in this state. */
static int lo_probe_possible_loctls(struct b43_wldev *dev,
struct b43_loctl *probe_loctl,
struct b43_lo_g_statemachine *d)
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
struct b43_loctl test_loctl;
struct b43_loctl orig_loctl;
struct b43_loctl prev_loctl = {
.i = -100,
.q = -100,
};
int i;
int begin, end;
int found_lower = 0;
u16 feedth;
static const struct b43_loctl modifiers[] = {
{.i = 1,.q = 1,},
{.i = 1,.q = 0,},
{.i = 1,.q = -1,},
{.i = 0,.q = -1,},
{.i = -1,.q = -1,},
{.i = -1,.q = 0,},
{.i = -1,.q = 1,},
{.i = 0,.q = 1,},
};
if (d->current_state == 0) {
begin = 1;
end = 8;
} else if (d->current_state % 2 == 0) {
begin = d->current_state - 1;
end = d->current_state + 1;
} else {
begin = d->current_state - 2;
end = d->current_state + 2;
}
if (begin < 1)
begin += 8;
if (end > 8)
end -= 8;
memcpy(&orig_loctl, probe_loctl, sizeof(struct b43_loctl));
i = begin;
d->current_state = i;
while (1) {
B43_WARN_ON(!(i >= 1 && i <= 8));
memcpy(&test_loctl, &orig_loctl, sizeof(struct b43_loctl));
test_loctl.i += modifiers[i - 1].i * d->state_val_multiplier;
test_loctl.q += modifiers[i - 1].q * d->state_val_multiplier;
if ((test_loctl.i != prev_loctl.i ||
test_loctl.q != prev_loctl.q) &&
(abs(test_loctl.i) <= 16 && abs(test_loctl.q) <= 16)) {
b43_lo_write(dev, &test_loctl);
feedth = lo_measure_feedthrough(dev, phy->lna_gain,
phy->pga_gain,
phy->trsw_rx_gain);
if (feedth < d->lowest_feedth) {
memcpy(probe_loctl, &test_loctl,
sizeof(struct b43_loctl));
found_lower = 1;
d->lowest_feedth = feedth;
if ((d->nr_measured < 2) &&
(!has_loopback_gain(phy) || lo->rebuild))
break;
}
}
memcpy(&prev_loctl, &test_loctl, sizeof(prev_loctl));
if (i == end)
break;
if (i == 8)
i = 1;
else
i++;
d->current_state = i;
}
return found_lower;
}
static void lo_probe_loctls_statemachine(struct b43_wldev *dev,
struct b43_loctl *loctl,
int *max_rx_gain)
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
struct b43_lo_g_statemachine d;
u16 feedth;
int found_lower;
struct b43_loctl probe_loctl;
int max_repeat = 1, repeat_cnt = 0;
d.nr_measured = 0;
d.state_val_multiplier = 1;
if (has_loopback_gain(phy) && !lo->rebuild)
d.state_val_multiplier = 3;
memcpy(&d.min_loctl, loctl, sizeof(struct b43_loctl));
if (has_loopback_gain(phy) && lo->rebuild)
max_repeat = 4;
do {
b43_lo_write(dev, &d.min_loctl);
feedth = lo_measure_feedthrough(dev, phy->lna_gain,
phy->pga_gain,
phy->trsw_rx_gain);
if (!lo->rebuild && feedth < 0x258) {
if (feedth >= 0x12C)
*max_rx_gain += 6;
else
*max_rx_gain += 3;
feedth = lo_measure_feedthrough(dev, phy->lna_gain,
phy->pga_gain,
phy->trsw_rx_gain);
}
d.lowest_feedth = feedth;
d.current_state = 0;
do {
B43_WARN_ON(!
(d.current_state >= 0
&& d.current_state <= 8));
memcpy(&probe_loctl, &d.min_loctl,
sizeof(struct b43_loctl));
found_lower =
lo_probe_possible_loctls(dev, &probe_loctl, &d);
if (!found_lower)
break;
if ((probe_loctl.i == d.min_loctl.i) &&
(probe_loctl.q == d.min_loctl.q))
break;
memcpy(&d.min_loctl, &probe_loctl,
sizeof(struct b43_loctl));
d.nr_measured++;
} while (d.nr_measured < 24);
memcpy(loctl, &d.min_loctl, sizeof(struct b43_loctl));
if (has_loopback_gain(phy)) {
if (d.lowest_feedth > 0x1194)
*max_rx_gain -= 6;
else if (d.lowest_feedth < 0x5DC)
*max_rx_gain += 3;
if (repeat_cnt == 0) {
if (d.lowest_feedth <= 0x5DC) {
d.state_val_multiplier = 1;
repeat_cnt++;
} else
d.state_val_multiplier = 2;
} else if (repeat_cnt == 2)
d.state_val_multiplier = 1;
}
lo_measure_gain_values(dev, *max_rx_gain,
has_loopback_gain(phy));
} while (++repeat_cnt < max_repeat);
}
#if B43_CALIB_ALL_LOCTLS
static const struct b43_rfatt b43_full_rfatt_list_items[] = {
{ .att = 0, .with_padmix = 0, },
{ .att = 1, .with_padmix = 0, },
{ .att = 2, .with_padmix = 0, },
{ .att = 3, .with_padmix = 0, },
{ .att = 4, .with_padmix = 0, },
{ .att = 5, .with_padmix = 0, },
{ .att = 6, .with_padmix = 0, },
{ .att = 7, .with_padmix = 0, },
{ .att = 8, .with_padmix = 0, },
{ .att = 9, .with_padmix = 0, },
{ .att = 10, .with_padmix = 0, },
{ .att = 11, .with_padmix = 0, },
{ .att = 12, .with_padmix = 0, },
{ .att = 13, .with_padmix = 0, },
{ .att = 14, .with_padmix = 0, },
{ .att = 15, .with_padmix = 0, },
{ .att = 0, .with_padmix = 1, },
{ .att = 1, .with_padmix = 1, },
{ .att = 2, .with_padmix = 1, },
{ .att = 3, .with_padmix = 1, },
{ .att = 4, .with_padmix = 1, },
{ .att = 5, .with_padmix = 1, },
{ .att = 6, .with_padmix = 1, },
{ .att = 7, .with_padmix = 1, },
{ .att = 8, .with_padmix = 1, },
{ .att = 9, .with_padmix = 1, },
{ .att = 10, .with_padmix = 1, },
{ .att = 11, .with_padmix = 1, },
{ .att = 12, .with_padmix = 1, },
{ .att = 13, .with_padmix = 1, },
{ .att = 14, .with_padmix = 1, },
{ .att = 15, .with_padmix = 1, },
};
static const struct b43_rfatt_list b43_full_rfatt_list = {
.list = b43_full_rfatt_list_items,
.len = ARRAY_SIZE(b43_full_rfatt_list_items),
};
static const struct b43_bbatt b43_full_bbatt_list_items[] = {
{ .att = 0, },
{ .att = 1, },
{ .att = 2, },
{ .att = 3, },
{ .att = 4, },
{ .att = 5, },
{ .att = 6, },
{ .att = 7, },
{ .att = 8, },
{ .att = 9, },
{ .att = 10, },
{ .att = 11, },
};
static const struct b43_bbatt_list b43_full_bbatt_list = {
.list = b43_full_bbatt_list_items,
.len = ARRAY_SIZE(b43_full_bbatt_list_items),
};
#endif /* B43_CALIB_ALL_LOCTLS */
static void lo_measure(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
struct b43_loctl loctl = {
.i = 0,
.q = 0,
};
struct b43_loctl *ploctl;
int max_rx_gain;
int rfidx, bbidx;
const struct b43_bbatt_list *bbatt_list;
const struct b43_rfatt_list *rfatt_list;
/* Values from the "TXCTL Register and Value Table" */
u16 txctl_reg;
u16 txctl_value;
u16 pad_mix_gain;
bbatt_list = &lo->bbatt_list;
rfatt_list = &lo->rfatt_list;
#if B43_CALIB_ALL_LOCTLS
bbatt_list = &b43_full_bbatt_list;
rfatt_list = &b43_full_rfatt_list;
#endif
txctl_reg = lo_txctl_register_table(dev, &txctl_value, &pad_mix_gain);
for (rfidx = 0; rfidx < rfatt_list->len; rfidx++) {
b43_radio_write16(dev, 0x43, (b43_radio_read16(dev, 0x43)
& 0xFFF0) |
rfatt_list->list[rfidx].att);
b43_radio_write16(dev, txctl_reg,
(b43_radio_read16(dev, txctl_reg)
& ~txctl_value)
| (rfatt_list->list[rfidx].with_padmix ?
txctl_value : 0));
for (bbidx = 0; bbidx < bbatt_list->len; bbidx++) {
if (lo->rebuild) {
#if B43_CALIB_ALL_LOCTLS
ploctl = b43_get_lo_g_ctl(dev,
&rfatt_list->list[rfidx],
&bbatt_list->list[bbidx]);
#else
ploctl = b43_get_lo_g_ctl_nopadmix(dev,
&rfatt_list->
list[rfidx],
&bbatt_list->
list[bbidx]);
#endif
} else {
ploctl = b43_get_lo_g_ctl(dev,
&rfatt_list->list[rfidx],
&bbatt_list->list[bbidx]);
if (!ploctl->used)
continue;
}
memcpy(&loctl, ploctl, sizeof(loctl));
loctl.i = 0;
loctl.q = 0;
max_rx_gain = rfatt_list->list[rfidx].att * 2;
max_rx_gain += bbatt_list->list[bbidx].att / 2;
if (rfatt_list->list[rfidx].with_padmix)
max_rx_gain -= pad_mix_gain;
if (has_loopback_gain(phy))
max_rx_gain += phy->max_lb_gain;
lo_measure_gain_values(dev, max_rx_gain,
has_loopback_gain(phy));
b43_phy_set_baseband_attenuation(dev,
bbatt_list->list[bbidx].att);
lo_probe_loctls_statemachine(dev, &loctl, &max_rx_gain);
if (phy->type == B43_PHYTYPE_B) {
loctl.i++;
loctl.q++;
}
b43_loctl_set_calibrated(&loctl, 1);
memcpy(ploctl, &loctl, sizeof(loctl));
}
}
}
#if B43_DEBUG
static void do_validate_loctl(struct b43_wldev *dev, struct b43_loctl *control)
{
const int is_initializing = (b43_status(dev) == B43_STAT_UNINIT);
int i = control->i;
int q = control->q;
if (b43_loctl_is_calibrated(control)) {
if ((abs(i) > 16) || (abs(q) > 16))
goto error;
} else {
if (control->used)
goto error;
if (dev->phy.lo_control->rebuild) {
control->i = 0;
control->q = 0;
if ((i != B43_LOCTL_POISON) ||
(q != B43_LOCTL_POISON))
goto error;
}
}
if (is_initializing && control->used)
goto error;
return;
error:
b43err(dev->wl, "LO control pair validation failed "
"(I: %d, Q: %d, used %u, calib: %u, initing: %d)\n",
i, q, control->used,
b43_loctl_is_calibrated(control),
is_initializing);
}
static void validate_all_loctls(struct b43_wldev *dev)
{
b43_call_for_each_loctl(dev, do_validate_loctl);
}
static void do_reset_calib(struct b43_wldev *dev, struct b43_loctl *control)
{
if (dev->phy.lo_control->rebuild ||
control->used) {
b43_loctl_set_calibrated(control, 0);
control->i = B43_LOCTL_POISON;
control->q = B43_LOCTL_POISON;
}
}
static void reset_all_loctl_calibration_states(struct b43_wldev *dev)
{
b43_call_for_each_loctl(dev, do_reset_calib);
}
#else /* B43_DEBUG */
static inline void validate_all_loctls(struct b43_wldev *dev) { }
static inline void reset_all_loctl_calibration_states(struct b43_wldev *dev) { }
#endif /* B43_DEBUG */
void b43_lo_g_measure(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct lo_g_saved_values uninitialized_var(sav);
B43_WARN_ON((phy->type != B43_PHYTYPE_B) &&
(phy->type != B43_PHYTYPE_G));
sav.old_channel = phy->channel;
lo_measure_setup(dev, &sav);
reset_all_loctl_calibration_states(dev);
lo_measure(dev);
lo_measure_restore(dev, &sav);
validate_all_loctls(dev);
phy->lo_control->lo_measured = 1;
phy->lo_control->rebuild = 0;
}
#if B43_DEBUG
static void validate_loctl_calibration(struct b43_wldev *dev,
struct b43_loctl *loctl,
struct b43_rfatt *rfatt,
struct b43_bbatt *bbatt)
{
if (b43_loctl_is_calibrated(loctl))
return;
if (!dev->phy.lo_control->lo_measured) {
/* On init we set the attenuation values before we
* calibrated the LO. I guess that's OK. */
return;
}
b43err(dev->wl, "Adjusting Local Oscillator to an uncalibrated "
"control pair: rfatt=%u,%spadmix bbatt=%u\n",
rfatt->att,
(rfatt->with_padmix) ? "" : "no-",
bbatt->att);
}
#else
static inline void validate_loctl_calibration(struct b43_wldev *dev,
struct b43_loctl *loctl,
struct b43_rfatt *rfatt,
struct b43_bbatt *bbatt)
{
}
#endif
static inline void fixup_rfatt_for_txcontrol(struct b43_rfatt *rf,
u8 tx_control)
{
if (tx_control & B43_TXCTL_TXMIX) {
if (rf->att < 5)
rf->att = 4;
}
}
void b43_lo_g_adjust(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_rfatt rf;
struct b43_loctl *loctl;
memcpy(&rf, &phy->rfatt, sizeof(rf));
fixup_rfatt_for_txcontrol(&rf, phy->tx_control);
loctl = b43_get_lo_g_ctl(dev, &rf, &phy->bbatt);
validate_loctl_calibration(dev, loctl, &rf, &phy->bbatt);
b43_lo_write(dev, loctl);
}
void b43_lo_g_adjust_to(struct b43_wldev *dev,
u16 rfatt, u16 bbatt, u16 tx_control)
{
struct b43_rfatt rf;
struct b43_bbatt bb;
struct b43_loctl *loctl;
memset(&rf, 0, sizeof(rf));
memset(&bb, 0, sizeof(bb));
rf.att = rfatt;
bb.att = bbatt;
fixup_rfatt_for_txcontrol(&rf, tx_control);
loctl = b43_get_lo_g_ctl(dev, &rf, &bb);
validate_loctl_calibration(dev, loctl, &rf, &bb);
b43_lo_write(dev, loctl);
}
static void do_mark_unused(struct b43_wldev *dev, struct b43_loctl *control)
{
control->used = 0;
}
void b43_lo_g_ctl_mark_all_unused(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_txpower_lo_control *lo = phy->lo_control;
b43_call_for_each_loctl(dev, do_mark_unused);
lo->rebuild = 1;
}
void b43_lo_g_ctl_mark_cur_used(struct b43_wldev *dev)
{
struct b43_phy *phy = &dev->phy;
struct b43_rfatt rf;
memcpy(&rf, &phy->rfatt, sizeof(rf));
fixup_rfatt_for_txcontrol(&rf, phy->tx_control);
b43_get_lo_g_ctl(dev, &rf, &phy->bbatt)->used = 1;
}