linux-next/drivers/hwmon/ltc2992.c
Javier Carrasco 97adb1aace hwmon: (ltc2992) use device_for_each_child_node_scoped() to access child nodes
The iterated nodes are direct children of the device node, and the
`device_for_each_child_node()` macro accounts for child node
availability.

`fwnode_for_each_available_child_node()` is meant to access the child
nodes of an fwnode, and therefore not direct child nodes of the device
node.

In this case, the child nodes are not required outside the loop, and
the scoped version of the macro can be used to remove the repetitive
`goto put` pattern.

Use `device_for_each_child_node_scoped_scoped()` to indicate device's
direct child nodes.

Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Javier Carrasco <javier.carrasco.cruz@gmail.com>
Link: https://lore.kernel.org/r/20240721-device_for_each_child_node-available-v2-2-f33748fd8b2d@gmail.com
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2024-07-31 10:43:52 -07:00

937 lines
24 KiB
C

// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/*
* LTC2992 - Dual Wide Range Power Monitor
*
* Copyright 2020 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/gpio/driver.h>
#include <linux/hwmon.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regmap.h>
#define LTC2992_CTRLB 0x01
#define LTC2992_FAULT1 0x03
#define LTC2992_POWER1 0x05
#define LTC2992_POWER1_MAX 0x08
#define LTC2992_POWER1_MIN 0x0B
#define LTC2992_POWER1_MAX_THRESH 0x0E
#define LTC2992_POWER1_MIN_THRESH 0x11
#define LTC2992_DSENSE1 0x14
#define LTC2992_DSENSE1_MAX 0x16
#define LTC2992_DSENSE1_MIN 0x18
#define LTC2992_DSENSE1_MAX_THRESH 0x1A
#define LTC2992_DSENSE1_MIN_THRESH 0x1C
#define LTC2992_SENSE1 0x1E
#define LTC2992_SENSE1_MAX 0x20
#define LTC2992_SENSE1_MIN 0x22
#define LTC2992_SENSE1_MAX_THRESH 0x24
#define LTC2992_SENSE1_MIN_THRESH 0x26
#define LTC2992_G1 0x28
#define LTC2992_G1_MAX 0x2A
#define LTC2992_G1_MIN 0x2C
#define LTC2992_G1_MAX_THRESH 0x2E
#define LTC2992_G1_MIN_THRESH 0x30
#define LTC2992_FAULT2 0x35
#define LTC2992_G2 0x5A
#define LTC2992_G2_MAX 0x5C
#define LTC2992_G2_MIN 0x5E
#define LTC2992_G2_MAX_THRESH 0x60
#define LTC2992_G2_MIN_THRESH 0x62
#define LTC2992_G3 0x64
#define LTC2992_G3_MAX 0x66
#define LTC2992_G3_MIN 0x68
#define LTC2992_G3_MAX_THRESH 0x6A
#define LTC2992_G3_MIN_THRESH 0x6C
#define LTC2992_G4 0x6E
#define LTC2992_G4_MAX 0x70
#define LTC2992_G4_MIN 0x72
#define LTC2992_G4_MAX_THRESH 0x74
#define LTC2992_G4_MIN_THRESH 0x76
#define LTC2992_FAULT3 0x92
#define LTC2992_GPIO_STATUS 0x95
#define LTC2992_GPIO_IO_CTRL 0x96
#define LTC2992_GPIO_CTRL 0x97
#define LTC2992_POWER(x) (LTC2992_POWER1 + ((x) * 0x32))
#define LTC2992_POWER_MAX(x) (LTC2992_POWER1_MAX + ((x) * 0x32))
#define LTC2992_POWER_MIN(x) (LTC2992_POWER1_MIN + ((x) * 0x32))
#define LTC2992_POWER_MAX_THRESH(x) (LTC2992_POWER1_MAX_THRESH + ((x) * 0x32))
#define LTC2992_POWER_MIN_THRESH(x) (LTC2992_POWER1_MIN_THRESH + ((x) * 0x32))
#define LTC2992_DSENSE(x) (LTC2992_DSENSE1 + ((x) * 0x32))
#define LTC2992_DSENSE_MAX(x) (LTC2992_DSENSE1_MAX + ((x) * 0x32))
#define LTC2992_DSENSE_MIN(x) (LTC2992_DSENSE1_MIN + ((x) * 0x32))
#define LTC2992_DSENSE_MAX_THRESH(x) (LTC2992_DSENSE1_MAX_THRESH + ((x) * 0x32))
#define LTC2992_DSENSE_MIN_THRESH(x) (LTC2992_DSENSE1_MIN_THRESH + ((x) * 0x32))
#define LTC2992_SENSE(x) (LTC2992_SENSE1 + ((x) * 0x32))
#define LTC2992_SENSE_MAX(x) (LTC2992_SENSE1_MAX + ((x) * 0x32))
#define LTC2992_SENSE_MIN(x) (LTC2992_SENSE1_MIN + ((x) * 0x32))
#define LTC2992_SENSE_MAX_THRESH(x) (LTC2992_SENSE1_MAX_THRESH + ((x) * 0x32))
#define LTC2992_SENSE_MIN_THRESH(x) (LTC2992_SENSE1_MIN_THRESH + ((x) * 0x32))
#define LTC2992_POWER_FAULT(x) (LTC2992_FAULT1 + ((x) * 0x32))
#define LTC2992_SENSE_FAULT(x) (LTC2992_FAULT1 + ((x) * 0x32))
#define LTC2992_DSENSE_FAULT(x) (LTC2992_FAULT1 + ((x) * 0x32))
/* CTRLB register bitfields */
#define LTC2992_RESET_HISTORY BIT(3)
/* FAULT1 FAULT2 registers common bitfields */
#define LTC2992_POWER_FAULT_MSK(x) (BIT(6) << (x))
#define LTC2992_DSENSE_FAULT_MSK(x) (BIT(4) << (x))
#define LTC2992_SENSE_FAULT_MSK(x) (BIT(2) << (x))
/* FAULT1 bitfields */
#define LTC2992_GPIO1_FAULT_MSK(x) (BIT(0) << (x))
/* FAULT2 bitfields */
#define LTC2992_GPIO2_FAULT_MSK(x) (BIT(0) << (x))
/* FAULT3 bitfields */
#define LTC2992_GPIO3_FAULT_MSK(x) (BIT(6) << (x))
#define LTC2992_GPIO4_FAULT_MSK(x) (BIT(4) << (x))
#define LTC2992_IADC_NANOV_LSB 12500
#define LTC2992_VADC_UV_LSB 25000
#define LTC2992_VADC_GPIO_UV_LSB 500
#define LTC2992_GPIO_NR 4
#define LTC2992_GPIO1_BIT 7
#define LTC2992_GPIO2_BIT 6
#define LTC2992_GPIO3_BIT 0
#define LTC2992_GPIO4_BIT 6
#define LTC2992_GPIO_BIT(x) (LTC2992_GPIO_NR - (x) - 1)
struct ltc2992_state {
struct i2c_client *client;
struct gpio_chip gc;
struct mutex gpio_mutex; /* lock for gpio access */
const char *gpio_names[LTC2992_GPIO_NR];
struct regmap *regmap;
u32 r_sense_uohm[2];
};
struct ltc2992_gpio_regs {
u8 data;
u8 max;
u8 min;
u8 max_thresh;
u8 min_thresh;
u8 alarm;
u8 min_alarm_msk;
u8 max_alarm_msk;
u8 ctrl;
u8 ctrl_bit;
};
static const struct ltc2992_gpio_regs ltc2992_gpio_addr_map[] = {
{
.data = LTC2992_G1,
.max = LTC2992_G1_MAX,
.min = LTC2992_G1_MIN,
.max_thresh = LTC2992_G1_MAX_THRESH,
.min_thresh = LTC2992_G1_MIN_THRESH,
.alarm = LTC2992_FAULT1,
.min_alarm_msk = LTC2992_GPIO1_FAULT_MSK(0),
.max_alarm_msk = LTC2992_GPIO1_FAULT_MSK(1),
.ctrl = LTC2992_GPIO_IO_CTRL,
.ctrl_bit = LTC2992_GPIO1_BIT,
},
{
.data = LTC2992_G2,
.max = LTC2992_G2_MAX,
.min = LTC2992_G2_MIN,
.max_thresh = LTC2992_G2_MAX_THRESH,
.min_thresh = LTC2992_G2_MIN_THRESH,
.alarm = LTC2992_FAULT2,
.min_alarm_msk = LTC2992_GPIO2_FAULT_MSK(0),
.max_alarm_msk = LTC2992_GPIO2_FAULT_MSK(1),
.ctrl = LTC2992_GPIO_IO_CTRL,
.ctrl_bit = LTC2992_GPIO2_BIT,
},
{
.data = LTC2992_G3,
.max = LTC2992_G3_MAX,
.min = LTC2992_G3_MIN,
.max_thresh = LTC2992_G3_MAX_THRESH,
.min_thresh = LTC2992_G3_MIN_THRESH,
.alarm = LTC2992_FAULT3,
.min_alarm_msk = LTC2992_GPIO3_FAULT_MSK(0),
.max_alarm_msk = LTC2992_GPIO3_FAULT_MSK(1),
.ctrl = LTC2992_GPIO_IO_CTRL,
.ctrl_bit = LTC2992_GPIO3_BIT,
},
{
.data = LTC2992_G4,
.max = LTC2992_G4_MAX,
.min = LTC2992_G4_MIN,
.max_thresh = LTC2992_G4_MAX_THRESH,
.min_thresh = LTC2992_G4_MIN_THRESH,
.alarm = LTC2992_FAULT3,
.min_alarm_msk = LTC2992_GPIO4_FAULT_MSK(0),
.max_alarm_msk = LTC2992_GPIO4_FAULT_MSK(1),
.ctrl = LTC2992_GPIO_CTRL,
.ctrl_bit = LTC2992_GPIO4_BIT,
},
};
static const char *ltc2992_gpio_names[LTC2992_GPIO_NR] = {
"GPIO1", "GPIO2", "GPIO3", "GPIO4",
};
static int ltc2992_read_reg(struct ltc2992_state *st, u8 addr, const u8 reg_len)
{
u8 regvals[4];
int val;
int ret;
int i;
ret = regmap_bulk_read(st->regmap, addr, regvals, reg_len);
if (ret < 0)
return ret;
val = 0;
for (i = 0; i < reg_len; i++)
val |= regvals[reg_len - i - 1] << (i * 8);
return val;
}
static int ltc2992_write_reg(struct ltc2992_state *st, u8 addr, const u8 reg_len, u32 val)
{
u8 regvals[4];
int i;
for (i = 0; i < reg_len; i++)
regvals[reg_len - i - 1] = (val >> (i * 8)) & 0xFF;
return regmap_bulk_write(st->regmap, addr, regvals, reg_len);
}
static int ltc2992_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
struct ltc2992_state *st = gpiochip_get_data(chip);
unsigned long gpio_status;
int reg;
mutex_lock(&st->gpio_mutex);
reg = ltc2992_read_reg(st, LTC2992_GPIO_STATUS, 1);
mutex_unlock(&st->gpio_mutex);
if (reg < 0)
return reg;
gpio_status = reg;
return !test_bit(LTC2992_GPIO_BIT(offset), &gpio_status);
}
static int ltc2992_gpio_get_multiple(struct gpio_chip *chip, unsigned long *mask,
unsigned long *bits)
{
struct ltc2992_state *st = gpiochip_get_data(chip);
unsigned long gpio_status;
unsigned int gpio_nr;
int reg;
mutex_lock(&st->gpio_mutex);
reg = ltc2992_read_reg(st, LTC2992_GPIO_STATUS, 1);
mutex_unlock(&st->gpio_mutex);
if (reg < 0)
return reg;
gpio_status = reg;
for_each_set_bit(gpio_nr, mask, LTC2992_GPIO_NR) {
if (test_bit(LTC2992_GPIO_BIT(gpio_nr), &gpio_status))
set_bit(gpio_nr, bits);
}
return 0;
}
static void ltc2992_gpio_set(struct gpio_chip *chip, unsigned int offset, int value)
{
struct ltc2992_state *st = gpiochip_get_data(chip);
unsigned long gpio_ctrl;
int reg;
mutex_lock(&st->gpio_mutex);
reg = ltc2992_read_reg(st, ltc2992_gpio_addr_map[offset].ctrl, 1);
if (reg < 0) {
mutex_unlock(&st->gpio_mutex);
return;
}
gpio_ctrl = reg;
assign_bit(ltc2992_gpio_addr_map[offset].ctrl_bit, &gpio_ctrl, value);
ltc2992_write_reg(st, ltc2992_gpio_addr_map[offset].ctrl, 1, gpio_ctrl);
mutex_unlock(&st->gpio_mutex);
}
static void ltc2992_gpio_set_multiple(struct gpio_chip *chip, unsigned long *mask,
unsigned long *bits)
{
struct ltc2992_state *st = gpiochip_get_data(chip);
unsigned long gpio_ctrl_io = 0;
unsigned long gpio_ctrl = 0;
unsigned int gpio_nr;
for_each_set_bit(gpio_nr, mask, LTC2992_GPIO_NR) {
if (gpio_nr < 3)
assign_bit(ltc2992_gpio_addr_map[gpio_nr].ctrl_bit, &gpio_ctrl_io, true);
if (gpio_nr == 3)
assign_bit(ltc2992_gpio_addr_map[gpio_nr].ctrl_bit, &gpio_ctrl, true);
}
mutex_lock(&st->gpio_mutex);
ltc2992_write_reg(st, LTC2992_GPIO_IO_CTRL, 1, gpio_ctrl_io);
ltc2992_write_reg(st, LTC2992_GPIO_CTRL, 1, gpio_ctrl);
mutex_unlock(&st->gpio_mutex);
}
static int ltc2992_config_gpio(struct ltc2992_state *st)
{
const char *name = dev_name(&st->client->dev);
char *gpio_name;
int ret;
int i;
ret = ltc2992_write_reg(st, LTC2992_GPIO_IO_CTRL, 1, 0);
if (ret < 0)
return ret;
mutex_init(&st->gpio_mutex);
for (i = 0; i < ARRAY_SIZE(st->gpio_names); i++) {
gpio_name = devm_kasprintf(&st->client->dev, GFP_KERNEL, "ltc2992-%x-%s",
st->client->addr, ltc2992_gpio_names[i]);
if (!gpio_name)
return -ENOMEM;
st->gpio_names[i] = gpio_name;
}
st->gc.label = name;
st->gc.parent = &st->client->dev;
st->gc.owner = THIS_MODULE;
st->gc.can_sleep = true;
st->gc.base = -1;
st->gc.names = st->gpio_names;
st->gc.ngpio = ARRAY_SIZE(st->gpio_names);
st->gc.get = ltc2992_gpio_get;
st->gc.get_multiple = ltc2992_gpio_get_multiple;
st->gc.set = ltc2992_gpio_set;
st->gc.set_multiple = ltc2992_gpio_set_multiple;
ret = devm_gpiochip_add_data(&st->client->dev, &st->gc, st);
if (ret)
dev_err(&st->client->dev, "GPIO registering failed (%d)\n", ret);
return ret;
}
static umode_t ltc2992_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr,
int channel)
{
const struct ltc2992_state *st = data;
switch (type) {
case hwmon_chip:
switch (attr) {
case hwmon_chip_in_reset_history:
return 0200;
}
break;
case hwmon_in:
switch (attr) {
case hwmon_in_input:
case hwmon_in_lowest:
case hwmon_in_highest:
case hwmon_in_min_alarm:
case hwmon_in_max_alarm:
return 0444;
case hwmon_in_min:
case hwmon_in_max:
return 0644;
}
break;
case hwmon_curr:
switch (attr) {
case hwmon_curr_input:
case hwmon_curr_lowest:
case hwmon_curr_highest:
case hwmon_curr_min_alarm:
case hwmon_curr_max_alarm:
if (st->r_sense_uohm[channel])
return 0444;
break;
case hwmon_curr_min:
case hwmon_curr_max:
if (st->r_sense_uohm[channel])
return 0644;
break;
}
break;
case hwmon_power:
switch (attr) {
case hwmon_power_input:
case hwmon_power_input_lowest:
case hwmon_power_input_highest:
case hwmon_power_min_alarm:
case hwmon_power_max_alarm:
if (st->r_sense_uohm[channel])
return 0444;
break;
case hwmon_power_min:
case hwmon_power_max:
if (st->r_sense_uohm[channel])
return 0644;
break;
}
break;
default:
break;
}
return 0;
}
static int ltc2992_get_voltage(struct ltc2992_state *st, u32 reg, u32 scale, long *val)
{
int reg_val;
reg_val = ltc2992_read_reg(st, reg, 2);
if (reg_val < 0)
return reg_val;
reg_val = reg_val >> 4;
*val = DIV_ROUND_CLOSEST(reg_val * scale, 1000);
return 0;
}
static int ltc2992_set_voltage(struct ltc2992_state *st, u32 reg, u32 scale, long val)
{
val = DIV_ROUND_CLOSEST(val * 1000, scale);
val = val << 4;
return ltc2992_write_reg(st, reg, 2, val);
}
static int ltc2992_read_gpio_alarm(struct ltc2992_state *st, int nr_gpio, u32 attr, long *val)
{
int reg_val;
u32 mask;
if (attr == hwmon_in_max_alarm)
mask = ltc2992_gpio_addr_map[nr_gpio].max_alarm_msk;
else
mask = ltc2992_gpio_addr_map[nr_gpio].min_alarm_msk;
reg_val = ltc2992_read_reg(st, ltc2992_gpio_addr_map[nr_gpio].alarm, 1);
if (reg_val < 0)
return reg_val;
*val = !!(reg_val & mask);
reg_val &= ~mask;
return ltc2992_write_reg(st, ltc2992_gpio_addr_map[nr_gpio].alarm, 1, reg_val);
}
static int ltc2992_read_gpios_in(struct device *dev, u32 attr, int nr_gpio, long *val)
{
struct ltc2992_state *st = dev_get_drvdata(dev);
u32 reg;
switch (attr) {
case hwmon_in_input:
reg = ltc2992_gpio_addr_map[nr_gpio].data;
break;
case hwmon_in_lowest:
reg = ltc2992_gpio_addr_map[nr_gpio].min;
break;
case hwmon_in_highest:
reg = ltc2992_gpio_addr_map[nr_gpio].max;
break;
case hwmon_in_min:
reg = ltc2992_gpio_addr_map[nr_gpio].min_thresh;
break;
case hwmon_in_max:
reg = ltc2992_gpio_addr_map[nr_gpio].max_thresh;
break;
case hwmon_in_min_alarm:
case hwmon_in_max_alarm:
return ltc2992_read_gpio_alarm(st, nr_gpio, attr, val);
default:
return -EOPNOTSUPP;
}
return ltc2992_get_voltage(st, reg, LTC2992_VADC_GPIO_UV_LSB, val);
}
static int ltc2992_read_in_alarm(struct ltc2992_state *st, int channel, long *val, u32 attr)
{
int reg_val;
u32 mask;
if (attr == hwmon_in_max_alarm)
mask = LTC2992_SENSE_FAULT_MSK(1);
else
mask = LTC2992_SENSE_FAULT_MSK(0);
reg_val = ltc2992_read_reg(st, LTC2992_SENSE_FAULT(channel), 1);
if (reg_val < 0)
return reg_val;
*val = !!(reg_val & mask);
reg_val &= ~mask;
return ltc2992_write_reg(st, LTC2992_SENSE_FAULT(channel), 1, reg_val);
}
static int ltc2992_read_in(struct device *dev, u32 attr, int channel, long *val)
{
struct ltc2992_state *st = dev_get_drvdata(dev);
u32 reg;
if (channel > 1)
return ltc2992_read_gpios_in(dev, attr, channel - 2, val);
switch (attr) {
case hwmon_in_input:
reg = LTC2992_SENSE(channel);
break;
case hwmon_in_lowest:
reg = LTC2992_SENSE_MIN(channel);
break;
case hwmon_in_highest:
reg = LTC2992_SENSE_MAX(channel);
break;
case hwmon_in_min:
reg = LTC2992_SENSE_MIN_THRESH(channel);
break;
case hwmon_in_max:
reg = LTC2992_SENSE_MAX_THRESH(channel);
break;
case hwmon_in_min_alarm:
case hwmon_in_max_alarm:
return ltc2992_read_in_alarm(st, channel, val, attr);
default:
return -EOPNOTSUPP;
}
return ltc2992_get_voltage(st, reg, LTC2992_VADC_UV_LSB, val);
}
static int ltc2992_get_current(struct ltc2992_state *st, u32 reg, u32 channel, long *val)
{
int reg_val;
reg_val = ltc2992_read_reg(st, reg, 2);
if (reg_val < 0)
return reg_val;
reg_val = reg_val >> 4;
*val = DIV_ROUND_CLOSEST(reg_val * LTC2992_IADC_NANOV_LSB, st->r_sense_uohm[channel]);
return 0;
}
static int ltc2992_set_current(struct ltc2992_state *st, u32 reg, u32 channel, long val)
{
u32 reg_val;
reg_val = DIV_ROUND_CLOSEST(val * st->r_sense_uohm[channel], LTC2992_IADC_NANOV_LSB);
reg_val = reg_val << 4;
return ltc2992_write_reg(st, reg, 2, reg_val);
}
static int ltc2992_read_curr_alarm(struct ltc2992_state *st, int channel, long *val, u32 attr)
{
int reg_val;
u32 mask;
if (attr == hwmon_curr_max_alarm)
mask = LTC2992_DSENSE_FAULT_MSK(1);
else
mask = LTC2992_DSENSE_FAULT_MSK(0);
reg_val = ltc2992_read_reg(st, LTC2992_DSENSE_FAULT(channel), 1);
if (reg_val < 0)
return reg_val;
*val = !!(reg_val & mask);
reg_val &= ~mask;
return ltc2992_write_reg(st, LTC2992_DSENSE_FAULT(channel), 1, reg_val);
}
static int ltc2992_read_curr(struct device *dev, u32 attr, int channel, long *val)
{
struct ltc2992_state *st = dev_get_drvdata(dev);
u32 reg;
switch (attr) {
case hwmon_curr_input:
reg = LTC2992_DSENSE(channel);
break;
case hwmon_curr_lowest:
reg = LTC2992_DSENSE_MIN(channel);
break;
case hwmon_curr_highest:
reg = LTC2992_DSENSE_MAX(channel);
break;
case hwmon_curr_min:
reg = LTC2992_DSENSE_MIN_THRESH(channel);
break;
case hwmon_curr_max:
reg = LTC2992_DSENSE_MAX_THRESH(channel);
break;
case hwmon_curr_min_alarm:
case hwmon_curr_max_alarm:
return ltc2992_read_curr_alarm(st, channel, val, attr);
default:
return -EOPNOTSUPP;
}
return ltc2992_get_current(st, reg, channel, val);
}
static int ltc2992_get_power(struct ltc2992_state *st, u32 reg, u32 channel, long *val)
{
int reg_val;
reg_val = ltc2992_read_reg(st, reg, 3);
if (reg_val < 0)
return reg_val;
*val = mul_u64_u32_div(reg_val, LTC2992_VADC_UV_LSB * LTC2992_IADC_NANOV_LSB,
st->r_sense_uohm[channel] * 1000);
return 0;
}
static int ltc2992_set_power(struct ltc2992_state *st, u32 reg, u32 channel, long val)
{
u32 reg_val;
reg_val = mul_u64_u32_div(val, st->r_sense_uohm[channel] * 1000,
LTC2992_VADC_UV_LSB * LTC2992_IADC_NANOV_LSB);
return ltc2992_write_reg(st, reg, 3, reg_val);
}
static int ltc2992_read_power_alarm(struct ltc2992_state *st, int channel, long *val, u32 attr)
{
int reg_val;
u32 mask;
if (attr == hwmon_power_max_alarm)
mask = LTC2992_POWER_FAULT_MSK(1);
else
mask = LTC2992_POWER_FAULT_MSK(0);
reg_val = ltc2992_read_reg(st, LTC2992_POWER_FAULT(channel), 1);
if (reg_val < 0)
return reg_val;
*val = !!(reg_val & mask);
reg_val &= ~mask;
return ltc2992_write_reg(st, LTC2992_POWER_FAULT(channel), 1, reg_val);
}
static int ltc2992_read_power(struct device *dev, u32 attr, int channel, long *val)
{
struct ltc2992_state *st = dev_get_drvdata(dev);
u32 reg;
switch (attr) {
case hwmon_power_input:
reg = LTC2992_POWER(channel);
break;
case hwmon_power_input_lowest:
reg = LTC2992_POWER_MIN(channel);
break;
case hwmon_power_input_highest:
reg = LTC2992_POWER_MAX(channel);
break;
case hwmon_power_min:
reg = LTC2992_POWER_MIN_THRESH(channel);
break;
case hwmon_power_max:
reg = LTC2992_POWER_MAX_THRESH(channel);
break;
case hwmon_power_min_alarm:
case hwmon_power_max_alarm:
return ltc2992_read_power_alarm(st, channel, val, attr);
default:
return -EOPNOTSUPP;
}
return ltc2992_get_power(st, reg, channel, val);
}
static int ltc2992_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel,
long *val)
{
switch (type) {
case hwmon_in:
return ltc2992_read_in(dev, attr, channel, val);
case hwmon_curr:
return ltc2992_read_curr(dev, attr, channel, val);
case hwmon_power:
return ltc2992_read_power(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static int ltc2992_write_curr(struct device *dev, u32 attr, int channel, long val)
{
struct ltc2992_state *st = dev_get_drvdata(dev);
u32 reg;
switch (attr) {
case hwmon_curr_min:
reg = LTC2992_DSENSE_MIN_THRESH(channel);
break;
case hwmon_curr_max:
reg = LTC2992_DSENSE_MAX_THRESH(channel);
break;
default:
return -EOPNOTSUPP;
}
return ltc2992_set_current(st, reg, channel, val);
}
static int ltc2992_write_gpios_in(struct device *dev, u32 attr, int nr_gpio, long val)
{
struct ltc2992_state *st = dev_get_drvdata(dev);
u32 reg;
switch (attr) {
case hwmon_in_min:
reg = ltc2992_gpio_addr_map[nr_gpio].min_thresh;
break;
case hwmon_in_max:
reg = ltc2992_gpio_addr_map[nr_gpio].max_thresh;
break;
default:
return -EOPNOTSUPP;
}
return ltc2992_set_voltage(st, reg, LTC2992_VADC_GPIO_UV_LSB, val);
}
static int ltc2992_write_in(struct device *dev, u32 attr, int channel, long val)
{
struct ltc2992_state *st = dev_get_drvdata(dev);
u32 reg;
if (channel > 1)
return ltc2992_write_gpios_in(dev, attr, channel - 2, val);
switch (attr) {
case hwmon_in_min:
reg = LTC2992_SENSE_MIN_THRESH(channel);
break;
case hwmon_in_max:
reg = LTC2992_SENSE_MAX_THRESH(channel);
break;
default:
return -EOPNOTSUPP;
}
return ltc2992_set_voltage(st, reg, LTC2992_VADC_UV_LSB, val);
}
static int ltc2992_write_power(struct device *dev, u32 attr, int channel, long val)
{
struct ltc2992_state *st = dev_get_drvdata(dev);
u32 reg;
switch (attr) {
case hwmon_power_min:
reg = LTC2992_POWER_MIN_THRESH(channel);
break;
case hwmon_power_max:
reg = LTC2992_POWER_MAX_THRESH(channel);
break;
default:
return -EOPNOTSUPP;
}
return ltc2992_set_power(st, reg, channel, val);
}
static int ltc2992_write_chip(struct device *dev, u32 attr, int channel, long val)
{
struct ltc2992_state *st = dev_get_drvdata(dev);
switch (attr) {
case hwmon_chip_in_reset_history:
return regmap_update_bits(st->regmap, LTC2992_CTRLB, LTC2992_RESET_HISTORY,
LTC2992_RESET_HISTORY);
default:
return -EOPNOTSUPP;
}
}
static int ltc2992_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel,
long val)
{
switch (type) {
case hwmon_chip:
return ltc2992_write_chip(dev, attr, channel, val);
case hwmon_in:
return ltc2992_write_in(dev, attr, channel, val);
case hwmon_curr:
return ltc2992_write_curr(dev, attr, channel, val);
case hwmon_power:
return ltc2992_write_power(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static const struct hwmon_ops ltc2992_hwmon_ops = {
.is_visible = ltc2992_is_visible,
.read = ltc2992_read,
.write = ltc2992_write,
};
static const struct hwmon_channel_info * const ltc2992_info[] = {
HWMON_CHANNEL_INFO(chip,
HWMON_C_IN_RESET_HISTORY),
HWMON_CHANNEL_INFO(in,
HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST | HWMON_I_MIN |
HWMON_I_MAX | HWMON_I_MIN_ALARM | HWMON_I_MAX_ALARM,
HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST | HWMON_I_MIN |
HWMON_I_MAX | HWMON_I_MIN_ALARM | HWMON_I_MAX_ALARM,
HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST | HWMON_I_MIN |
HWMON_I_MAX | HWMON_I_MIN_ALARM | HWMON_I_MAX_ALARM,
HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST | HWMON_I_MIN |
HWMON_I_MAX | HWMON_I_MIN_ALARM | HWMON_I_MAX_ALARM,
HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST | HWMON_I_MIN |
HWMON_I_MAX | HWMON_I_MIN_ALARM | HWMON_I_MAX_ALARM,
HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST | HWMON_I_MIN |
HWMON_I_MAX | HWMON_I_MIN_ALARM | HWMON_I_MAX_ALARM),
HWMON_CHANNEL_INFO(curr,
HWMON_C_INPUT | HWMON_C_LOWEST | HWMON_C_HIGHEST | HWMON_C_MIN |
HWMON_C_MAX | HWMON_C_MIN_ALARM | HWMON_C_MAX_ALARM,
HWMON_C_INPUT | HWMON_C_LOWEST | HWMON_C_HIGHEST | HWMON_C_MIN |
HWMON_C_MAX | HWMON_C_MIN_ALARM | HWMON_C_MAX_ALARM),
HWMON_CHANNEL_INFO(power,
HWMON_P_INPUT | HWMON_P_INPUT_LOWEST | HWMON_P_INPUT_HIGHEST |
HWMON_P_MIN | HWMON_P_MAX | HWMON_P_MIN_ALARM | HWMON_P_MAX_ALARM,
HWMON_P_INPUT | HWMON_P_INPUT_LOWEST | HWMON_P_INPUT_HIGHEST |
HWMON_P_MIN | HWMON_P_MAX | HWMON_P_MIN_ALARM | HWMON_P_MAX_ALARM),
NULL
};
static const struct hwmon_chip_info ltc2992_chip_info = {
.ops = &ltc2992_hwmon_ops,
.info = ltc2992_info,
};
static const struct regmap_config ltc2992_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xE8,
};
static int ltc2992_parse_dt(struct ltc2992_state *st)
{
u32 addr;
u32 val;
int ret;
device_for_each_child_node_scoped(&st->client->dev, child) {
ret = fwnode_property_read_u32(child, "reg", &addr);
if (ret < 0)
return ret;
if (addr > 1)
return -EINVAL;
ret = fwnode_property_read_u32(child, "shunt-resistor-micro-ohms", &val);
if (!ret) {
if (!val)
return dev_err_probe(&st->client->dev, -EINVAL,
"shunt resistor value cannot be zero\n");
st->r_sense_uohm[addr] = val;
}
}
return 0;
}
static int ltc2992_i2c_probe(struct i2c_client *client)
{
struct device *hwmon_dev;
struct ltc2992_state *st;
int ret;
st = devm_kzalloc(&client->dev, sizeof(*st), GFP_KERNEL);
if (!st)
return -ENOMEM;
st->client = client;
st->regmap = devm_regmap_init_i2c(client, &ltc2992_regmap_config);
if (IS_ERR(st->regmap))
return PTR_ERR(st->regmap);
ret = ltc2992_parse_dt(st);
if (ret < 0)
return ret;
ret = ltc2992_config_gpio(st);
if (ret < 0)
return ret;
hwmon_dev = devm_hwmon_device_register_with_info(&client->dev, client->name, st,
&ltc2992_chip_info, NULL);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct of_device_id ltc2992_of_match[] = {
{ .compatible = "adi,ltc2992" },
{ }
};
MODULE_DEVICE_TABLE(of, ltc2992_of_match);
static const struct i2c_device_id ltc2992_i2c_id[] = {
{"ltc2992"},
{}
};
MODULE_DEVICE_TABLE(i2c, ltc2992_i2c_id);
static struct i2c_driver ltc2992_i2c_driver = {
.driver = {
.name = "ltc2992",
.of_match_table = ltc2992_of_match,
},
.probe = ltc2992_i2c_probe,
.id_table = ltc2992_i2c_id,
};
module_i2c_driver(ltc2992_i2c_driver);
MODULE_AUTHOR("Alexandru Tachici <alexandru.tachici@analog.com>");
MODULE_DESCRIPTION("Hwmon driver for Linear Technology 2992");
MODULE_LICENSE("Dual BSD/GPL");