Frank Haverkamp 12eb468325 GenWQE PCI support, health monitoring and recovery
Module initialization and PCIe setup. Card health monitoring and
recovery functionality. Character device creation and deletion are
controlled from here.

Signed-off-by: Frank Haverkamp <haver@linux.vnet.ibm.com>
Co-authors: Joerg-Stephan Vogt <jsvogt@de.ibm.com>,
            Michael Jung <MIJUNG@de.ibm.com>,
            Michael Ruettger <michael@ibmra.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-18 16:51:15 -08:00

1206 lines
30 KiB
C

/**
* IBM Accelerator Family 'GenWQE'
*
* (C) Copyright IBM Corp. 2013
*
* Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
* Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
* Author: Michael Jung <mijung@de.ibm.com>
* Author: Michael Ruettger <michael@ibmra.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/*
* Module initialization and PCIe setup. Card health monitoring and
* recovery functionality. Character device creation and deletion are
* controlled from here.
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/err.h>
#include <linux/aer.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/device.h>
#include <linux/log2.h>
#include <linux/genwqe/genwqe_card.h>
#include "card_base.h"
#include "card_ddcb.h"
MODULE_AUTHOR("Frank Haverkamp <haver@linux.vnet.ibm.com>");
MODULE_AUTHOR("Michael Ruettger <michael@ibmra.de>");
MODULE_AUTHOR("Joerg-Stephan Vogt <jsvogt@de.ibm.com>");
MODULE_AUTHOR("Michal Jung <mijung@de.ibm.com>");
MODULE_DESCRIPTION("GenWQE Card");
MODULE_VERSION(DRV_VERS_STRING);
MODULE_LICENSE("GPL");
static char genwqe_driver_name[] = GENWQE_DEVNAME;
static struct class *class_genwqe;
static struct dentry *debugfs_genwqe;
static struct genwqe_dev *genwqe_devices[GENWQE_CARD_NO_MAX];
/* PCI structure for identifying device by PCI vendor and device ID */
static DEFINE_PCI_DEVICE_TABLE(genwqe_device_table) = {
{ .vendor = PCI_VENDOR_ID_IBM,
.device = PCI_DEVICE_GENWQE,
.subvendor = PCI_SUBVENDOR_ID_IBM,
.subdevice = PCI_SUBSYSTEM_ID_GENWQE5,
.class = (PCI_CLASSCODE_GENWQE5 << 8),
.class_mask = ~0,
.driver_data = 0 },
/* Initial SR-IOV bring-up image */
{ .vendor = PCI_VENDOR_ID_IBM,
.device = PCI_DEVICE_GENWQE,
.subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV,
.subdevice = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
.class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
.class_mask = ~0,
.driver_data = 0 },
{ .vendor = PCI_VENDOR_ID_IBM, /* VF Vendor ID */
.device = 0x0000, /* VF Device ID */
.subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV,
.subdevice = PCI_SUBSYSTEM_ID_GENWQE5_SRIOV,
.class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
.class_mask = ~0,
.driver_data = 0 },
/* Fixed up image */
{ .vendor = PCI_VENDOR_ID_IBM,
.device = PCI_DEVICE_GENWQE,
.subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV,
.subdevice = PCI_SUBSYSTEM_ID_GENWQE5,
.class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
.class_mask = ~0,
.driver_data = 0 },
{ .vendor = PCI_VENDOR_ID_IBM, /* VF Vendor ID */
.device = 0x0000, /* VF Device ID */
.subvendor = PCI_SUBVENDOR_ID_IBM_SRIOV,
.subdevice = PCI_SUBSYSTEM_ID_GENWQE5,
.class = (PCI_CLASSCODE_GENWQE5_SRIOV << 8),
.class_mask = ~0,
.driver_data = 0 },
/* Even one more ... */
{ .vendor = PCI_VENDOR_ID_IBM,
.device = PCI_DEVICE_GENWQE,
.subvendor = PCI_SUBVENDOR_ID_IBM,
.subdevice = PCI_SUBSYSTEM_ID_GENWQE5_NEW,
.class = (PCI_CLASSCODE_GENWQE5 << 8),
.class_mask = ~0,
.driver_data = 0 },
{ 0, } /* 0 terminated list. */
};
MODULE_DEVICE_TABLE(pci, genwqe_device_table);
/**
* genwqe_dev_alloc() - Create and prepare a new card descriptor
*
* Return: Pointer to card descriptor, or ERR_PTR(err) on error
*/
static struct genwqe_dev *genwqe_dev_alloc(void)
{
unsigned int i = 0, j;
struct genwqe_dev *cd;
for (i = 0; i < GENWQE_CARD_NO_MAX; i++) {
if (genwqe_devices[i] == NULL)
break;
}
if (i >= GENWQE_CARD_NO_MAX)
return ERR_PTR(-ENODEV);
cd = kzalloc(sizeof(struct genwqe_dev), GFP_KERNEL);
if (!cd)
return ERR_PTR(-ENOMEM);
cd->card_idx = i;
cd->class_genwqe = class_genwqe;
cd->debugfs_genwqe = debugfs_genwqe;
init_waitqueue_head(&cd->queue_waitq);
spin_lock_init(&cd->file_lock);
INIT_LIST_HEAD(&cd->file_list);
cd->card_state = GENWQE_CARD_UNUSED;
spin_lock_init(&cd->print_lock);
cd->ddcb_software_timeout = genwqe_ddcb_software_timeout;
cd->kill_timeout = genwqe_kill_timeout;
for (j = 0; j < GENWQE_MAX_VFS; j++)
cd->vf_jobtimeout_msec[j] = genwqe_vf_jobtimeout_msec;
genwqe_devices[i] = cd;
return cd;
}
static void genwqe_dev_free(struct genwqe_dev *cd)
{
if (!cd)
return;
genwqe_devices[cd->card_idx] = NULL;
kfree(cd);
}
/**
* genwqe_bus_reset() - Card recovery
*
* pci_reset_function() will recover the device and ensure that the
* registers are accessible again when it completes with success. If
* not, the card will stay dead and registers will be unaccessible
* still.
*/
static int genwqe_bus_reset(struct genwqe_dev *cd)
{
int bars, rc = 0;
struct pci_dev *pci_dev = cd->pci_dev;
void __iomem *mmio;
if (cd->err_inject & GENWQE_INJECT_BUS_RESET_FAILURE)
return -EIO;
mmio = cd->mmio;
cd->mmio = NULL;
pci_iounmap(pci_dev, mmio);
bars = pci_select_bars(pci_dev, IORESOURCE_MEM);
pci_release_selected_regions(pci_dev, bars);
/*
* Firmware/BIOS might change memory mapping during bus reset.
* Settings like enable bus-mastering, ... are backuped and
* restored by the pci_reset_function().
*/
dev_dbg(&pci_dev->dev, "[%s] pci_reset function ...\n", __func__);
rc = pci_reset_function(pci_dev);
if (rc) {
dev_err(&pci_dev->dev,
"[%s] err: failed reset func (rc %d)\n", __func__, rc);
return rc;
}
dev_dbg(&pci_dev->dev, "[%s] done with rc=%d\n", __func__, rc);
/*
* Here is the right spot to clear the register read
* failure. pci_bus_reset() does this job in real systems.
*/
cd->err_inject &= ~(GENWQE_INJECT_HARDWARE_FAILURE |
GENWQE_INJECT_GFIR_FATAL |
GENWQE_INJECT_GFIR_INFO);
rc = pci_request_selected_regions(pci_dev, bars, genwqe_driver_name);
if (rc) {
dev_err(&pci_dev->dev,
"[%s] err: request bars failed (%d)\n", __func__, rc);
return -EIO;
}
cd->mmio = pci_iomap(pci_dev, 0, 0);
if (cd->mmio == NULL) {
dev_err(&pci_dev->dev,
"[%s] err: mapping BAR0 failed\n", __func__);
return -ENOMEM;
}
return 0;
}
/*
* Hardware circumvention section. Certain bitstreams in our test-lab
* had different kinds of problems. Here is where we adjust those
* bitstreams to function will with this version of our device driver.
*
* Thise circumventions are applied to the physical function only.
* The magical numbers below are identifying development/manufacturing
* versions of the bitstream used on the card.
*
* Turn off error reporting for old/manufacturing images.
*/
bool genwqe_need_err_masking(struct genwqe_dev *cd)
{
return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
}
static void genwqe_tweak_hardware(struct genwqe_dev *cd)
{
struct pci_dev *pci_dev = cd->pci_dev;
/* Mask FIRs for development images */
if (((cd->slu_unitcfg & 0xFFFF0ull) >= 0x32000ull) &&
((cd->slu_unitcfg & 0xFFFF0ull) <= 0x33250ull)) {
dev_warn(&pci_dev->dev,
"FIRs masked due to bitstream %016llx.%016llx\n",
cd->slu_unitcfg, cd->app_unitcfg);
__genwqe_writeq(cd, IO_APP_SEC_LEM_DEBUG_OVR,
0xFFFFFFFFFFFFFFFFull);
__genwqe_writeq(cd, IO_APP_ERR_ACT_MASK,
0x0000000000000000ull);
}
}
/**
* genwqe_recovery_on_fatal_gfir_required() - Version depended actions
*
* Bitstreams older than 2013-02-17 have a bug where fatal GFIRs must
* be ignored. This is e.g. true for the bitstream we gave to the card
* manufacturer, but also for some old bitstreams we released to our
* test-lab.
*/
int genwqe_recovery_on_fatal_gfir_required(struct genwqe_dev *cd)
{
return (cd->slu_unitcfg & 0xFFFF0ull) >= 0x32170ull;
}
int genwqe_flash_readback_fails(struct genwqe_dev *cd)
{
return (cd->slu_unitcfg & 0xFFFF0ull) < 0x32170ull;
}
/**
* genwqe_T_psec() - Calculate PF/VF timeout register content
*
* Note: From a design perspective it turned out to be a bad idea to
* use codes here to specifiy the frequency/speed values. An old
* driver cannot understand new codes and is therefore always a
* problem. Better is to measure out the value or put the
* speed/frequency directly into a register which is always a valid
* value for old as well as for new software.
*/
/* T = 1/f */
static int genwqe_T_psec(struct genwqe_dev *cd)
{
u16 speed; /* 1/f -> 250, 200, 166, 175 */
static const int T[] = { 4000, 5000, 6000, 5714 };
speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
if (speed >= ARRAY_SIZE(T))
return -1; /* illegal value */
return T[speed];
}
/**
* genwqe_setup_pf_jtimer() - Setup PF hardware timeouts for DDCB execution
*
* Do this _after_ card_reset() is called. Otherwise the values will
* vanish. The settings need to be done when the queues are inactive.
*
* The max. timeout value is 2^(10+x) * T (6ns for 166MHz) * 15/16.
* The min. timeout value is 2^(10+x) * T (6ns for 166MHz) * 14/16.
*/
static bool genwqe_setup_pf_jtimer(struct genwqe_dev *cd)
{
u32 T = genwqe_T_psec(cd);
u64 x;
if (genwqe_pf_jobtimeout_msec == 0)
return false;
/* PF: large value needed, flash update 2sec per block */
x = ilog2(genwqe_pf_jobtimeout_msec *
16000000000uL/(T * 15)) - 10;
genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
0xff00 | (x & 0xff), 0);
return true;
}
/**
* genwqe_setup_vf_jtimer() - Setup VF hardware timeouts for DDCB execution
*/
static bool genwqe_setup_vf_jtimer(struct genwqe_dev *cd)
{
struct pci_dev *pci_dev = cd->pci_dev;
unsigned int vf;
u32 T = genwqe_T_psec(cd);
u64 x;
for (vf = 0; vf < pci_sriov_get_totalvfs(pci_dev); vf++) {
if (cd->vf_jobtimeout_msec[vf] == 0)
continue;
x = ilog2(cd->vf_jobtimeout_msec[vf] *
16000000000uL/(T * 15)) - 10;
genwqe_write_vreg(cd, IO_SLC_VF_APPJOB_TIMEOUT,
0xff00 | (x & 0xff), vf + 1);
}
return true;
}
static int genwqe_ffdc_buffs_alloc(struct genwqe_dev *cd)
{
unsigned int type, e = 0;
for (type = 0; type < GENWQE_DBG_UNITS; type++) {
switch (type) {
case GENWQE_DBG_UNIT0:
e = genwqe_ffdc_buff_size(cd, 0);
break;
case GENWQE_DBG_UNIT1:
e = genwqe_ffdc_buff_size(cd, 1);
break;
case GENWQE_DBG_UNIT2:
e = genwqe_ffdc_buff_size(cd, 2);
break;
case GENWQE_DBG_REGS:
e = GENWQE_FFDC_REGS;
break;
}
/* currently support only the debug units mentioned here */
cd->ffdc[type].entries = e;
cd->ffdc[type].regs = kmalloc(e * sizeof(struct genwqe_reg),
GFP_KERNEL);
/*
* regs == NULL is ok, the using code treats this as no regs,
* Printing warning is ok in this case.
*/
}
return 0;
}
static void genwqe_ffdc_buffs_free(struct genwqe_dev *cd)
{
unsigned int type;
for (type = 0; type < GENWQE_DBG_UNITS; type++) {
kfree(cd->ffdc[type].regs);
cd->ffdc[type].regs = NULL;
}
}
static int genwqe_read_ids(struct genwqe_dev *cd)
{
int err = 0;
int slu_id;
struct pci_dev *pci_dev = cd->pci_dev;
cd->slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
if (cd->slu_unitcfg == IO_ILLEGAL_VALUE) {
dev_err(&pci_dev->dev,
"err: SLUID=%016llx\n", cd->slu_unitcfg);
err = -EIO;
goto out_err;
}
slu_id = genwqe_get_slu_id(cd);
if (slu_id < GENWQE_SLU_ARCH_REQ || slu_id == 0xff) {
dev_err(&pci_dev->dev,
"err: incompatible SLU Architecture %u\n", slu_id);
err = -ENOENT;
goto out_err;
}
cd->app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
if (cd->app_unitcfg == IO_ILLEGAL_VALUE) {
dev_err(&pci_dev->dev,
"err: APPID=%016llx\n", cd->app_unitcfg);
err = -EIO;
goto out_err;
}
genwqe_read_app_id(cd, cd->app_name, sizeof(cd->app_name));
/*
* Is access to all registers possible? If we are a VF the
* answer is obvious. If we run fully virtualized, we need to
* check if we can access all registers. If we do not have
* full access we will cause an UR and some informational FIRs
* in the PF, but that should not harm.
*/
if (pci_dev->is_virtfn)
cd->is_privileged = 0;
else
cd->is_privileged = (__genwqe_readq(cd, IO_SLU_BITSTREAM)
!= IO_ILLEGAL_VALUE);
out_err:
return err;
}
static int genwqe_start(struct genwqe_dev *cd)
{
int err;
struct pci_dev *pci_dev = cd->pci_dev;
err = genwqe_read_ids(cd);
if (err)
return err;
if (genwqe_is_privileged(cd)) {
/* do this after the tweaks. alloc fail is acceptable */
genwqe_ffdc_buffs_alloc(cd);
genwqe_stop_traps(cd);
/* Collect registers e.g. FIRs, UNITIDs, traces ... */
genwqe_read_ffdc_regs(cd, cd->ffdc[GENWQE_DBG_REGS].regs,
cd->ffdc[GENWQE_DBG_REGS].entries, 0);
genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT0,
cd->ffdc[GENWQE_DBG_UNIT0].regs,
cd->ffdc[GENWQE_DBG_UNIT0].entries);
genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT1,
cd->ffdc[GENWQE_DBG_UNIT1].regs,
cd->ffdc[GENWQE_DBG_UNIT1].entries);
genwqe_ffdc_buff_read(cd, GENWQE_DBG_UNIT2,
cd->ffdc[GENWQE_DBG_UNIT2].regs,
cd->ffdc[GENWQE_DBG_UNIT2].entries);
genwqe_start_traps(cd);
if (cd->card_state == GENWQE_CARD_FATAL_ERROR) {
dev_warn(&pci_dev->dev,
"[%s] chip reload/recovery!\n", __func__);
/*
* Stealth Mode: Reload chip on either hot
* reset or PERST.
*/
cd->softreset = 0x7Cull;
__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET,
cd->softreset);
err = genwqe_bus_reset(cd);
if (err != 0) {
dev_err(&pci_dev->dev,
"[%s] err: bus reset failed!\n",
__func__);
goto out;
}
/*
* Re-read the IDs because
* it could happen that the bitstream load
* failed!
*/
err = genwqe_read_ids(cd);
if (err)
goto out;
}
}
err = genwqe_setup_service_layer(cd); /* does a reset to the card */
if (err != 0) {
dev_err(&pci_dev->dev,
"[%s] err: could not setup servicelayer!\n", __func__);
err = -ENODEV;
goto out;
}
if (genwqe_is_privileged(cd)) { /* code is running _after_ reset */
genwqe_tweak_hardware(cd);
genwqe_setup_pf_jtimer(cd);
genwqe_setup_vf_jtimer(cd);
}
err = genwqe_device_create(cd);
if (err < 0) {
dev_err(&pci_dev->dev,
"err: chdev init failed! (err=%d)\n", err);
goto out_release_service_layer;
}
return 0;
out_release_service_layer:
genwqe_release_service_layer(cd);
out:
if (genwqe_is_privileged(cd))
genwqe_ffdc_buffs_free(cd);
return -EIO;
}
/**
* genwqe_stop() - Stop card operation
*
* Recovery notes:
* As long as genwqe_thread runs we might access registers during
* error data capture. Same is with the genwqe_health_thread.
* When genwqe_bus_reset() fails this function might called two times:
* first by the genwqe_health_thread() and later by genwqe_remove() to
* unbind the device. We must be able to survive that.
*
* This function must be robust enough to be called twice.
*/
static int genwqe_stop(struct genwqe_dev *cd)
{
genwqe_finish_queue(cd); /* no register access */
genwqe_device_remove(cd); /* device removed, procs killed */
genwqe_release_service_layer(cd); /* here genwqe_thread is stopped */
if (genwqe_is_privileged(cd)) {
pci_disable_sriov(cd->pci_dev); /* access pci config space */
genwqe_ffdc_buffs_free(cd);
}
return 0;
}
/**
* genwqe_recover_card() - Try to recover the card if it is possible
*
* If fatal_err is set no register access is possible anymore. It is
* likely that genwqe_start fails in that situation. Proper error
* handling is required in this case.
*
* genwqe_bus_reset() will cause the pci code to call genwqe_remove()
* and later genwqe_probe() for all virtual functions.
*/
static int genwqe_recover_card(struct genwqe_dev *cd, int fatal_err)
{
int rc;
struct pci_dev *pci_dev = cd->pci_dev;
genwqe_stop(cd);
/*
* Make sure chip is not reloaded to maintain FFDC. Write SLU
* Reset Register, CPLDReset field to 0.
*/
if (!fatal_err) {
cd->softreset = 0x70ull;
__genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, cd->softreset);
}
rc = genwqe_bus_reset(cd);
if (rc != 0) {
dev_err(&pci_dev->dev,
"[%s] err: card recovery impossible!\n", __func__);
return rc;
}
rc = genwqe_start(cd);
if (rc < 0) {
dev_err(&pci_dev->dev,
"[%s] err: failed to launch device!\n", __func__);
return rc;
}
return 0;
}
static int genwqe_health_check_cond(struct genwqe_dev *cd, u64 *gfir)
{
*gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
return (*gfir & GFIR_ERR_TRIGGER) &&
genwqe_recovery_on_fatal_gfir_required(cd);
}
/**
* genwqe_fir_checking() - Check the fault isolation registers of the card
*
* If this code works ok, can be tried out with help of the genwqe_poke tool:
* sudo ./tools/genwqe_poke 0x8 0xfefefefefef
*
* Now the relevant FIRs/sFIRs should be printed out and the driver should
* invoke recovery (devices are removed and readded).
*/
static u64 genwqe_fir_checking(struct genwqe_dev *cd)
{
int j, iterations = 0;
u64 mask, fir, fec, uid, gfir, gfir_masked, sfir, sfec;
u32 fir_addr, fir_clr_addr, fec_addr, sfir_addr, sfec_addr;
struct pci_dev *pci_dev = cd->pci_dev;
healthMonitor:
iterations++;
if (iterations > 16) {
dev_err(&pci_dev->dev, "* exit looping after %d times\n",
iterations);
goto fatal_error;
}
gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
if (gfir != 0x0)
dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n",
IO_SLC_CFGREG_GFIR, gfir);
if (gfir == IO_ILLEGAL_VALUE)
goto fatal_error;
/*
* Avoid printing when to GFIR bit is on prevents contignous
* printout e.g. for the following bug:
* FIR set without a 2ndary FIR/FIR cannot be cleared
* Comment out the following if to get the prints:
*/
if (gfir == 0)
return 0;
gfir_masked = gfir & GFIR_ERR_TRIGGER; /* fatal errors */
for (uid = 0; uid < GENWQE_MAX_UNITS; uid++) { /* 0..2 in zEDC */
/* read the primary FIR (pfir) */
fir_addr = (uid << 24) + 0x08;
fir = __genwqe_readq(cd, fir_addr);
if (fir == 0x0)
continue; /* no error in this unit */
dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fir_addr, fir);
if (fir == IO_ILLEGAL_VALUE)
goto fatal_error;
/* read primary FEC */
fec_addr = (uid << 24) + 0x18;
fec = __genwqe_readq(cd, fec_addr);
dev_err(&pci_dev->dev, "* 0x%08x 0x%016llx\n", fec_addr, fec);
if (fec == IO_ILLEGAL_VALUE)
goto fatal_error;
for (j = 0, mask = 1ULL; j < 64; j++, mask <<= 1) {
/* secondary fir empty, skip it */
if ((fir & mask) == 0x0)
continue;
sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
sfir = __genwqe_readq(cd, sfir_addr);
if (sfir == IO_ILLEGAL_VALUE)
goto fatal_error;
dev_err(&pci_dev->dev,
"* 0x%08x 0x%016llx\n", sfir_addr, sfir);
sfec_addr = (uid << 24) + 0x300 + 0x08 * j;
sfec = __genwqe_readq(cd, sfec_addr);
if (sfec == IO_ILLEGAL_VALUE)
goto fatal_error;
dev_err(&pci_dev->dev,
"* 0x%08x 0x%016llx\n", sfec_addr, sfec);
gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
if (gfir == IO_ILLEGAL_VALUE)
goto fatal_error;
/* gfir turned on during routine! get out and
start over. */
if ((gfir_masked == 0x0) &&
(gfir & GFIR_ERR_TRIGGER)) {
goto healthMonitor;
}
/* do not clear if we entered with a fatal gfir */
if (gfir_masked == 0x0) {
/* NEW clear by mask the logged bits */
sfir_addr = (uid << 24) + 0x100 + 0x08 * j;
__genwqe_writeq(cd, sfir_addr, sfir);
dev_dbg(&pci_dev->dev,
"[HM] Clearing 2ndary FIR 0x%08x "
"with 0x%016llx\n", sfir_addr, sfir);
/*
* note, these cannot be error-Firs
* since gfir_masked is 0 after sfir
* was read. Also, it is safe to do
* this write if sfir=0. Still need to
* clear the primary. This just means
* there is no secondary FIR.
*/
/* clear by mask the logged bit. */
fir_clr_addr = (uid << 24) + 0x10;
__genwqe_writeq(cd, fir_clr_addr, mask);
dev_dbg(&pci_dev->dev,
"[HM] Clearing primary FIR 0x%08x "
"with 0x%016llx\n", fir_clr_addr,
mask);
}
}
}
gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
if (gfir == IO_ILLEGAL_VALUE)
goto fatal_error;
if ((gfir_masked == 0x0) && (gfir & GFIR_ERR_TRIGGER)) {
/*
* Check once more that it didn't go on after all the
* FIRS were cleared.
*/
dev_dbg(&pci_dev->dev, "ACK! Another FIR! Recursing %d!\n",
iterations);
goto healthMonitor;
}
return gfir_masked;
fatal_error:
return IO_ILLEGAL_VALUE;
}
/**
* genwqe_health_thread() - Health checking thread
*
* This thread is only started for the PF of the card.
*
* This thread monitors the health of the card. A critical situation
* is when we read registers which contain -1 (IO_ILLEGAL_VALUE). In
* this case we need to be recovered from outside. Writing to
* registers will very likely not work either.
*
* This thread must only exit if kthread_should_stop() becomes true.
*
* Condition for the health-thread to trigger:
* a) when a kthread_stop() request comes in or
* b) a critical GFIR occured
*
* Informational GFIRs are checked and potentially printed in
* health_check_interval seconds.
*/
static int genwqe_health_thread(void *data)
{
int rc, should_stop = 0;
struct genwqe_dev *cd = data;
struct pci_dev *pci_dev = cd->pci_dev;
u64 gfir, gfir_masked, slu_unitcfg, app_unitcfg;
while (!kthread_should_stop()) {
rc = wait_event_interruptible_timeout(cd->health_waitq,
(genwqe_health_check_cond(cd, &gfir) ||
(should_stop = kthread_should_stop())),
genwqe_health_check_interval * HZ);
if (should_stop)
break;
if (gfir == IO_ILLEGAL_VALUE) {
dev_err(&pci_dev->dev,
"[%s] GFIR=%016llx\n", __func__, gfir);
goto fatal_error;
}
slu_unitcfg = __genwqe_readq(cd, IO_SLU_UNITCFG);
if (slu_unitcfg == IO_ILLEGAL_VALUE) {
dev_err(&pci_dev->dev,
"[%s] SLU_UNITCFG=%016llx\n",
__func__, slu_unitcfg);
goto fatal_error;
}
app_unitcfg = __genwqe_readq(cd, IO_APP_UNITCFG);
if (app_unitcfg == IO_ILLEGAL_VALUE) {
dev_err(&pci_dev->dev,
"[%s] APP_UNITCFG=%016llx\n",
__func__, app_unitcfg);
goto fatal_error;
}
gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
if (gfir == IO_ILLEGAL_VALUE) {
dev_err(&pci_dev->dev,
"[%s] %s: GFIR=%016llx\n", __func__,
(gfir & GFIR_ERR_TRIGGER) ? "err" : "info",
gfir);
goto fatal_error;
}
gfir_masked = genwqe_fir_checking(cd);
if (gfir_masked == IO_ILLEGAL_VALUE)
goto fatal_error;
/*
* GFIR ErrorTrigger bits set => reset the card!
* Never do this for old/manufacturing images!
*/
if ((gfir_masked) && !cd->skip_recovery &&
genwqe_recovery_on_fatal_gfir_required(cd)) {
cd->card_state = GENWQE_CARD_FATAL_ERROR;
rc = genwqe_recover_card(cd, 0);
if (rc < 0) {
/* FIXME Card is unusable and needs unbind! */
goto fatal_error;
}
}
cd->last_gfir = gfir;
cond_resched();
}
return 0;
fatal_error:
dev_err(&pci_dev->dev,
"[%s] card unusable. Please trigger unbind!\n", __func__);
/* Bring down logical devices to inform user space via udev remove. */
cd->card_state = GENWQE_CARD_FATAL_ERROR;
genwqe_stop(cd);
/* genwqe_bus_reset failed(). Now wait for genwqe_remove(). */
while (!kthread_should_stop())
cond_resched();
return -EIO;
}
static int genwqe_health_check_start(struct genwqe_dev *cd)
{
int rc;
if (genwqe_health_check_interval <= 0)
return 0; /* valid for disabling the service */
/* moved before request_irq() */
/* init_waitqueue_head(&cd->health_waitq); */
cd->health_thread = kthread_run(genwqe_health_thread, cd,
GENWQE_DEVNAME "%d_health",
cd->card_idx);
if (IS_ERR(cd->health_thread)) {
rc = PTR_ERR(cd->health_thread);
cd->health_thread = NULL;
return rc;
}
return 0;
}
static int genwqe_health_thread_running(struct genwqe_dev *cd)
{
return cd->health_thread != NULL;
}
static int genwqe_health_check_stop(struct genwqe_dev *cd)
{
int rc;
if (!genwqe_health_thread_running(cd))
return -EIO;
rc = kthread_stop(cd->health_thread);
cd->health_thread = NULL;
return 0;
}
/**
* genwqe_pci_setup() - Allocate PCIe related resources for our card
*/
static int genwqe_pci_setup(struct genwqe_dev *cd)
{
int err, bars;
struct pci_dev *pci_dev = cd->pci_dev;
bars = pci_select_bars(pci_dev, IORESOURCE_MEM);
err = pci_enable_device_mem(pci_dev);
if (err) {
dev_err(&pci_dev->dev,
"err: failed to enable pci memory (err=%d)\n", err);
goto err_out;
}
/* Reserve PCI I/O and memory resources */
err = pci_request_selected_regions(pci_dev, bars, genwqe_driver_name);
if (err) {
dev_err(&pci_dev->dev,
"[%s] err: request bars failed (%d)\n", __func__, err);
err = -EIO;
goto err_disable_device;
}
/* check for 64-bit DMA address supported (DAC) */
if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(64));
if (err) {
dev_err(&pci_dev->dev,
"err: DMA64 consistent mask error\n");
err = -EIO;
goto out_release_resources;
}
/* check for 32-bit DMA address supported (SAC) */
} else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
err = pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pci_dev->dev,
"err: DMA32 consistent mask error\n");
err = -EIO;
goto out_release_resources;
}
} else {
dev_err(&pci_dev->dev,
"err: neither DMA32 nor DMA64 supported\n");
err = -EIO;
goto out_release_resources;
}
pci_set_master(pci_dev);
pci_enable_pcie_error_reporting(pci_dev);
/* request complete BAR-0 space (length = 0) */
cd->mmio_len = pci_resource_len(pci_dev, 0);
cd->mmio = pci_iomap(pci_dev, 0, 0);
if (cd->mmio == NULL) {
dev_err(&pci_dev->dev,
"[%s] err: mapping BAR0 failed\n", __func__);
err = -ENOMEM;
goto out_release_resources;
}
cd->num_vfs = pci_sriov_get_totalvfs(pci_dev);
err = genwqe_read_ids(cd);
if (err)
goto out_iounmap;
return 0;
out_iounmap:
pci_iounmap(pci_dev, cd->mmio);
out_release_resources:
pci_release_selected_regions(pci_dev, bars);
err_disable_device:
pci_disable_device(pci_dev);
err_out:
return err;
}
/**
* genwqe_pci_remove() - Free PCIe related resources for our card
*/
static void genwqe_pci_remove(struct genwqe_dev *cd)
{
int bars;
struct pci_dev *pci_dev = cd->pci_dev;
if (cd->mmio)
pci_iounmap(pci_dev, cd->mmio);
bars = pci_select_bars(pci_dev, IORESOURCE_MEM);
pci_release_selected_regions(pci_dev, bars);
pci_disable_device(pci_dev);
}
/**
* genwqe_probe() - Device initialization
* @pdev: PCI device information struct
*
* Callable for multiple cards. This function is called on bind.
*
* Return: 0 if succeeded, < 0 when failed
*/
static int genwqe_probe(struct pci_dev *pci_dev,
const struct pci_device_id *id)
{
int err;
struct genwqe_dev *cd;
genwqe_init_crc32();
cd = genwqe_dev_alloc();
if (IS_ERR(cd)) {
dev_err(&pci_dev->dev, "err: could not alloc mem (err=%d)!\n",
(int)PTR_ERR(cd));
return PTR_ERR(cd);
}
dev_set_drvdata(&pci_dev->dev, cd);
cd->pci_dev = pci_dev;
err = genwqe_pci_setup(cd);
if (err < 0) {
dev_err(&pci_dev->dev,
"err: problems with PCI setup (err=%d)\n", err);
goto out_free_dev;
}
err = genwqe_start(cd);
if (err < 0) {
dev_err(&pci_dev->dev,
"err: cannot start card services! (err=%d)\n", err);
goto out_pci_remove;
}
if (genwqe_is_privileged(cd)) {
err = genwqe_health_check_start(cd);
if (err < 0) {
dev_err(&pci_dev->dev,
"err: cannot start health checking! "
"(err=%d)\n", err);
goto out_stop_services;
}
}
return 0;
out_stop_services:
genwqe_stop(cd);
out_pci_remove:
genwqe_pci_remove(cd);
out_free_dev:
genwqe_dev_free(cd);
return err;
}
/**
* genwqe_remove() - Called when device is removed (hot-plugable)
*
* Or when driver is unloaded respecitively when unbind is done.
*/
static void genwqe_remove(struct pci_dev *pci_dev)
{
struct genwqe_dev *cd = dev_get_drvdata(&pci_dev->dev);
genwqe_health_check_stop(cd);
/*
* genwqe_stop() must survive if it is called twice
* sequentially. This happens when the health thread calls it
* and fails on genwqe_bus_reset().
*/
genwqe_stop(cd);
genwqe_pci_remove(cd);
genwqe_dev_free(cd);
}
/*
* genwqe_err_error_detected() - Error detection callback
*
* This callback is called by the PCI subsystem whenever a PCI bus
* error is detected.
*/
static pci_ers_result_t genwqe_err_error_detected(struct pci_dev *pci_dev,
enum pci_channel_state state)
{
struct genwqe_dev *cd;
dev_err(&pci_dev->dev, "[%s] state=%d\n", __func__, state);
if (pci_dev == NULL)
return PCI_ERS_RESULT_NEED_RESET;
cd = dev_get_drvdata(&pci_dev->dev);
if (cd == NULL)
return PCI_ERS_RESULT_NEED_RESET;
switch (state) {
case pci_channel_io_normal:
return PCI_ERS_RESULT_CAN_RECOVER;
case pci_channel_io_frozen:
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_NEED_RESET;
}
static pci_ers_result_t genwqe_err_result_none(struct pci_dev *dev)
{
return PCI_ERS_RESULT_NONE;
}
static void genwqe_err_resume(struct pci_dev *dev)
{
}
static int genwqe_sriov_configure(struct pci_dev *dev, int numvfs)
{
struct genwqe_dev *cd = dev_get_drvdata(&dev->dev);
if (numvfs > 0) {
genwqe_setup_vf_jtimer(cd);
pci_enable_sriov(dev, numvfs);
return numvfs;
}
if (numvfs == 0) {
pci_disable_sriov(dev);
return 0;
}
return 0;
}
static struct pci_error_handlers genwqe_err_handler = {
.error_detected = genwqe_err_error_detected,
.mmio_enabled = genwqe_err_result_none,
.link_reset = genwqe_err_result_none,
.slot_reset = genwqe_err_result_none,
.resume = genwqe_err_resume,
};
static struct pci_driver genwqe_driver = {
.name = genwqe_driver_name,
.id_table = genwqe_device_table,
.probe = genwqe_probe,
.remove = genwqe_remove,
.sriov_configure = genwqe_sriov_configure,
.err_handler = &genwqe_err_handler,
};
/**
* genwqe_init_module() - Driver registration and initialization
*/
static int __init genwqe_init_module(void)
{
int rc;
class_genwqe = class_create(THIS_MODULE, GENWQE_DEVNAME);
if (IS_ERR(class_genwqe)) {
pr_err("[%s] create class failed\n", __func__);
return -ENOMEM;
}
debugfs_genwqe = debugfs_create_dir(GENWQE_DEVNAME, NULL);
if (!debugfs_genwqe) {
rc = -ENOMEM;
goto err_out;
}
rc = pci_register_driver(&genwqe_driver);
if (rc != 0) {
pr_err("[%s] pci_reg_driver (rc=%d)\n", __func__, rc);
goto err_out0;
}
return rc;
err_out0:
debugfs_remove(debugfs_genwqe);
err_out:
class_destroy(class_genwqe);
return rc;
}
/**
* genwqe_exit_module() - Driver exit
*/
static void __exit genwqe_exit_module(void)
{
pci_unregister_driver(&genwqe_driver);
debugfs_remove(debugfs_genwqe);
class_destroy(class_genwqe);
}
module_init(genwqe_init_module);
module_exit(genwqe_exit_module);