linux-next/include/linux/memcontrol.h
Kinsey Ho ec0db74b4b mm: restart if multiple traversals raced
Currently, if multiple reclaimers raced on the same position, the
reclaimers which detect the race will still reclaim from the same memcg. 
Instead, the reclaimers which detect the race should move on to the next
memcg in the hierarchy.

So, in the case where multiple traversals race, jump back to the start of
the mem_cgroup_iter() function to find the next memcg in the hierarchy to
reclaim from.

Link: https://lkml.kernel.org/r/20240905003058.1859929-5-kinseyho@google.com
Reported-by: syzbot+e099d407346c45275ce9@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/000000000000817cf10620e20d33@google.com/
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Reviewed-by: T.J. Mercier <tjmercier@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-09 16:39:16 -07:00

1956 lines
48 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/* memcontrol.h - Memory Controller
*
* Copyright IBM Corporation, 2007
* Author Balbir Singh <balbir@linux.vnet.ibm.com>
*
* Copyright 2007 OpenVZ SWsoft Inc
* Author: Pavel Emelianov <xemul@openvz.org>
*/
#ifndef _LINUX_MEMCONTROL_H
#define _LINUX_MEMCONTROL_H
#include <linux/cgroup.h>
#include <linux/vm_event_item.h>
#include <linux/hardirq.h>
#include <linux/jump_label.h>
#include <linux/kernel.h>
#include <linux/page_counter.h>
#include <linux/vmpressure.h>
#include <linux/eventfd.h>
#include <linux/mm.h>
#include <linux/vmstat.h>
#include <linux/writeback.h>
#include <linux/page-flags.h>
#include <linux/shrinker.h>
struct mem_cgroup;
struct obj_cgroup;
struct page;
struct mm_struct;
struct kmem_cache;
/* Cgroup-specific page state, on top of universal node page state */
enum memcg_stat_item {
MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
MEMCG_SOCK,
MEMCG_PERCPU_B,
MEMCG_VMALLOC,
MEMCG_KMEM,
MEMCG_ZSWAP_B,
MEMCG_ZSWAPPED,
MEMCG_NR_STAT,
};
enum memcg_memory_event {
MEMCG_LOW,
MEMCG_HIGH,
MEMCG_MAX,
MEMCG_OOM,
MEMCG_OOM_KILL,
MEMCG_OOM_GROUP_KILL,
MEMCG_SWAP_HIGH,
MEMCG_SWAP_MAX,
MEMCG_SWAP_FAIL,
MEMCG_NR_MEMORY_EVENTS,
};
struct mem_cgroup_reclaim_cookie {
pg_data_t *pgdat;
int generation;
};
#ifdef CONFIG_MEMCG
#define MEM_CGROUP_ID_SHIFT 16
struct mem_cgroup_id {
int id;
refcount_t ref;
};
struct memcg_vmstats_percpu;
struct memcg1_events_percpu;
struct memcg_vmstats;
struct lruvec_stats_percpu;
struct lruvec_stats;
struct mem_cgroup_reclaim_iter {
struct mem_cgroup *position;
/* scan generation, increased every round-trip */
atomic_t generation;
};
/*
* per-node information in memory controller.
*/
struct mem_cgroup_per_node {
/* Keep the read-only fields at the start */
struct mem_cgroup *memcg; /* Back pointer, we cannot */
/* use container_of */
struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
struct lruvec_stats *lruvec_stats;
struct shrinker_info __rcu *shrinker_info;
#ifdef CONFIG_MEMCG_V1
/*
* Memcg-v1 only stuff in middle as buffer between read mostly fields
* and update often fields to avoid false sharing. If v1 stuff is
* not present, an explicit padding is needed.
*/
struct rb_node tree_node; /* RB tree node */
unsigned long usage_in_excess;/* Set to the value by which */
/* the soft limit is exceeded*/
bool on_tree;
#else
CACHELINE_PADDING(_pad1_);
#endif
/* Fields which get updated often at the end. */
struct lruvec lruvec;
CACHELINE_PADDING(_pad2_);
unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
struct mem_cgroup_reclaim_iter iter;
};
struct mem_cgroup_threshold {
struct eventfd_ctx *eventfd;
unsigned long threshold;
};
/* For threshold */
struct mem_cgroup_threshold_ary {
/* An array index points to threshold just below or equal to usage. */
int current_threshold;
/* Size of entries[] */
unsigned int size;
/* Array of thresholds */
struct mem_cgroup_threshold entries[] __counted_by(size);
};
struct mem_cgroup_thresholds {
/* Primary thresholds array */
struct mem_cgroup_threshold_ary *primary;
/*
* Spare threshold array.
* This is needed to make mem_cgroup_unregister_event() "never fail".
* It must be able to store at least primary->size - 1 entries.
*/
struct mem_cgroup_threshold_ary *spare;
};
/*
* Remember four most recent foreign writebacks with dirty pages in this
* cgroup. Inode sharing is expected to be uncommon and, even if we miss
* one in a given round, we're likely to catch it later if it keeps
* foreign-dirtying, so a fairly low count should be enough.
*
* See mem_cgroup_track_foreign_dirty_slowpath() for details.
*/
#define MEMCG_CGWB_FRN_CNT 4
struct memcg_cgwb_frn {
u64 bdi_id; /* bdi->id of the foreign inode */
int memcg_id; /* memcg->css.id of foreign inode */
u64 at; /* jiffies_64 at the time of dirtying */
struct wb_completion done; /* tracks in-flight foreign writebacks */
};
/*
* Bucket for arbitrarily byte-sized objects charged to a memory
* cgroup. The bucket can be reparented in one piece when the cgroup
* is destroyed, without having to round up the individual references
* of all live memory objects in the wild.
*/
struct obj_cgroup {
struct percpu_ref refcnt;
struct mem_cgroup *memcg;
atomic_t nr_charged_bytes;
union {
struct list_head list; /* protected by objcg_lock */
struct rcu_head rcu;
};
};
/*
* The memory controller data structure. The memory controller controls both
* page cache and RSS per cgroup. We would eventually like to provide
* statistics based on the statistics developed by Rik Van Riel for clock-pro,
* to help the administrator determine what knobs to tune.
*/
struct mem_cgroup {
struct cgroup_subsys_state css;
/* Private memcg ID. Used to ID objects that outlive the cgroup */
struct mem_cgroup_id id;
/* Accounted resources */
struct page_counter memory; /* Both v1 & v2 */
union {
struct page_counter swap; /* v2 only */
struct page_counter memsw; /* v1 only */
};
/* registered local peak watchers */
struct list_head memory_peaks;
struct list_head swap_peaks;
spinlock_t peaks_lock;
/* Range enforcement for interrupt charges */
struct work_struct high_work;
#ifdef CONFIG_ZSWAP
unsigned long zswap_max;
/*
* Prevent pages from this memcg from being written back from zswap to
* swap, and from being swapped out on zswap store failures.
*/
bool zswap_writeback;
#endif
/* vmpressure notifications */
struct vmpressure vmpressure;
/*
* Should the OOM killer kill all belonging tasks, had it kill one?
*/
bool oom_group;
int swappiness;
/* memory.events and memory.events.local */
struct cgroup_file events_file;
struct cgroup_file events_local_file;
/* handle for "memory.swap.events" */
struct cgroup_file swap_events_file;
/* memory.stat */
struct memcg_vmstats *vmstats;
/* memory.events */
atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
/*
* Hint of reclaim pressure for socket memroy management. Note
* that this indicator should NOT be used in legacy cgroup mode
* where socket memory is accounted/charged separately.
*/
unsigned long socket_pressure;
int kmemcg_id;
/*
* memcg->objcg is wiped out as a part of the objcg repaprenting
* process. memcg->orig_objcg preserves a pointer (and a reference)
* to the original objcg until the end of live of memcg.
*/
struct obj_cgroup __rcu *objcg;
struct obj_cgroup *orig_objcg;
/* list of inherited objcgs, protected by objcg_lock */
struct list_head objcg_list;
struct memcg_vmstats_percpu __percpu *vmstats_percpu;
#ifdef CONFIG_CGROUP_WRITEBACK
struct list_head cgwb_list;
struct wb_domain cgwb_domain;
struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
struct deferred_split deferred_split_queue;
#endif
#ifdef CONFIG_LRU_GEN_WALKS_MMU
/* per-memcg mm_struct list */
struct lru_gen_mm_list mm_list;
#endif
#ifdef CONFIG_MEMCG_V1
/* Legacy consumer-oriented counters */
struct page_counter kmem; /* v1 only */
struct page_counter tcpmem; /* v1 only */
struct memcg1_events_percpu __percpu *events_percpu;
unsigned long soft_limit;
/* protected by memcg_oom_lock */
bool oom_lock;
int under_oom;
/* OOM-Killer disable */
int oom_kill_disable;
/* protect arrays of thresholds */
struct mutex thresholds_lock;
/* thresholds for memory usage. RCU-protected */
struct mem_cgroup_thresholds thresholds;
/* thresholds for mem+swap usage. RCU-protected */
struct mem_cgroup_thresholds memsw_thresholds;
/* For oom notifier event fd */
struct list_head oom_notify;
/*
* Should we move charges of a task when a task is moved into this
* mem_cgroup ? And what type of charges should we move ?
*/
unsigned long move_charge_at_immigrate;
/* taken only while moving_account > 0 */
spinlock_t move_lock;
unsigned long move_lock_flags;
/* Legacy tcp memory accounting */
bool tcpmem_active;
int tcpmem_pressure;
/*
* set > 0 if pages under this cgroup are moving to other cgroup.
*/
atomic_t moving_account;
struct task_struct *move_lock_task;
/* List of events which userspace want to receive */
struct list_head event_list;
spinlock_t event_list_lock;
#endif /* CONFIG_MEMCG_V1 */
struct mem_cgroup_per_node *nodeinfo[];
};
/*
* size of first charge trial.
* TODO: maybe necessary to use big numbers in big irons or dynamic based of the
* workload.
*/
#define MEMCG_CHARGE_BATCH 64U
extern struct mem_cgroup *root_mem_cgroup;
enum page_memcg_data_flags {
/* page->memcg_data is a pointer to an slabobj_ext vector */
MEMCG_DATA_OBJEXTS = (1UL << 0),
/* page has been accounted as a non-slab kernel page */
MEMCG_DATA_KMEM = (1UL << 1),
/* the next bit after the last actual flag */
__NR_MEMCG_DATA_FLAGS = (1UL << 2),
};
#define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS
#else /* CONFIG_MEMCG */
#define __FIRST_OBJEXT_FLAG (1UL << 0)
#endif /* CONFIG_MEMCG */
enum objext_flags {
/* slabobj_ext vector failed to allocate */
OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
/* the next bit after the last actual flag */
__NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1),
};
#define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
#ifdef CONFIG_MEMCG
static inline bool folio_memcg_kmem(struct folio *folio);
/*
* After the initialization objcg->memcg is always pointing at
* a valid memcg, but can be atomically swapped to the parent memcg.
*
* The caller must ensure that the returned memcg won't be released.
*/
static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
{
lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
return READ_ONCE(objcg->memcg);
}
/*
* __folio_memcg - Get the memory cgroup associated with a non-kmem folio
* @folio: Pointer to the folio.
*
* Returns a pointer to the memory cgroup associated with the folio,
* or NULL. This function assumes that the folio is known to have a
* proper memory cgroup pointer. It's not safe to call this function
* against some type of folios, e.g. slab folios or ex-slab folios or
* kmem folios.
*/
static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
{
unsigned long memcg_data = folio->memcg_data;
VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
}
/*
* __folio_objcg - get the object cgroup associated with a kmem folio.
* @folio: Pointer to the folio.
*
* Returns a pointer to the object cgroup associated with the folio,
* or NULL. This function assumes that the folio is known to have a
* proper object cgroup pointer. It's not safe to call this function
* against some type of folios, e.g. slab folios or ex-slab folios or
* LRU folios.
*/
static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
{
unsigned long memcg_data = folio->memcg_data;
VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
}
/*
* folio_memcg - Get the memory cgroup associated with a folio.
* @folio: Pointer to the folio.
*
* Returns a pointer to the memory cgroup associated with the folio,
* or NULL. This function assumes that the folio is known to have a
* proper memory cgroup pointer. It's not safe to call this function
* against some type of folios, e.g. slab folios or ex-slab folios.
*
* For a non-kmem folio any of the following ensures folio and memcg binding
* stability:
*
* - the folio lock
* - LRU isolation
* - folio_memcg_lock()
* - exclusive reference
* - mem_cgroup_trylock_pages()
*
* For a kmem folio a caller should hold an rcu read lock to protect memcg
* associated with a kmem folio from being released.
*/
static inline struct mem_cgroup *folio_memcg(struct folio *folio)
{
if (folio_memcg_kmem(folio))
return obj_cgroup_memcg(__folio_objcg(folio));
return __folio_memcg(folio);
}
/*
* folio_memcg_charged - If a folio is charged to a memory cgroup.
* @folio: Pointer to the folio.
*
* Returns true if folio is charged to a memory cgroup, otherwise returns false.
*/
static inline bool folio_memcg_charged(struct folio *folio)
{
if (folio_memcg_kmem(folio))
return __folio_objcg(folio) != NULL;
return __folio_memcg(folio) != NULL;
}
/**
* folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
* @folio: Pointer to the folio.
*
* This function assumes that the folio is known to have a
* proper memory cgroup pointer. It's not safe to call this function
* against some type of folios, e.g. slab folios or ex-slab folios.
*
* Return: A pointer to the memory cgroup associated with the folio,
* or NULL.
*/
static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
{
unsigned long memcg_data = READ_ONCE(folio->memcg_data);
VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
if (memcg_data & MEMCG_DATA_KMEM) {
struct obj_cgroup *objcg;
objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
return obj_cgroup_memcg(objcg);
}
WARN_ON_ONCE(!rcu_read_lock_held());
return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
}
/*
* folio_memcg_check - Get the memory cgroup associated with a folio.
* @folio: Pointer to the folio.
*
* Returns a pointer to the memory cgroup associated with the folio,
* or NULL. This function unlike folio_memcg() can take any folio
* as an argument. It has to be used in cases when it's not known if a folio
* has an associated memory cgroup pointer or an object cgroups vector or
* an object cgroup.
*
* For a non-kmem folio any of the following ensures folio and memcg binding
* stability:
*
* - the folio lock
* - LRU isolation
* - lock_folio_memcg()
* - exclusive reference
* - mem_cgroup_trylock_pages()
*
* For a kmem folio a caller should hold an rcu read lock to protect memcg
* associated with a kmem folio from being released.
*/
static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
{
/*
* Because folio->memcg_data might be changed asynchronously
* for slabs, READ_ONCE() should be used here.
*/
unsigned long memcg_data = READ_ONCE(folio->memcg_data);
if (memcg_data & MEMCG_DATA_OBJEXTS)
return NULL;
if (memcg_data & MEMCG_DATA_KMEM) {
struct obj_cgroup *objcg;
objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
return obj_cgroup_memcg(objcg);
}
return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
}
static inline struct mem_cgroup *page_memcg_check(struct page *page)
{
if (PageTail(page))
return NULL;
return folio_memcg_check((struct folio *)page);
}
static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
{
struct mem_cgroup *memcg;
rcu_read_lock();
retry:
memcg = obj_cgroup_memcg(objcg);
if (unlikely(!css_tryget(&memcg->css)))
goto retry;
rcu_read_unlock();
return memcg;
}
/*
* folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
* @folio: Pointer to the folio.
*
* Checks if the folio has MemcgKmem flag set. The caller must ensure
* that the folio has an associated memory cgroup. It's not safe to call
* this function against some types of folios, e.g. slab folios.
*/
static inline bool folio_memcg_kmem(struct folio *folio)
{
VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
return folio->memcg_data & MEMCG_DATA_KMEM;
}
static inline bool PageMemcgKmem(struct page *page)
{
return folio_memcg_kmem(page_folio(page));
}
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
return (memcg == root_mem_cgroup);
}
static inline bool mem_cgroup_disabled(void)
{
return !cgroup_subsys_enabled(memory_cgrp_subsys);
}
static inline void mem_cgroup_protection(struct mem_cgroup *root,
struct mem_cgroup *memcg,
unsigned long *min,
unsigned long *low)
{
*min = *low = 0;
if (mem_cgroup_disabled())
return;
/*
* There is no reclaim protection applied to a targeted reclaim.
* We are special casing this specific case here because
* mem_cgroup_calculate_protection is not robust enough to keep
* the protection invariant for calculated effective values for
* parallel reclaimers with different reclaim target. This is
* especially a problem for tail memcgs (as they have pages on LRU)
* which would want to have effective values 0 for targeted reclaim
* but a different value for external reclaim.
*
* Example
* Let's have global and A's reclaim in parallel:
* |
* A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
* |\
* | C (low = 1G, usage = 2.5G)
* B (low = 1G, usage = 0.5G)
*
* For the global reclaim
* A.elow = A.low
* B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
* C.elow = min(C.usage, C.low)
*
* With the effective values resetting we have A reclaim
* A.elow = 0
* B.elow = B.low
* C.elow = C.low
*
* If the global reclaim races with A's reclaim then
* B.elow = C.elow = 0 because children_low_usage > A.elow)
* is possible and reclaiming B would be violating the protection.
*
*/
if (root == memcg)
return;
*min = READ_ONCE(memcg->memory.emin);
*low = READ_ONCE(memcg->memory.elow);
}
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
struct mem_cgroup *memcg);
static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
struct mem_cgroup *memcg)
{
/*
* The root memcg doesn't account charges, and doesn't support
* protection. The target memcg's protection is ignored, see
* mem_cgroup_calculate_protection() and mem_cgroup_protection()
*/
return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
memcg == target;
}
static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
struct mem_cgroup *memcg)
{
if (mem_cgroup_unprotected(target, memcg))
return false;
return READ_ONCE(memcg->memory.elow) >=
page_counter_read(&memcg->memory);
}
static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
struct mem_cgroup *memcg)
{
if (mem_cgroup_unprotected(target, memcg))
return false;
return READ_ONCE(memcg->memory.emin) >=
page_counter_read(&memcg->memory);
}
void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
/**
* mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
* @folio: Folio to charge.
* @mm: mm context of the allocating task.
* @gfp: Reclaim mode.
*
* Try to charge @folio to the memcg that @mm belongs to, reclaiming
* pages according to @gfp if necessary. If @mm is NULL, try to
* charge to the active memcg.
*
* Do not use this for folios allocated for swapin.
*
* Return: 0 on success. Otherwise, an error code is returned.
*/
static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
gfp_t gfp)
{
if (mem_cgroup_disabled())
return 0;
return __mem_cgroup_charge(folio, mm, gfp);
}
int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
long nr_pages);
int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
gfp_t gfp, swp_entry_t entry);
void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
void __mem_cgroup_uncharge(struct folio *folio);
/**
* mem_cgroup_uncharge - Uncharge a folio.
* @folio: Folio to uncharge.
*
* Uncharge a folio previously charged with mem_cgroup_charge().
*/
static inline void mem_cgroup_uncharge(struct folio *folio)
{
if (mem_cgroup_disabled())
return;
__mem_cgroup_uncharge(folio);
}
void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
{
if (mem_cgroup_disabled())
return;
__mem_cgroup_uncharge_folios(folios);
}
void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
void mem_cgroup_migrate(struct folio *old, struct folio *new);
/**
* mem_cgroup_lruvec - get the lru list vector for a memcg & node
* @memcg: memcg of the wanted lruvec
* @pgdat: pglist_data
*
* Returns the lru list vector holding pages for a given @memcg &
* @pgdat combination. This can be the node lruvec, if the memory
* controller is disabled.
*/
static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
struct pglist_data *pgdat)
{
struct mem_cgroup_per_node *mz;
struct lruvec *lruvec;
if (mem_cgroup_disabled()) {
lruvec = &pgdat->__lruvec;
goto out;
}
if (!memcg)
memcg = root_mem_cgroup;
mz = memcg->nodeinfo[pgdat->node_id];
lruvec = &mz->lruvec;
out:
/*
* Since a node can be onlined after the mem_cgroup was created,
* we have to be prepared to initialize lruvec->pgdat here;
* and if offlined then reonlined, we need to reinitialize it.
*/
if (unlikely(lruvec->pgdat != pgdat))
lruvec->pgdat = pgdat;
return lruvec;
}
/**
* folio_lruvec - return lruvec for isolating/putting an LRU folio
* @folio: Pointer to the folio.
*
* This function relies on folio->mem_cgroup being stable.
*/
static inline struct lruvec *folio_lruvec(struct folio *folio)
{
struct mem_cgroup *memcg = folio_memcg(folio);
VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
}
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
struct mem_cgroup *get_mem_cgroup_from_current(void);
struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
struct lruvec *folio_lruvec_lock(struct folio *folio);
struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
unsigned long *flags);
#ifdef CONFIG_DEBUG_VM
void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
#else
static inline
void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
{
}
#endif
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
return css ? container_of(css, struct mem_cgroup, css) : NULL;
}
static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
{
return percpu_ref_tryget(&objcg->refcnt);
}
static inline void obj_cgroup_get(struct obj_cgroup *objcg)
{
percpu_ref_get(&objcg->refcnt);
}
static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
unsigned long nr)
{
percpu_ref_get_many(&objcg->refcnt, nr);
}
static inline void obj_cgroup_put(struct obj_cgroup *objcg)
{
if (objcg)
percpu_ref_put(&objcg->refcnt);
}
static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
{
return !memcg || css_tryget(&memcg->css);
}
static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
{
return !memcg || css_tryget_online(&memcg->css);
}
static inline void mem_cgroup_put(struct mem_cgroup *memcg)
{
if (memcg)
css_put(&memcg->css);
}
#define mem_cgroup_from_counter(counter, member) \
container_of(counter, struct mem_cgroup, member)
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
struct mem_cgroup *,
struct mem_cgroup_reclaim_cookie *);
void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
int (*)(struct task_struct *, void *), void *arg);
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
if (mem_cgroup_disabled())
return 0;
return memcg->id.id;
}
struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
#ifdef CONFIG_SHRINKER_DEBUG
static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
{
return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
}
struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
#endif
static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
{
return mem_cgroup_from_css(seq_css(m));
}
static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
{
struct mem_cgroup_per_node *mz;
if (mem_cgroup_disabled())
return NULL;
mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
return mz->memcg;
}
/**
* parent_mem_cgroup - find the accounting parent of a memcg
* @memcg: memcg whose parent to find
*
* Returns the parent memcg, or NULL if this is the root.
*/
static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
{
return mem_cgroup_from_css(memcg->css.parent);
}
static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
struct mem_cgroup *root)
{
if (root == memcg)
return true;
return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
}
static inline bool mm_match_cgroup(struct mm_struct *mm,
struct mem_cgroup *memcg)
{
struct mem_cgroup *task_memcg;
bool match = false;
rcu_read_lock();
task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (task_memcg)
match = mem_cgroup_is_descendant(task_memcg, memcg);
rcu_read_unlock();
return match;
}
struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
ino_t page_cgroup_ino(struct page *page);
static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
{
if (mem_cgroup_disabled())
return true;
return !!(memcg->css.flags & CSS_ONLINE);
}
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
int zid, int nr_pages);
static inline
unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
enum lru_list lru, int zone_idx)
{
struct mem_cgroup_per_node *mz;
mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
}
void mem_cgroup_handle_over_high(gfp_t gfp_mask);
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
struct task_struct *p);
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
struct mem_cgroup *oom_domain);
void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
int val);
/* idx can be of type enum memcg_stat_item or node_stat_item */
static inline void mod_memcg_state(struct mem_cgroup *memcg,
enum memcg_stat_item idx, int val)
{
unsigned long flags;
local_irq_save(flags);
__mod_memcg_state(memcg, idx, val);
local_irq_restore(flags);
}
static inline void mod_memcg_page_state(struct page *page,
enum memcg_stat_item idx, int val)
{
struct mem_cgroup *memcg;
if (mem_cgroup_disabled())
return;
rcu_read_lock();
memcg = folio_memcg(page_folio(page));
if (memcg)
mod_memcg_state(memcg, idx, val);
rcu_read_unlock();
}
unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
unsigned long lruvec_page_state_local(struct lruvec *lruvec,
enum node_stat_item idx);
void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
int val)
{
unsigned long flags;
local_irq_save(flags);
__mod_lruvec_kmem_state(p, idx, val);
local_irq_restore(flags);
}
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
unsigned long count);
static inline void count_memcg_events(struct mem_cgroup *memcg,
enum vm_event_item idx,
unsigned long count)
{
unsigned long flags;
local_irq_save(flags);
__count_memcg_events(memcg, idx, count);
local_irq_restore(flags);
}
static inline void count_memcg_folio_events(struct folio *folio,
enum vm_event_item idx, unsigned long nr)
{
struct mem_cgroup *memcg = folio_memcg(folio);
if (memcg)
count_memcg_events(memcg, idx, nr);
}
static inline void count_memcg_events_mm(struct mm_struct *mm,
enum vm_event_item idx, unsigned long count)
{
struct mem_cgroup *memcg;
if (mem_cgroup_disabled())
return;
rcu_read_lock();
memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (likely(memcg))
count_memcg_events(memcg, idx, count);
rcu_read_unlock();
}
static inline void count_memcg_event_mm(struct mm_struct *mm,
enum vm_event_item idx)
{
count_memcg_events_mm(mm, idx, 1);
}
static inline void memcg_memory_event(struct mem_cgroup *memcg,
enum memcg_memory_event event)
{
bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
event == MEMCG_SWAP_FAIL;
atomic_long_inc(&memcg->memory_events_local[event]);
if (!swap_event)
cgroup_file_notify(&memcg->events_local_file);
do {
atomic_long_inc(&memcg->memory_events[event]);
if (swap_event)
cgroup_file_notify(&memcg->swap_events_file);
else
cgroup_file_notify(&memcg->events_file);
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
break;
if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
break;
} while ((memcg = parent_mem_cgroup(memcg)) &&
!mem_cgroup_is_root(memcg));
}
static inline void memcg_memory_event_mm(struct mm_struct *mm,
enum memcg_memory_event event)
{
struct mem_cgroup *memcg;
if (mem_cgroup_disabled())
return;
rcu_read_lock();
memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (likely(memcg))
memcg_memory_event(memcg, event);
rcu_read_unlock();
}
void split_page_memcg(struct page *head, int old_order, int new_order);
#else /* CONFIG_MEMCG */
#define MEM_CGROUP_ID_SHIFT 0
static inline struct mem_cgroup *folio_memcg(struct folio *folio)
{
return NULL;
}
static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return NULL;
}
static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
{
return NULL;
}
static inline struct mem_cgroup *page_memcg_check(struct page *page)
{
return NULL;
}
static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
{
return NULL;
}
static inline bool folio_memcg_kmem(struct folio *folio)
{
return false;
}
static inline bool PageMemcgKmem(struct page *page)
{
return false;
}
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
return true;
}
static inline bool mem_cgroup_disabled(void)
{
return true;
}
static inline void memcg_memory_event(struct mem_cgroup *memcg,
enum memcg_memory_event event)
{
}
static inline void memcg_memory_event_mm(struct mm_struct *mm,
enum memcg_memory_event event)
{
}
static inline void mem_cgroup_protection(struct mem_cgroup *root,
struct mem_cgroup *memcg,
unsigned long *min,
unsigned long *low)
{
*min = *low = 0;
}
static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
struct mem_cgroup *memcg)
{
}
static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
struct mem_cgroup *memcg)
{
return true;
}
static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
struct mem_cgroup *memcg)
{
return false;
}
static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
struct mem_cgroup *memcg)
{
return false;
}
static inline void mem_cgroup_commit_charge(struct folio *folio,
struct mem_cgroup *memcg)
{
}
static inline int mem_cgroup_charge(struct folio *folio,
struct mm_struct *mm, gfp_t gfp)
{
return 0;
}
static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
gfp_t gfp, long nr_pages)
{
return 0;
}
static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
{
return 0;
}
static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
{
}
static inline void mem_cgroup_uncharge(struct folio *folio)
{
}
static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
{
}
static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
unsigned int nr_pages)
{
}
static inline void mem_cgroup_replace_folio(struct folio *old,
struct folio *new)
{
}
static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
{
}
static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
struct pglist_data *pgdat)
{
return &pgdat->__lruvec;
}
static inline struct lruvec *folio_lruvec(struct folio *folio)
{
struct pglist_data *pgdat = folio_pgdat(folio);
return &pgdat->__lruvec;
}
static inline
void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
{
}
static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
{
return NULL;
}
static inline bool mm_match_cgroup(struct mm_struct *mm,
struct mem_cgroup *memcg)
{
return true;
}
static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
{
return NULL;
}
static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
return NULL;
}
static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
{
return NULL;
}
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
{
return NULL;
}
static inline void obj_cgroup_put(struct obj_cgroup *objcg)
{
}
static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
{
return true;
}
static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
{
return true;
}
static inline void mem_cgroup_put(struct mem_cgroup *memcg)
{
}
static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
{
struct pglist_data *pgdat = folio_pgdat(folio);
spin_lock(&pgdat->__lruvec.lru_lock);
return &pgdat->__lruvec;
}
static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
{
struct pglist_data *pgdat = folio_pgdat(folio);
spin_lock_irq(&pgdat->__lruvec.lru_lock);
return &pgdat->__lruvec;
}
static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
unsigned long *flagsp)
{
struct pglist_data *pgdat = folio_pgdat(folio);
spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
return &pgdat->__lruvec;
}
static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup *root,
struct mem_cgroup *prev,
struct mem_cgroup_reclaim_cookie *reclaim)
{
return NULL;
}
static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
struct mem_cgroup *prev)
{
}
static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
int (*fn)(struct task_struct *, void *), void *arg)
{
}
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
return 0;
}
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
WARN_ON_ONCE(id);
/* XXX: This should always return root_mem_cgroup */
return NULL;
}
#ifdef CONFIG_SHRINKER_DEBUG
static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
{
return 0;
}
static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
{
return NULL;
}
#endif
static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
{
return NULL;
}
static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
{
return NULL;
}
static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
{
return true;
}
static inline
unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
enum lru_list lru, int zone_idx)
{
return 0;
}
static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
{
return 0;
}
static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
return 0;
}
static inline void
mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
{
}
static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
}
static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
{
}
static inline struct mem_cgroup *mem_cgroup_get_oom_group(
struct task_struct *victim, struct mem_cgroup *oom_domain)
{
return NULL;
}
static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
}
static inline void __mod_memcg_state(struct mem_cgroup *memcg,
enum memcg_stat_item idx,
int nr)
{
}
static inline void mod_memcg_state(struct mem_cgroup *memcg,
enum memcg_stat_item idx,
int nr)
{
}
static inline void mod_memcg_page_state(struct page *page,
enum memcg_stat_item idx, int val)
{
}
static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
{
return 0;
}
static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
enum node_stat_item idx)
{
return node_page_state(lruvec_pgdat(lruvec), idx);
}
static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
enum node_stat_item idx)
{
return node_page_state(lruvec_pgdat(lruvec), idx);
}
static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
{
}
static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
{
}
static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
int val)
{
struct page *page = virt_to_head_page(p);
__mod_node_page_state(page_pgdat(page), idx, val);
}
static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
int val)
{
struct page *page = virt_to_head_page(p);
mod_node_page_state(page_pgdat(page), idx, val);
}
static inline void count_memcg_events(struct mem_cgroup *memcg,
enum vm_event_item idx,
unsigned long count)
{
}
static inline void __count_memcg_events(struct mem_cgroup *memcg,
enum vm_event_item idx,
unsigned long count)
{
}
static inline void count_memcg_folio_events(struct folio *folio,
enum vm_event_item idx, unsigned long nr)
{
}
static inline void count_memcg_events_mm(struct mm_struct *mm,
enum vm_event_item idx, unsigned long count)
{
}
static inline
void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
{
}
static inline void split_page_memcg(struct page *head, int old_order, int new_order)
{
}
#endif /* CONFIG_MEMCG */
/*
* Extended information for slab objects stored as an array in page->memcg_data
* if MEMCG_DATA_OBJEXTS is set.
*/
struct slabobj_ext {
#ifdef CONFIG_MEMCG
struct obj_cgroup *objcg;
#endif
#ifdef CONFIG_MEM_ALLOC_PROFILING
union codetag_ref ref;
#endif
} __aligned(8);
static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
{
__mod_lruvec_kmem_state(p, idx, 1);
}
static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
{
__mod_lruvec_kmem_state(p, idx, -1);
}
static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
{
struct mem_cgroup *memcg;
memcg = lruvec_memcg(lruvec);
if (!memcg)
return NULL;
memcg = parent_mem_cgroup(memcg);
if (!memcg)
return NULL;
return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
}
static inline void unlock_page_lruvec(struct lruvec *lruvec)
{
spin_unlock(&lruvec->lru_lock);
}
static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
{
spin_unlock_irq(&lruvec->lru_lock);
}
static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
unsigned long flags)
{
spin_unlock_irqrestore(&lruvec->lru_lock, flags);
}
/* Test requires a stable folio->memcg binding, see folio_memcg() */
static inline bool folio_matches_lruvec(struct folio *folio,
struct lruvec *lruvec)
{
return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
lruvec_memcg(lruvec) == folio_memcg(folio);
}
/* Don't lock again iff page's lruvec locked */
static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
struct lruvec *locked_lruvec)
{
if (locked_lruvec) {
if (folio_matches_lruvec(folio, locked_lruvec))
return locked_lruvec;
unlock_page_lruvec_irq(locked_lruvec);
}
return folio_lruvec_lock_irq(folio);
}
/* Don't lock again iff folio's lruvec locked */
static inline void folio_lruvec_relock_irqsave(struct folio *folio,
struct lruvec **lruvecp, unsigned long *flags)
{
if (*lruvecp) {
if (folio_matches_lruvec(folio, *lruvecp))
return;
unlock_page_lruvec_irqrestore(*lruvecp, *flags);
}
*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
}
#ifdef CONFIG_CGROUP_WRITEBACK
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
unsigned long *pheadroom, unsigned long *pdirty,
unsigned long *pwriteback);
void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
struct bdi_writeback *wb);
static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
struct bdi_writeback *wb)
{
struct mem_cgroup *memcg;
if (mem_cgroup_disabled())
return;
memcg = folio_memcg(folio);
if (unlikely(memcg && &memcg->css != wb->memcg_css))
mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
}
void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
#else /* CONFIG_CGROUP_WRITEBACK */
static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
return NULL;
}
static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
unsigned long *pfilepages,
unsigned long *pheadroom,
unsigned long *pdirty,
unsigned long *pwriteback)
{
}
static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
struct bdi_writeback *wb)
{
}
static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
}
#endif /* CONFIG_CGROUP_WRITEBACK */
struct sock;
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
gfp_t gfp_mask);
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
#ifdef CONFIG_MEMCG
extern struct static_key_false memcg_sockets_enabled_key;
#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
void mem_cgroup_sk_alloc(struct sock *sk);
void mem_cgroup_sk_free(struct sock *sk);
static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
{
#ifdef CONFIG_MEMCG_V1
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
return !!memcg->tcpmem_pressure;
#endif /* CONFIG_MEMCG_V1 */
do {
if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
return true;
} while ((memcg = parent_mem_cgroup(memcg)));
return false;
}
int alloc_shrinker_info(struct mem_cgroup *memcg);
void free_shrinker_info(struct mem_cgroup *memcg);
void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
void reparent_shrinker_deferred(struct mem_cgroup *memcg);
#else
#define mem_cgroup_sockets_enabled 0
static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
static inline void mem_cgroup_sk_free(struct sock *sk) { };
static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
{
return false;
}
static inline void set_shrinker_bit(struct mem_cgroup *memcg,
int nid, int shrinker_id)
{
}
#endif
#ifdef CONFIG_MEMCG
bool mem_cgroup_kmem_disabled(void);
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
void __memcg_kmem_uncharge_page(struct page *page, int order);
/*
* The returned objcg pointer is safe to use without additional
* protection within a scope. The scope is defined either by
* the current task (similar to the "current" global variable)
* or by set_active_memcg() pair.
* Please, use obj_cgroup_get() to get a reference if the pointer
* needs to be used outside of the local scope.
*/
struct obj_cgroup *current_obj_cgroup(void);
struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
struct obj_cgroup *objcg = current_obj_cgroup();
if (objcg)
obj_cgroup_get(objcg);
return objcg;
}
int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
extern struct static_key_false memcg_bpf_enabled_key;
static inline bool memcg_bpf_enabled(void)
{
return static_branch_likely(&memcg_bpf_enabled_key);
}
extern struct static_key_false memcg_kmem_online_key;
static inline bool memcg_kmem_online(void)
{
return static_branch_likely(&memcg_kmem_online_key);
}
static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
int order)
{
if (memcg_kmem_online())
return __memcg_kmem_charge_page(page, gfp, order);
return 0;
}
static inline void memcg_kmem_uncharge_page(struct page *page, int order)
{
if (memcg_kmem_online())
__memcg_kmem_uncharge_page(page, order);
}
/*
* A helper for accessing memcg's kmem_id, used for getting
* corresponding LRU lists.
*/
static inline int memcg_kmem_id(struct mem_cgroup *memcg)
{
return memcg ? memcg->kmemcg_id : -1;
}
struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
static inline void count_objcg_event(struct obj_cgroup *objcg,
enum vm_event_item idx)
{
struct mem_cgroup *memcg;
if (!memcg_kmem_online())
return;
rcu_read_lock();
memcg = obj_cgroup_memcg(objcg);
count_memcg_events(memcg, idx, 1);
rcu_read_unlock();
}
#else
static inline bool mem_cgroup_kmem_disabled(void)
{
return true;
}
static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
int order)
{
return 0;
}
static inline void memcg_kmem_uncharge_page(struct page *page, int order)
{
}
static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
int order)
{
return 0;
}
static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
{
}
static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
{
return NULL;
}
static inline bool memcg_bpf_enabled(void)
{
return false;
}
static inline bool memcg_kmem_online(void)
{
return false;
}
static inline int memcg_kmem_id(struct mem_cgroup *memcg)
{
return -1;
}
static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
{
return NULL;
}
static inline void count_objcg_event(struct obj_cgroup *objcg,
enum vm_event_item idx)
{
}
#endif /* CONFIG_MEMCG */
#if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
#else
static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
{
return true;
}
static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
size_t size)
{
}
static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
size_t size)
{
}
static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
{
/* if zswap is disabled, do not block pages going to the swapping device */
return true;
}
#endif
/* Cgroup v1-related declarations */
#ifdef CONFIG_MEMCG_V1
unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
gfp_t gfp_mask,
unsigned long *total_scanned);
bool mem_cgroup_oom_synchronize(bool wait);
static inline bool task_in_memcg_oom(struct task_struct *p)
{
return p->memcg_in_oom;
}
void folio_memcg_lock(struct folio *folio);
void folio_memcg_unlock(struct folio *folio);
/* try to stablize folio_memcg() for all the pages in a memcg */
static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
{
rcu_read_lock();
if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
return true;
rcu_read_unlock();
return false;
}
static inline void mem_cgroup_unlock_pages(void)
{
rcu_read_unlock();
}
static inline void mem_cgroup_enter_user_fault(void)
{
WARN_ON(current->in_user_fault);
current->in_user_fault = 1;
}
static inline void mem_cgroup_exit_user_fault(void)
{
WARN_ON(!current->in_user_fault);
current->in_user_fault = 0;
}
#else /* CONFIG_MEMCG_V1 */
static inline
unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
gfp_t gfp_mask,
unsigned long *total_scanned)
{
return 0;
}
static inline void folio_memcg_lock(struct folio *folio)
{
}
static inline void folio_memcg_unlock(struct folio *folio)
{
}
static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
{
/* to match folio_memcg_rcu() */
rcu_read_lock();
return true;
}
static inline void mem_cgroup_unlock_pages(void)
{
rcu_read_unlock();
}
static inline bool task_in_memcg_oom(struct task_struct *p)
{
return false;
}
static inline bool mem_cgroup_oom_synchronize(bool wait)
{
return false;
}
static inline void mem_cgroup_enter_user_fault(void)
{
}
static inline void mem_cgroup_exit_user_fault(void)
{
}
#endif /* CONFIG_MEMCG_V1 */
#endif /* _LINUX_MEMCONTROL_H */