linux-next/drivers/cpufreq/virtual-cpufreq.c
David Dai 4fd06a5358 cpufreq: add virtual-cpufreq driver
Introduce a virtualized cpufreq driver for guest kernels to improve
performance and power of workloads within VMs.

This driver does two main things:

1. Sends the frequency of vCPUs as a hint to the host. The host uses the
hint to schedule the vCPU threads and decide physical CPU frequency.

2. If a VM does not support a virtualized FIE(like AMUs), it queries the
host CPU frequency by reading a MMIO region of a virtual cpufreq device
to update the guest's frequency scaling factor periodically. This enables
accurate Per-Entity Load Tracking for tasks running in the guest.

Co-developed-by: Saravana Kannan <saravanak@google.com>
Signed-off-by: Saravana Kannan <saravanak@google.com>
Signed-off-by: David Dai <davidai@google.com>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
2024-10-29 12:05:14 +05:30

334 lines
9.9 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2024 Google LLC
*/
#include <linux/arch_topology.h>
#include <linux/cpufreq.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
/*
* CPU0..CPUn
* +-------------+-------------------------------+--------+-------+
* | Register | Description | Offset | Len |
* +-------------+-------------------------------+--------+-------+
* | cur_perf | read this register to get | 0x0 | 0x4 |
* | | the current perf (integer val | | |
* | | representing perf relative to | | |
* | | max performance) | | |
* | | that vCPU is running at | | |
* +-------------+-------------------------------+--------+-------+
* | set_perf | write to this register to set | 0x4 | 0x4 |
* | | perf value of the vCPU | | |
* +-------------+-------------------------------+--------+-------+
* | perftbl_len | number of entries in perf | 0x8 | 0x4 |
* | | table. A single entry in the | | |
* | | perf table denotes no table | | |
* | | and the entry contains | | |
* | | the maximum perf value | | |
* | | that this vCPU supports. | | |
* | | The guest can request any | | |
* | | value between 1 and max perf | | |
* | | when perftbls are not used. | | |
* +---------------------------------------------+--------+-------+
* | perftbl_sel | write to this register to | 0xc | 0x4 |
* | | select perf table entry to | | |
* | | read from | | |
* +---------------------------------------------+--------+-------+
* | perftbl_rd | read this register to get | 0x10 | 0x4 |
* | | perf value of the selected | | |
* | | entry based on perftbl_sel | | |
* +---------------------------------------------+--------+-------+
* | perf_domain | performance domain number | 0x14 | 0x4 |
* | | that this vCPU belongs to. | | |
* | | vCPUs sharing the same perf | | |
* | | domain number are part of the | | |
* | | same performance domain. | | |
* +-------------+-------------------------------+--------+-------+
*/
#define REG_CUR_PERF_STATE_OFFSET 0x0
#define REG_SET_PERF_STATE_OFFSET 0x4
#define REG_PERFTBL_LEN_OFFSET 0x8
#define REG_PERFTBL_SEL_OFFSET 0xc
#define REG_PERFTBL_RD_OFFSET 0x10
#define REG_PERF_DOMAIN_OFFSET 0x14
#define PER_CPU_OFFSET 0x1000
#define PERFTBL_MAX_ENTRIES 64U
static void __iomem *base;
static DEFINE_PER_CPU(u32, perftbl_num_entries);
static void virt_scale_freq_tick(void)
{
int cpu = smp_processor_id();
u32 max_freq = (u32)cpufreq_get_hw_max_freq(cpu);
u64 cur_freq;
unsigned long scale;
cur_freq = (u64)readl_relaxed(base + cpu * PER_CPU_OFFSET
+ REG_CUR_PERF_STATE_OFFSET);
cur_freq <<= SCHED_CAPACITY_SHIFT;
scale = (unsigned long)div_u64(cur_freq, max_freq);
scale = min(scale, SCHED_CAPACITY_SCALE);
this_cpu_write(arch_freq_scale, scale);
}
static struct scale_freq_data virt_sfd = {
.source = SCALE_FREQ_SOURCE_VIRT,
.set_freq_scale = virt_scale_freq_tick,
};
static unsigned int virt_cpufreq_set_perf(struct cpufreq_policy *policy,
unsigned int target_freq)
{
writel_relaxed(target_freq,
base + policy->cpu * PER_CPU_OFFSET + REG_SET_PERF_STATE_OFFSET);
return 0;
}
static unsigned int virt_cpufreq_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
virt_cpufreq_set_perf(policy, target_freq);
return target_freq;
}
static u32 virt_cpufreq_get_perftbl_entry(int cpu, u32 idx)
{
writel_relaxed(idx, base + cpu * PER_CPU_OFFSET +
REG_PERFTBL_SEL_OFFSET);
return readl_relaxed(base + cpu * PER_CPU_OFFSET +
REG_PERFTBL_RD_OFFSET);
}
static int virt_cpufreq_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
struct cpufreq_freqs freqs;
int ret = 0;
freqs.old = policy->cur;
freqs.new = target_freq;
cpufreq_freq_transition_begin(policy, &freqs);
ret = virt_cpufreq_set_perf(policy, target_freq);
cpufreq_freq_transition_end(policy, &freqs, ret != 0);
return ret;
}
static int virt_cpufreq_get_sharing_cpus(struct cpufreq_policy *policy)
{
u32 cur_perf_domain, perf_domain;
struct device *cpu_dev;
int cpu;
cur_perf_domain = readl_relaxed(base + policy->cpu *
PER_CPU_OFFSET + REG_PERF_DOMAIN_OFFSET);
for_each_possible_cpu(cpu) {
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev)
continue;
perf_domain = readl_relaxed(base + cpu *
PER_CPU_OFFSET + REG_PERF_DOMAIN_OFFSET);
if (perf_domain == cur_perf_domain)
cpumask_set_cpu(cpu, policy->cpus);
}
return 0;
}
static int virt_cpufreq_get_freq_info(struct cpufreq_policy *policy)
{
struct cpufreq_frequency_table *table;
u32 num_perftbl_entries, idx;
num_perftbl_entries = per_cpu(perftbl_num_entries, policy->cpu);
if (num_perftbl_entries == 1) {
policy->cpuinfo.min_freq = 1;
policy->cpuinfo.max_freq = virt_cpufreq_get_perftbl_entry(policy->cpu, 0);
policy->min = policy->cpuinfo.min_freq;
policy->max = policy->cpuinfo.max_freq;
policy->cur = policy->max;
return 0;
}
table = kcalloc(num_perftbl_entries + 1, sizeof(*table), GFP_KERNEL);
if (!table)
return -ENOMEM;
for (idx = 0; idx < num_perftbl_entries; idx++)
table[idx].frequency = virt_cpufreq_get_perftbl_entry(policy->cpu, idx);
table[idx].frequency = CPUFREQ_TABLE_END;
policy->freq_table = table;
return 0;
}
static int virt_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
struct device *cpu_dev;
int ret;
cpu_dev = get_cpu_device(policy->cpu);
if (!cpu_dev)
return -ENODEV;
ret = virt_cpufreq_get_freq_info(policy);
if (ret) {
dev_warn(cpu_dev, "failed to get cpufreq info\n");
return ret;
}
ret = virt_cpufreq_get_sharing_cpus(policy);
if (ret) {
dev_warn(cpu_dev, "failed to get sharing cpumask\n");
return ret;
}
/*
* To simplify and improve latency of handling frequency requests on
* the host side, this ensures that the vCPU thread triggering the MMIO
* abort is the same thread whose performance constraints (Ex. uclamp
* settings) need to be updated. This simplifies the VMM (Virtual
* Machine Manager) having to find the correct vCPU thread and/or
* facing permission issues when configuring other threads.
*/
policy->dvfs_possible_from_any_cpu = false;
policy->fast_switch_possible = true;
/*
* Using the default SCALE_FREQ_SOURCE_CPUFREQ is insufficient since
* the actual physical CPU frequency may not match requested frequency
* from the vCPU thread due to frequency update latencies or other
* inputs to the physical CPU frequency selection. This additional FIE
* source allows for more accurate freq_scale updates and only takes
* effect if another FIE source such as AMUs have not been registered.
*/
topology_set_scale_freq_source(&virt_sfd, policy->cpus);
return 0;
}
static void virt_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_VIRT, policy->related_cpus);
kfree(policy->freq_table);
}
static int virt_cpufreq_online(struct cpufreq_policy *policy)
{
/* Nothing to restore. */
return 0;
}
static int virt_cpufreq_offline(struct cpufreq_policy *policy)
{
/* Dummy offline() to avoid exit() being called and freeing resources. */
return 0;
}
static int virt_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
{
if (policy->freq_table)
return cpufreq_frequency_table_verify(policy, policy->freq_table);
cpufreq_verify_within_cpu_limits(policy);
return 0;
}
static struct cpufreq_driver cpufreq_virt_driver = {
.name = "virt-cpufreq",
.init = virt_cpufreq_cpu_init,
.exit = virt_cpufreq_cpu_exit,
.online = virt_cpufreq_online,
.offline = virt_cpufreq_offline,
.verify = virt_cpufreq_verify_policy,
.target = virt_cpufreq_target,
.fast_switch = virt_cpufreq_fast_switch,
.attr = cpufreq_generic_attr,
};
static int virt_cpufreq_driver_probe(struct platform_device *pdev)
{
u32 num_perftbl_entries;
int ret, cpu;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
for_each_possible_cpu(cpu) {
num_perftbl_entries = readl_relaxed(base + cpu * PER_CPU_OFFSET +
REG_PERFTBL_LEN_OFFSET);
if (!num_perftbl_entries || num_perftbl_entries > PERFTBL_MAX_ENTRIES)
return -ENODEV;
per_cpu(perftbl_num_entries, cpu) = num_perftbl_entries;
}
ret = cpufreq_register_driver(&cpufreq_virt_driver);
if (ret) {
dev_err(&pdev->dev, "Virtual CPUFreq driver failed to register: %d\n", ret);
return ret;
}
dev_dbg(&pdev->dev, "Virtual CPUFreq driver initialized\n");
return 0;
}
static void virt_cpufreq_driver_remove(struct platform_device *pdev)
{
cpufreq_unregister_driver(&cpufreq_virt_driver);
}
static const struct of_device_id virt_cpufreq_match[] = {
{ .compatible = "qemu,virtual-cpufreq", .data = NULL},
{}
};
MODULE_DEVICE_TABLE(of, virt_cpufreq_match);
static struct platform_driver virt_cpufreq_driver = {
.probe = virt_cpufreq_driver_probe,
.remove = virt_cpufreq_driver_remove,
.driver = {
.name = "virt-cpufreq",
.of_match_table = virt_cpufreq_match,
},
};
static int __init virt_cpufreq_init(void)
{
return platform_driver_register(&virt_cpufreq_driver);
}
postcore_initcall(virt_cpufreq_init);
static void __exit virt_cpufreq_exit(void)
{
platform_driver_unregister(&virt_cpufreq_driver);
}
module_exit(virt_cpufreq_exit);
MODULE_DESCRIPTION("Virtual cpufreq driver");
MODULE_LICENSE("GPL");