linux-next/drivers/rtc/rtc-omap.c
Ruan Jinjie 4d349a5793 rtc: omap: Do not check for 0 return after calling platform_get_irq()
It is not possible for platform_get_irq() to return 0. Use the
return value from platform_get_irq().

Signed-off-by: Ruan Jinjie <ruanjinjie@huawei.com>
Link: https://lore.kernel.org/r/20230803080713.4061782-2-ruanjinjie@huawei.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
2023-08-17 01:17:34 +02:00

1033 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* TI OMAP Real Time Clock interface for Linux
*
* Copyright (C) 2003 MontaVista Software, Inc.
* Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
*
* Copyright (C) 2006 David Brownell (new RTC framework)
* Copyright (C) 2014 Johan Hovold <johan@kernel.org>
*/
#include <linux/bcd.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/pinconf.h>
#include <linux/pinctrl/pinconf-generic.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/rtc.h>
#include <linux/rtc/rtc-omap.h>
/*
* The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
* with century-range alarm matching, driven by the 32kHz clock.
*
* The main user-visible ways it differs from PC RTCs are by omitting
* "don't care" alarm fields and sub-second periodic IRQs, and having
* an autoadjust mechanism to calibrate to the true oscillator rate.
*
* Board-specific wiring options include using split power mode with
* RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
* and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
* low power modes) for OMAP1 boards (OMAP-L138 has this built into
* the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
*/
/* RTC registers */
#define OMAP_RTC_SECONDS_REG 0x00
#define OMAP_RTC_MINUTES_REG 0x04
#define OMAP_RTC_HOURS_REG 0x08
#define OMAP_RTC_DAYS_REG 0x0C
#define OMAP_RTC_MONTHS_REG 0x10
#define OMAP_RTC_YEARS_REG 0x14
#define OMAP_RTC_WEEKS_REG 0x18
#define OMAP_RTC_ALARM_SECONDS_REG 0x20
#define OMAP_RTC_ALARM_MINUTES_REG 0x24
#define OMAP_RTC_ALARM_HOURS_REG 0x28
#define OMAP_RTC_ALARM_DAYS_REG 0x2c
#define OMAP_RTC_ALARM_MONTHS_REG 0x30
#define OMAP_RTC_ALARM_YEARS_REG 0x34
#define OMAP_RTC_CTRL_REG 0x40
#define OMAP_RTC_STATUS_REG 0x44
#define OMAP_RTC_INTERRUPTS_REG 0x48
#define OMAP_RTC_COMP_LSB_REG 0x4c
#define OMAP_RTC_COMP_MSB_REG 0x50
#define OMAP_RTC_OSC_REG 0x54
#define OMAP_RTC_SCRATCH0_REG 0x60
#define OMAP_RTC_SCRATCH1_REG 0x64
#define OMAP_RTC_SCRATCH2_REG 0x68
#define OMAP_RTC_KICK0_REG 0x6c
#define OMAP_RTC_KICK1_REG 0x70
#define OMAP_RTC_IRQWAKEEN 0x7c
#define OMAP_RTC_ALARM2_SECONDS_REG 0x80
#define OMAP_RTC_ALARM2_MINUTES_REG 0x84
#define OMAP_RTC_ALARM2_HOURS_REG 0x88
#define OMAP_RTC_ALARM2_DAYS_REG 0x8c
#define OMAP_RTC_ALARM2_MONTHS_REG 0x90
#define OMAP_RTC_ALARM2_YEARS_REG 0x94
#define OMAP_RTC_PMIC_REG 0x98
/* OMAP_RTC_CTRL_REG bit fields: */
#define OMAP_RTC_CTRL_SPLIT BIT(7)
#define OMAP_RTC_CTRL_DISABLE BIT(6)
#define OMAP_RTC_CTRL_SET_32_COUNTER BIT(5)
#define OMAP_RTC_CTRL_TEST BIT(4)
#define OMAP_RTC_CTRL_MODE_12_24 BIT(3)
#define OMAP_RTC_CTRL_AUTO_COMP BIT(2)
#define OMAP_RTC_CTRL_ROUND_30S BIT(1)
#define OMAP_RTC_CTRL_STOP BIT(0)
/* OMAP_RTC_STATUS_REG bit fields: */
#define OMAP_RTC_STATUS_POWER_UP BIT(7)
#define OMAP_RTC_STATUS_ALARM2 BIT(7)
#define OMAP_RTC_STATUS_ALARM BIT(6)
#define OMAP_RTC_STATUS_1D_EVENT BIT(5)
#define OMAP_RTC_STATUS_1H_EVENT BIT(4)
#define OMAP_RTC_STATUS_1M_EVENT BIT(3)
#define OMAP_RTC_STATUS_1S_EVENT BIT(2)
#define OMAP_RTC_STATUS_RUN BIT(1)
#define OMAP_RTC_STATUS_BUSY BIT(0)
/* OMAP_RTC_INTERRUPTS_REG bit fields: */
#define OMAP_RTC_INTERRUPTS_IT_ALARM2 BIT(4)
#define OMAP_RTC_INTERRUPTS_IT_ALARM BIT(3)
#define OMAP_RTC_INTERRUPTS_IT_TIMER BIT(2)
/* OMAP_RTC_OSC_REG bit fields: */
#define OMAP_RTC_OSC_32KCLK_EN BIT(6)
#define OMAP_RTC_OSC_SEL_32KCLK_SRC BIT(3)
#define OMAP_RTC_OSC_OSC32K_GZ_DISABLE BIT(4)
/* OMAP_RTC_IRQWAKEEN bit fields: */
#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN BIT(1)
/* OMAP_RTC_PMIC bit fields: */
#define OMAP_RTC_PMIC_POWER_EN_EN BIT(16)
#define OMAP_RTC_PMIC_EXT_WKUP_EN(x) BIT(x)
#define OMAP_RTC_PMIC_EXT_WKUP_POL(x) BIT(4 + x)
/* OMAP_RTC_KICKER values */
#define KICK0_VALUE 0x83e70b13
#define KICK1_VALUE 0x95a4f1e0
struct omap_rtc;
struct omap_rtc_device_type {
bool has_32kclk_en;
bool has_irqwakeen;
bool has_pmic_mode;
bool has_power_up_reset;
void (*lock)(struct omap_rtc *rtc);
void (*unlock)(struct omap_rtc *rtc);
};
struct omap_rtc {
struct rtc_device *rtc;
void __iomem *base;
struct clk *clk;
int irq_alarm;
int irq_timer;
u8 interrupts_reg;
bool is_pmic_controller;
bool has_ext_clk;
bool is_suspending;
const struct omap_rtc_device_type *type;
struct pinctrl_dev *pctldev;
};
static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
{
return readb(rtc->base + reg);
}
static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
{
return readl(rtc->base + reg);
}
static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
{
writeb(val, rtc->base + reg);
}
static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
{
writel(val, rtc->base + reg);
}
static void am3352_rtc_unlock(struct omap_rtc *rtc)
{
rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
}
static void am3352_rtc_lock(struct omap_rtc *rtc)
{
rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
}
static void default_rtc_unlock(struct omap_rtc *rtc)
{
}
static void default_rtc_lock(struct omap_rtc *rtc)
{
}
/*
* We rely on the rtc framework to handle locking (rtc->ops_lock),
* so the only other requirement is that register accesses which
* require BUSY to be clear are made with IRQs locally disabled
*/
static void rtc_wait_not_busy(struct omap_rtc *rtc)
{
int count;
u8 status;
/* BUSY may stay active for 1/32768 second (~30 usec) */
for (count = 0; count < 50; count++) {
status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
if (!(status & OMAP_RTC_STATUS_BUSY))
break;
udelay(1);
}
/* now we have ~15 usec to read/write various registers */
}
static irqreturn_t rtc_irq(int irq, void *dev_id)
{
struct omap_rtc *rtc = dev_id;
unsigned long events = 0;
u8 irq_data;
irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
/* alarm irq? */
if (irq_data & OMAP_RTC_STATUS_ALARM) {
rtc->type->unlock(rtc);
rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
rtc->type->lock(rtc);
events |= RTC_IRQF | RTC_AF;
}
/* 1/sec periodic/update irq? */
if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
events |= RTC_IRQF | RTC_UF;
rtc_update_irq(rtc->rtc, 1, events);
return IRQ_HANDLED;
}
static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct omap_rtc *rtc = dev_get_drvdata(dev);
u8 reg, irqwake_reg = 0;
local_irq_disable();
rtc_wait_not_busy(rtc);
reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
if (rtc->type->has_irqwakeen)
irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
if (enabled) {
reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
} else {
reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
}
rtc_wait_not_busy(rtc);
rtc->type->unlock(rtc);
rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
if (rtc->type->has_irqwakeen)
rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
rtc->type->lock(rtc);
local_irq_enable();
return 0;
}
/* this hardware doesn't support "don't care" alarm fields */
static void tm2bcd(struct rtc_time *tm)
{
tm->tm_sec = bin2bcd(tm->tm_sec);
tm->tm_min = bin2bcd(tm->tm_min);
tm->tm_hour = bin2bcd(tm->tm_hour);
tm->tm_mday = bin2bcd(tm->tm_mday);
tm->tm_mon = bin2bcd(tm->tm_mon + 1);
tm->tm_year = bin2bcd(tm->tm_year - 100);
}
static void bcd2tm(struct rtc_time *tm)
{
tm->tm_sec = bcd2bin(tm->tm_sec);
tm->tm_min = bcd2bin(tm->tm_min);
tm->tm_hour = bcd2bin(tm->tm_hour);
tm->tm_mday = bcd2bin(tm->tm_mday);
tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
/* epoch == 1900 */
tm->tm_year = bcd2bin(tm->tm_year) + 100;
}
static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
{
tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
}
static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct omap_rtc *rtc = dev_get_drvdata(dev);
/* we don't report wday/yday/isdst ... */
local_irq_disable();
rtc_wait_not_busy(rtc);
omap_rtc_read_time_raw(rtc, tm);
local_irq_enable();
bcd2tm(tm);
return 0;
}
static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct omap_rtc *rtc = dev_get_drvdata(dev);
tm2bcd(tm);
local_irq_disable();
rtc_wait_not_busy(rtc);
rtc->type->unlock(rtc);
rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
rtc->type->lock(rtc);
local_irq_enable();
return 0;
}
static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
struct omap_rtc *rtc = dev_get_drvdata(dev);
u8 interrupts;
local_irq_disable();
rtc_wait_not_busy(rtc);
alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
local_irq_enable();
bcd2tm(&alm->time);
interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
return 0;
}
static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
struct omap_rtc *rtc = dev_get_drvdata(dev);
u8 reg, irqwake_reg = 0;
tm2bcd(&alm->time);
local_irq_disable();
rtc_wait_not_busy(rtc);
rtc->type->unlock(rtc);
rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
if (rtc->type->has_irqwakeen)
irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
if (alm->enabled) {
reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
} else {
reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
}
rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
if (rtc->type->has_irqwakeen)
rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
rtc->type->lock(rtc);
local_irq_enable();
return 0;
}
static struct omap_rtc *omap_rtc_power_off_rtc;
/**
* omap_rtc_power_off_program: Set the pmic power off sequence. The RTC
* generates pmic_pwr_enable control, which can be used to control an external
* PMIC.
*/
int omap_rtc_power_off_program(struct device *dev)
{
struct omap_rtc *rtc = omap_rtc_power_off_rtc;
struct rtc_time tm;
unsigned long now;
int seconds;
u32 val;
rtc->type->unlock(rtc);
/* enable pmic_power_en control */
val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
again:
/* Clear any existing ALARM2 event */
rtc_writel(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM2);
/* set alarm one second from now */
omap_rtc_read_time_raw(rtc, &tm);
seconds = tm.tm_sec;
bcd2tm(&tm);
now = rtc_tm_to_time64(&tm);
rtc_time64_to_tm(now + 1, &tm);
tm2bcd(&tm);
rtc_wait_not_busy(rtc);
rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
/*
* enable ALARM2 interrupt
*
* NOTE: this fails on AM3352 if rtc_write (writeb) is used
*/
val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
/* Retry in case roll over happened before alarm was armed. */
if (rtc_read(rtc, OMAP_RTC_SECONDS_REG) != seconds) {
val = rtc_read(rtc, OMAP_RTC_STATUS_REG);
if (!(val & OMAP_RTC_STATUS_ALARM2))
goto again;
}
rtc->type->lock(rtc);
return 0;
}
EXPORT_SYMBOL(omap_rtc_power_off_program);
/*
* omap_rtc_poweroff: RTC-controlled power off
*
* The RTC can be used to control an external PMIC via the pmic_power_en pin,
* which can be configured to transition to OFF on ALARM2 events.
*
* Notes:
* The one-second alarm offset is the shortest offset possible as the alarm
* registers must be set before the next timer update and the offset
* calculation is too heavy for everything to be done within a single access
* period (~15 us).
*
* Called with local interrupts disabled.
*/
static void omap_rtc_power_off(void)
{
struct rtc_device *rtc = omap_rtc_power_off_rtc->rtc;
u32 val;
omap_rtc_power_off_program(rtc->dev.parent);
/* Set PMIC power enable and EXT_WAKEUP in case PB power on is used */
omap_rtc_power_off_rtc->type->unlock(omap_rtc_power_off_rtc);
val = rtc_readl(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG);
val |= OMAP_RTC_PMIC_POWER_EN_EN | OMAP_RTC_PMIC_EXT_WKUP_POL(0) |
OMAP_RTC_PMIC_EXT_WKUP_EN(0);
rtc_writel(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG, val);
omap_rtc_power_off_rtc->type->lock(omap_rtc_power_off_rtc);
/*
* Wait for alarm to trigger (within one second) and external PMIC to
* power off the system. Add a 500 ms margin for external latencies
* (e.g. debounce circuits).
*/
mdelay(1500);
}
static const struct rtc_class_ops omap_rtc_ops = {
.read_time = omap_rtc_read_time,
.set_time = omap_rtc_set_time,
.read_alarm = omap_rtc_read_alarm,
.set_alarm = omap_rtc_set_alarm,
.alarm_irq_enable = omap_rtc_alarm_irq_enable,
};
static const struct omap_rtc_device_type omap_rtc_default_type = {
.has_power_up_reset = true,
.lock = default_rtc_lock,
.unlock = default_rtc_unlock,
};
static const struct omap_rtc_device_type omap_rtc_am3352_type = {
.has_32kclk_en = true,
.has_irqwakeen = true,
.has_pmic_mode = true,
.lock = am3352_rtc_lock,
.unlock = am3352_rtc_unlock,
};
static const struct omap_rtc_device_type omap_rtc_da830_type = {
.lock = am3352_rtc_lock,
.unlock = am3352_rtc_unlock,
};
static const struct platform_device_id omap_rtc_id_table[] = {
{
.name = "omap_rtc",
.driver_data = (kernel_ulong_t)&omap_rtc_default_type,
}, {
.name = "am3352-rtc",
.driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
}, {
.name = "da830-rtc",
.driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
static const struct of_device_id omap_rtc_of_match[] = {
{
.compatible = "ti,am3352-rtc",
.data = &omap_rtc_am3352_type,
}, {
.compatible = "ti,da830-rtc",
.data = &omap_rtc_da830_type,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
static const struct pinctrl_pin_desc rtc_pins_desc[] = {
PINCTRL_PIN(0, "ext_wakeup0"),
PINCTRL_PIN(1, "ext_wakeup1"),
PINCTRL_PIN(2, "ext_wakeup2"),
PINCTRL_PIN(3, "ext_wakeup3"),
};
static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
{
return 0;
}
static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
unsigned int group)
{
return NULL;
}
static const struct pinctrl_ops rtc_pinctrl_ops = {
.get_groups_count = rtc_pinctrl_get_groups_count,
.get_group_name = rtc_pinctrl_get_group_name,
.dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
.dt_free_map = pinconf_generic_dt_free_map,
};
#define PIN_CONFIG_ACTIVE_HIGH (PIN_CONFIG_END + 1)
static const struct pinconf_generic_params rtc_params[] = {
{"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0},
};
#ifdef CONFIG_DEBUG_FS
static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = {
PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false),
};
#endif
static int rtc_pinconf_get(struct pinctrl_dev *pctldev,
unsigned int pin, unsigned long *config)
{
struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
unsigned int param = pinconf_to_config_param(*config);
u32 val;
u16 arg = 0;
val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
switch (param) {
case PIN_CONFIG_INPUT_ENABLE:
if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin)))
return -EINVAL;
break;
case PIN_CONFIG_ACTIVE_HIGH:
if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin))
return -EINVAL;
break;
default:
return -ENOTSUPP;
}
*config = pinconf_to_config_packed(param, arg);
return 0;
}
static int rtc_pinconf_set(struct pinctrl_dev *pctldev,
unsigned int pin, unsigned long *configs,
unsigned int num_configs)
{
struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
u32 val;
unsigned int param;
u32 param_val;
int i;
val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
/* active low by default */
val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
for (i = 0; i < num_configs; i++) {
param = pinconf_to_config_param(configs[i]);
param_val = pinconf_to_config_argument(configs[i]);
switch (param) {
case PIN_CONFIG_INPUT_ENABLE:
if (param_val)
val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
else
val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
break;
case PIN_CONFIG_ACTIVE_HIGH:
val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
break;
default:
dev_err(&rtc->rtc->dev, "Property %u not supported\n",
param);
return -ENOTSUPP;
}
}
rtc->type->unlock(rtc);
rtc_writel(rtc, OMAP_RTC_PMIC_REG, val);
rtc->type->lock(rtc);
return 0;
}
static const struct pinconf_ops rtc_pinconf_ops = {
.is_generic = true,
.pin_config_get = rtc_pinconf_get,
.pin_config_set = rtc_pinconf_set,
};
static struct pinctrl_desc rtc_pinctrl_desc = {
.pins = rtc_pins_desc,
.npins = ARRAY_SIZE(rtc_pins_desc),
.pctlops = &rtc_pinctrl_ops,
.confops = &rtc_pinconf_ops,
.custom_params = rtc_params,
.num_custom_params = ARRAY_SIZE(rtc_params),
#ifdef CONFIG_DEBUG_FS
.custom_conf_items = rtc_conf_items,
#endif
.owner = THIS_MODULE,
};
static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val,
size_t bytes)
{
struct omap_rtc *rtc = priv;
u32 *val = _val;
int i;
for (i = 0; i < bytes / 4; i++)
val[i] = rtc_readl(rtc,
OMAP_RTC_SCRATCH0_REG + offset + (i * 4));
return 0;
}
static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val,
size_t bytes)
{
struct omap_rtc *rtc = priv;
u32 *val = _val;
int i;
rtc->type->unlock(rtc);
for (i = 0; i < bytes / 4; i++)
rtc_writel(rtc,
OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]);
rtc->type->lock(rtc);
return 0;
}
static struct nvmem_config omap_rtc_nvmem_config = {
.name = "omap_rtc_scratch",
.word_size = 4,
.stride = 4,
.size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG,
.reg_read = omap_rtc_scratch_read,
.reg_write = omap_rtc_scratch_write,
};
static int omap_rtc_probe(struct platform_device *pdev)
{
struct omap_rtc *rtc;
u8 reg, mask, new_ctrl;
const struct platform_device_id *id_entry;
const struct of_device_id *of_id;
int ret;
rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
if (!rtc)
return -ENOMEM;
of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
if (of_id) {
rtc->type = of_id->data;
rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
of_device_is_system_power_controller(pdev->dev.of_node);
} else {
id_entry = platform_get_device_id(pdev);
rtc->type = (void *)id_entry->driver_data;
}
rtc->irq_timer = platform_get_irq(pdev, 0);
if (rtc->irq_timer < 0)
return rtc->irq_timer;
rtc->irq_alarm = platform_get_irq(pdev, 1);
if (rtc->irq_alarm < 0)
return rtc->irq_alarm;
rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
if (!IS_ERR(rtc->clk))
rtc->has_ext_clk = true;
else
rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
if (!IS_ERR(rtc->clk))
clk_prepare_enable(rtc->clk);
rtc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(rtc->base)) {
clk_disable_unprepare(rtc->clk);
return PTR_ERR(rtc->base);
}
platform_set_drvdata(pdev, rtc);
/* Enable the clock/module so that we can access the registers */
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(&pdev->dev);
rtc->type->unlock(rtc);
/*
* disable interrupts
*
* NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
*/
rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
/* enable RTC functional clock */
if (rtc->type->has_32kclk_en) {
reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
rtc_write(rtc, OMAP_RTC_OSC_REG, reg | OMAP_RTC_OSC_32KCLK_EN);
}
/* clear old status */
reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
mask = OMAP_RTC_STATUS_ALARM;
if (rtc->type->has_pmic_mode)
mask |= OMAP_RTC_STATUS_ALARM2;
if (rtc->type->has_power_up_reset) {
mask |= OMAP_RTC_STATUS_POWER_UP;
if (reg & OMAP_RTC_STATUS_POWER_UP)
dev_info(&pdev->dev, "RTC power up reset detected\n");
}
if (reg & mask)
rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
/* On boards with split power, RTC_ON_NOFF won't reset the RTC */
reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
if (reg & OMAP_RTC_CTRL_STOP)
dev_info(&pdev->dev, "already running\n");
/* force to 24 hour mode */
new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
new_ctrl |= OMAP_RTC_CTRL_STOP;
/*
* BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
*
* - Device wake-up capability setting should come through chip
* init logic. OMAP1 boards should initialize the "wakeup capable"
* flag in the platform device if the board is wired right for
* being woken up by RTC alarm. For OMAP-L138, this capability
* is built into the SoC by the "Deep Sleep" capability.
*
* - Boards wired so RTC_ON_nOFF is used as the reset signal,
* rather than nPWRON_RESET, should forcibly enable split
* power mode. (Some chip errata report that RTC_CTRL_SPLIT
* is write-only, and always reads as zero...)
*/
if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
dev_info(&pdev->dev, "split power mode\n");
if (reg != new_ctrl)
rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
/*
* If we have the external clock then switch to it so we can keep
* ticking across suspend.
*/
if (rtc->has_ext_clk) {
reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE;
reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC;
rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
}
rtc->type->lock(rtc);
device_init_wakeup(&pdev->dev, true);
rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(rtc->rtc)) {
ret = PTR_ERR(rtc->rtc);
goto err;
}
rtc->rtc->ops = &omap_rtc_ops;
rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
rtc->rtc->range_max = RTC_TIMESTAMP_END_2099;
omap_rtc_nvmem_config.priv = rtc;
/* handle periodic and alarm irqs */
ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
dev_name(&rtc->rtc->dev), rtc);
if (ret)
goto err;
if (rtc->irq_timer != rtc->irq_alarm) {
ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
dev_name(&rtc->rtc->dev), rtc);
if (ret)
goto err;
}
/* Support ext_wakeup pinconf */
rtc_pinctrl_desc.name = dev_name(&pdev->dev);
rtc->pctldev = devm_pinctrl_register(&pdev->dev, &rtc_pinctrl_desc, rtc);
if (IS_ERR(rtc->pctldev)) {
dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
ret = PTR_ERR(rtc->pctldev);
goto err;
}
ret = devm_rtc_register_device(rtc->rtc);
if (ret)
goto err;
devm_rtc_nvmem_register(rtc->rtc, &omap_rtc_nvmem_config);
if (rtc->is_pmic_controller) {
if (!pm_power_off) {
omap_rtc_power_off_rtc = rtc;
pm_power_off = omap_rtc_power_off;
}
}
return 0;
err:
clk_disable_unprepare(rtc->clk);
device_init_wakeup(&pdev->dev, false);
rtc->type->lock(rtc);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return ret;
}
static void omap_rtc_remove(struct platform_device *pdev)
{
struct omap_rtc *rtc = platform_get_drvdata(pdev);
u8 reg;
if (pm_power_off == omap_rtc_power_off &&
omap_rtc_power_off_rtc == rtc) {
pm_power_off = NULL;
omap_rtc_power_off_rtc = NULL;
}
device_init_wakeup(&pdev->dev, 0);
if (!IS_ERR(rtc->clk))
clk_disable_unprepare(rtc->clk);
rtc->type->unlock(rtc);
/* leave rtc running, but disable irqs */
rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
if (rtc->has_ext_clk) {
reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
}
rtc->type->lock(rtc);
/* Disable the clock/module */
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
}
static int __maybe_unused omap_rtc_suspend(struct device *dev)
{
struct omap_rtc *rtc = dev_get_drvdata(dev);
rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
rtc->type->unlock(rtc);
/*
* FIXME: the RTC alarm is not currently acting as a wakeup event
* source on some platforms, and in fact this enable() call is just
* saving a flag that's never used...
*/
if (device_may_wakeup(dev))
enable_irq_wake(rtc->irq_alarm);
else
rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
rtc->type->lock(rtc);
rtc->is_suspending = true;
return 0;
}
static int __maybe_unused omap_rtc_resume(struct device *dev)
{
struct omap_rtc *rtc = dev_get_drvdata(dev);
rtc->type->unlock(rtc);
if (device_may_wakeup(dev))
disable_irq_wake(rtc->irq_alarm);
else
rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
rtc->type->lock(rtc);
rtc->is_suspending = false;
return 0;
}
static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev)
{
struct omap_rtc *rtc = dev_get_drvdata(dev);
if (rtc->is_suspending && !rtc->has_ext_clk)
return -EBUSY;
return 0;
}
static const struct dev_pm_ops omap_rtc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume)
SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL)
};
static void omap_rtc_shutdown(struct platform_device *pdev)
{
struct omap_rtc *rtc = platform_get_drvdata(pdev);
u8 mask;
/*
* Keep the ALARM interrupt enabled to allow the system to power up on
* alarm events.
*/
rtc->type->unlock(rtc);
mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
rtc->type->lock(rtc);
}
static struct platform_driver omap_rtc_driver = {
.probe = omap_rtc_probe,
.remove_new = omap_rtc_remove,
.shutdown = omap_rtc_shutdown,
.driver = {
.name = "omap_rtc",
.pm = &omap_rtc_pm_ops,
.of_match_table = omap_rtc_of_match,
},
.id_table = omap_rtc_id_table,
};
module_platform_driver(omap_rtc_driver);
MODULE_AUTHOR("George G. Davis (and others)");
MODULE_LICENSE("GPL");