mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-12 00:38:55 +00:00
f831c963b5
Gets rid of the need for users to specify the maximum number of cluster nodes supported by TIPC. TIPC now automatically provides support for all 4K nodes allowed by its addressing scheme. Note: This change sets TIPC's memory usage to the amount used by a maximum size node table with 4K entries. An upcoming patch that converts the node table from a linear array to a hash table will compact the node table to a more efficient design, but for clarity it is nice to have all the Kconfig infrastruture go away separately. Signed-off-by: Allan Stephens <Allan.Stephens@windriver.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
251 lines
8.3 KiB
C
251 lines
8.3 KiB
C
/*
|
|
* net/tipc/net.c: TIPC network routing code
|
|
*
|
|
* Copyright (c) 1995-2006, Ericsson AB
|
|
* Copyright (c) 2005, 2010-2011, Wind River Systems
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the names of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
* Software Foundation.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "core.h"
|
|
#include "net.h"
|
|
#include "name_distr.h"
|
|
#include "subscr.h"
|
|
#include "port.h"
|
|
#include "config.h"
|
|
|
|
/*
|
|
* The TIPC locking policy is designed to ensure a very fine locking
|
|
* granularity, permitting complete parallel access to individual
|
|
* port and node/link instances. The code consists of three major
|
|
* locking domains, each protected with their own disjunct set of locks.
|
|
*
|
|
* 1: The routing hierarchy.
|
|
* Comprises the structures 'zone', 'cluster', 'node', 'link'
|
|
* and 'bearer'. The whole hierarchy is protected by a big
|
|
* read/write lock, tipc_net_lock, to enssure that nothing is added
|
|
* or removed while code is accessing any of these structures.
|
|
* This layer must not be called from the two others while they
|
|
* hold any of their own locks.
|
|
* Neither must it itself do any upcalls to the other two before
|
|
* it has released tipc_net_lock and other protective locks.
|
|
*
|
|
* Within the tipc_net_lock domain there are two sub-domains;'node' and
|
|
* 'bearer', where local write operations are permitted,
|
|
* provided that those are protected by individual spin_locks
|
|
* per instance. Code holding tipc_net_lock(read) and a node spin_lock
|
|
* is permitted to poke around in both the node itself and its
|
|
* subordinate links. I.e, it can update link counters and queues,
|
|
* change link state, send protocol messages, and alter the
|
|
* "active_links" array in the node; but it can _not_ remove a link
|
|
* or a node from the overall structure.
|
|
* Correspondingly, individual bearers may change status within a
|
|
* tipc_net_lock(read), protected by an individual spin_lock ber bearer
|
|
* instance, but it needs tipc_net_lock(write) to remove/add any bearers.
|
|
*
|
|
*
|
|
* 2: The transport level of the protocol.
|
|
* This consists of the structures port, (and its user level
|
|
* representations, such as user_port and tipc_sock), reference and
|
|
* tipc_user (port.c, reg.c, socket.c).
|
|
*
|
|
* This layer has four different locks:
|
|
* - The tipc_port spin_lock. This is protecting each port instance
|
|
* from parallel data access and removal. Since we can not place
|
|
* this lock in the port itself, it has been placed in the
|
|
* corresponding reference table entry, which has the same life
|
|
* cycle as the module. This entry is difficult to access from
|
|
* outside the TIPC core, however, so a pointer to the lock has
|
|
* been added in the port instance, -to be used for unlocking
|
|
* only.
|
|
* - A read/write lock to protect the reference table itself (teg.c).
|
|
* (Nobody is using read-only access to this, so it can just as
|
|
* well be changed to a spin_lock)
|
|
* - A spin lock to protect the registry of kernel/driver users (reg.c)
|
|
* - A global spin_lock (tipc_port_lock), which only task is to ensure
|
|
* consistency where more than one port is involved in an operation,
|
|
* i.e., whe a port is part of a linked list of ports.
|
|
* There are two such lists; 'port_list', which is used for management,
|
|
* and 'wait_list', which is used to queue ports during congestion.
|
|
*
|
|
* 3: The name table (name_table.c, name_distr.c, subscription.c)
|
|
* - There is one big read/write-lock (tipc_nametbl_lock) protecting the
|
|
* overall name table structure. Nothing must be added/removed to
|
|
* this structure without holding write access to it.
|
|
* - There is one local spin_lock per sub_sequence, which can be seen
|
|
* as a sub-domain to the tipc_nametbl_lock domain. It is used only
|
|
* for translation operations, and is needed because a translation
|
|
* steps the root of the 'publication' linked list between each lookup.
|
|
* This is always used within the scope of a tipc_nametbl_lock(read).
|
|
* - A local spin_lock protecting the queue of subscriber events.
|
|
*/
|
|
|
|
DEFINE_RWLOCK(tipc_net_lock);
|
|
struct tipc_node **tipc_nodes;
|
|
u32 tipc_highest_node;
|
|
atomic_t tipc_num_links;
|
|
|
|
static int net_start(void)
|
|
{
|
|
tipc_nodes = kcalloc(4096, sizeof(*tipc_nodes), GFP_ATOMIC);
|
|
tipc_highest_node = 0;
|
|
atomic_set(&tipc_num_links, 0);
|
|
|
|
return tipc_nodes ? 0 : -ENOMEM;
|
|
}
|
|
|
|
static void net_stop(void)
|
|
{
|
|
u32 n_num;
|
|
|
|
for (n_num = 1; n_num <= tipc_highest_node; n_num++)
|
|
tipc_node_delete(tipc_nodes[n_num]);
|
|
kfree(tipc_nodes);
|
|
tipc_nodes = NULL;
|
|
}
|
|
|
|
static void net_route_named_msg(struct sk_buff *buf)
|
|
{
|
|
struct tipc_msg *msg = buf_msg(buf);
|
|
u32 dnode;
|
|
u32 dport;
|
|
|
|
if (!msg_named(msg)) {
|
|
buf_discard(buf);
|
|
return;
|
|
}
|
|
|
|
dnode = addr_domain(msg_lookup_scope(msg));
|
|
dport = tipc_nametbl_translate(msg_nametype(msg), msg_nameinst(msg), &dnode);
|
|
if (dport) {
|
|
msg_set_destnode(msg, dnode);
|
|
msg_set_destport(msg, dport);
|
|
tipc_net_route_msg(buf);
|
|
return;
|
|
}
|
|
tipc_reject_msg(buf, TIPC_ERR_NO_NAME);
|
|
}
|
|
|
|
void tipc_net_route_msg(struct sk_buff *buf)
|
|
{
|
|
struct tipc_msg *msg;
|
|
u32 dnode;
|
|
|
|
if (!buf)
|
|
return;
|
|
msg = buf_msg(buf);
|
|
|
|
msg_incr_reroute_cnt(msg);
|
|
if (msg_reroute_cnt(msg) > 6) {
|
|
if (msg_errcode(msg)) {
|
|
buf_discard(buf);
|
|
} else {
|
|
tipc_reject_msg(buf, msg_destport(msg) ?
|
|
TIPC_ERR_NO_PORT : TIPC_ERR_NO_NAME);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Handle message for this node */
|
|
dnode = msg_short(msg) ? tipc_own_addr : msg_destnode(msg);
|
|
if (tipc_in_scope(dnode, tipc_own_addr)) {
|
|
if (msg_isdata(msg)) {
|
|
if (msg_mcast(msg))
|
|
tipc_port_recv_mcast(buf, NULL);
|
|
else if (msg_destport(msg))
|
|
tipc_port_recv_msg(buf);
|
|
else
|
|
net_route_named_msg(buf);
|
|
return;
|
|
}
|
|
switch (msg_user(msg)) {
|
|
case NAME_DISTRIBUTOR:
|
|
tipc_named_recv(buf);
|
|
break;
|
|
case CONN_MANAGER:
|
|
tipc_port_recv_proto_msg(buf);
|
|
break;
|
|
default:
|
|
buf_discard(buf);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Handle message for another node */
|
|
skb_trim(buf, msg_size(msg));
|
|
tipc_link_send(buf, dnode, msg_link_selector(msg));
|
|
}
|
|
|
|
int tipc_net_start(u32 addr)
|
|
{
|
|
char addr_string[16];
|
|
int res;
|
|
|
|
if (tipc_mode != TIPC_NODE_MODE)
|
|
return -ENOPROTOOPT;
|
|
|
|
tipc_subscr_stop();
|
|
tipc_cfg_stop();
|
|
|
|
tipc_own_addr = addr;
|
|
tipc_mode = TIPC_NET_MODE;
|
|
tipc_named_reinit();
|
|
tipc_port_reinit();
|
|
|
|
res = net_start();
|
|
if (res)
|
|
return res;
|
|
res = tipc_bclink_init();
|
|
if (res)
|
|
return res;
|
|
|
|
tipc_k_signal((Handler)tipc_subscr_start, 0);
|
|
tipc_k_signal((Handler)tipc_cfg_init, 0);
|
|
|
|
info("Started in network mode\n");
|
|
info("Own node address %s, network identity %u\n",
|
|
tipc_addr_string_fill(addr_string, tipc_own_addr), tipc_net_id);
|
|
return 0;
|
|
}
|
|
|
|
void tipc_net_stop(void)
|
|
{
|
|
if (tipc_mode != TIPC_NET_MODE)
|
|
return;
|
|
write_lock_bh(&tipc_net_lock);
|
|
tipc_bearer_stop();
|
|
tipc_mode = TIPC_NODE_MODE;
|
|
tipc_bclink_stop();
|
|
net_stop();
|
|
write_unlock_bh(&tipc_net_lock);
|
|
info("Left network mode\n");
|
|
}
|
|
|