linux-next/mm/list_lru.c
Kairui Song fb56fdf8b9 mm/list_lru: split the lock to per-cgroup scope
Currently, every list_lru has a per-node lock that protects adding,
deletion, isolation, and reparenting of all list_lru_one instances
belonging to this list_lru on this node.  This lock contention is heavy
when multiple cgroups modify the same list_lru.

This lock can be split into per-cgroup scope to reduce contention.

To achieve this, we need a stable list_lru_one for every cgroup.  This
commit adds a lock to each list_lru_one and introduced a helper function
lock_list_lru_of_memcg, making it possible to pin the list_lru of a memcg.
Then reworked the reparenting process.

Reparenting will switch the list_lru_one instances one by one.  By locking
each instance and marking it dead using the nr_items counter, reparenting
ensures that all items in the corresponding cgroup (on-list or not,
because items have a stable cgroup, see below) will see the list_lru_one
switch synchronously.

Objcg reparent is also moved after list_lru reparent so items will have a
stable mem cgroup until all list_lru_one instances are drained.

The only caller that doesn't work the *_obj interfaces are direct calls to
list_lru_{add,del}.  But it's only used by zswap and that's also based on
objcg, so it's fine.

This also changes the bahaviour of the isolation function when LRU_RETRY
or LRU_REMOVED_RETRY is returned, because now releasing the lock could
unblock reparenting and free the list_lru_one, isolation function will
have to return withoug re-lock the lru.

prepare() {
    mkdir /tmp/test-fs
    modprobe brd rd_nr=1 rd_size=33554432
    mkfs.xfs -f /dev/ram0
    mount -t xfs /dev/ram0 /tmp/test-fs
    for i in $(seq 1 512); do
        mkdir "/tmp/test-fs/$i"
        for j in $(seq 1 10240); do
            echo TEST-CONTENT > "/tmp/test-fs/$i/$j"
        done &
    done; wait
}

do_test() {
    read_worker() {
        sleep 1
        tar -cv "$1" &>/dev/null
    }
    read_in_all() {
        cd "/tmp/test-fs" && ls
        for i in $(seq 1 512); do
            (exec sh -c 'echo "$PPID"') > "/sys/fs/cgroup/benchmark/$i/cgroup.procs"
            read_worker "$i" &
        done; wait
    }
    for i in $(seq 1 512); do
        mkdir -p "/sys/fs/cgroup/benchmark/$i"
    done
    echo +memory > /sys/fs/cgroup/benchmark/cgroup.subtree_control
    echo 512M > /sys/fs/cgroup/benchmark/memory.max
    echo 3 > /proc/sys/vm/drop_caches
    time read_in_all
}

Above script simulates compression of small files in multiple cgroups
with memory pressure. Run prepare() then do_test for 6 times:

Before:
real      0m7.762s user      0m11.340s sys       3m11.224s
real      0m8.123s user      0m11.548s sys       3m2.549s
real      0m7.736s user      0m11.515s sys       3m11.171s
real      0m8.539s user      0m11.508s sys       3m7.618s
real      0m7.928s user      0m11.349s sys       3m13.063s
real      0m8.105s user      0m11.128s sys       3m14.313s

After this commit (about ~15% faster):
real      0m6.953s user      0m11.327s sys       2m42.912s
real      0m7.453s user      0m11.343s sys       2m51.942s
real      0m6.916s user      0m11.269s sys       2m43.957s
real      0m6.894s user      0m11.528s sys       2m45.346s
real      0m6.911s user      0m11.095s sys       2m43.168s
real      0m6.773s user      0m11.518s sys       2m40.774s

Link: https://lkml.kernel.org/r/20241104175257.60853-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-11 17:22:26 -08:00

612 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved.
* Authors: David Chinner and Glauber Costa
*
* Generic LRU infrastructure
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/list_lru.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/memcontrol.h>
#include "slab.h"
#include "internal.h"
#ifdef CONFIG_MEMCG
static LIST_HEAD(memcg_list_lrus);
static DEFINE_MUTEX(list_lrus_mutex);
static inline bool list_lru_memcg_aware(struct list_lru *lru)
{
return lru->memcg_aware;
}
static void list_lru_register(struct list_lru *lru)
{
if (!list_lru_memcg_aware(lru))
return;
mutex_lock(&list_lrus_mutex);
list_add(&lru->list, &memcg_list_lrus);
mutex_unlock(&list_lrus_mutex);
}
static void list_lru_unregister(struct list_lru *lru)
{
if (!list_lru_memcg_aware(lru))
return;
mutex_lock(&list_lrus_mutex);
list_del(&lru->list);
mutex_unlock(&list_lrus_mutex);
}
static int lru_shrinker_id(struct list_lru *lru)
{
return lru->shrinker_id;
}
static inline struct list_lru_one *
list_lru_from_memcg_idx(struct list_lru *lru, int nid, int idx)
{
if (list_lru_memcg_aware(lru) && idx >= 0) {
struct list_lru_memcg *mlru = xa_load(&lru->xa, idx);
return mlru ? &mlru->node[nid] : NULL;
}
return &lru->node[nid].lru;
}
static inline struct list_lru_one *
lock_list_lru_of_memcg(struct list_lru *lru, int nid, struct mem_cgroup *memcg,
bool irq, bool skip_empty)
{
struct list_lru_one *l;
long nr_items;
rcu_read_lock();
again:
l = list_lru_from_memcg_idx(lru, nid, memcg_kmem_id(memcg));
if (likely(l)) {
if (irq)
spin_lock_irq(&l->lock);
else
spin_lock(&l->lock);
nr_items = READ_ONCE(l->nr_items);
if (likely(nr_items != LONG_MIN)) {
WARN_ON(nr_items < 0);
rcu_read_unlock();
return l;
}
if (irq)
spin_unlock_irq(&l->lock);
else
spin_unlock(&l->lock);
}
/*
* Caller may simply bail out if raced with reparenting or
* may iterate through the list_lru and expect empty slots.
*/
if (skip_empty) {
rcu_read_unlock();
return NULL;
}
VM_WARN_ON(!css_is_dying(&memcg->css));
memcg = parent_mem_cgroup(memcg);
goto again;
}
static inline void unlock_list_lru(struct list_lru_one *l, bool irq_off)
{
if (irq_off)
spin_unlock_irq(&l->lock);
else
spin_unlock(&l->lock);
}
#else
static void list_lru_register(struct list_lru *lru)
{
}
static void list_lru_unregister(struct list_lru *lru)
{
}
static int lru_shrinker_id(struct list_lru *lru)
{
return -1;
}
static inline bool list_lru_memcg_aware(struct list_lru *lru)
{
return false;
}
static inline struct list_lru_one *
list_lru_from_memcg_idx(struct list_lru *lru, int nid, int idx)
{
return &lru->node[nid].lru;
}
static inline struct list_lru_one *
lock_list_lru_of_memcg(struct list_lru *lru, int nid, struct mem_cgroup *memcg,
bool irq, bool skip_empty)
{
struct list_lru_one *l = &lru->node[nid].lru;
if (irq)
spin_lock_irq(&l->lock);
else
spin_lock(&l->lock);
return l;
}
static inline void unlock_list_lru(struct list_lru_one *l, bool irq_off)
{
if (irq_off)
spin_unlock_irq(&l->lock);
else
spin_unlock(&l->lock);
}
#endif /* CONFIG_MEMCG */
/* The caller must ensure the memcg lifetime. */
bool list_lru_add(struct list_lru *lru, struct list_head *item, int nid,
struct mem_cgroup *memcg)
{
struct list_lru_node *nlru = &lru->node[nid];
struct list_lru_one *l;
l = lock_list_lru_of_memcg(lru, nid, memcg, false, false);
if (!l)
return false;
if (list_empty(item)) {
list_add_tail(item, &l->list);
/* Set shrinker bit if the first element was added */
if (!l->nr_items++)
set_shrinker_bit(memcg, nid, lru_shrinker_id(lru));
unlock_list_lru(l, false);
atomic_long_inc(&nlru->nr_items);
return true;
}
unlock_list_lru(l, false);
return false;
}
bool list_lru_add_obj(struct list_lru *lru, struct list_head *item)
{
bool ret;
int nid = page_to_nid(virt_to_page(item));
if (list_lru_memcg_aware(lru)) {
rcu_read_lock();
ret = list_lru_add(lru, item, nid, mem_cgroup_from_slab_obj(item));
rcu_read_unlock();
} else {
ret = list_lru_add(lru, item, nid, NULL);
}
return ret;
}
EXPORT_SYMBOL_GPL(list_lru_add_obj);
/* The caller must ensure the memcg lifetime. */
bool list_lru_del(struct list_lru *lru, struct list_head *item, int nid,
struct mem_cgroup *memcg)
{
struct list_lru_node *nlru = &lru->node[nid];
struct list_lru_one *l;
l = lock_list_lru_of_memcg(lru, nid, memcg, false, false);
if (!l)
return false;
if (!list_empty(item)) {
list_del_init(item);
l->nr_items--;
unlock_list_lru(l, false);
atomic_long_dec(&nlru->nr_items);
return true;
}
unlock_list_lru(l, false);
return false;
}
bool list_lru_del_obj(struct list_lru *lru, struct list_head *item)
{
bool ret;
int nid = page_to_nid(virt_to_page(item));
if (list_lru_memcg_aware(lru)) {
rcu_read_lock();
ret = list_lru_del(lru, item, nid, mem_cgroup_from_slab_obj(item));
rcu_read_unlock();
} else {
ret = list_lru_del(lru, item, nid, NULL);
}
return ret;
}
EXPORT_SYMBOL_GPL(list_lru_del_obj);
void list_lru_isolate(struct list_lru_one *list, struct list_head *item)
{
list_del_init(item);
list->nr_items--;
}
EXPORT_SYMBOL_GPL(list_lru_isolate);
void list_lru_isolate_move(struct list_lru_one *list, struct list_head *item,
struct list_head *head)
{
list_move(item, head);
list->nr_items--;
}
EXPORT_SYMBOL_GPL(list_lru_isolate_move);
unsigned long list_lru_count_one(struct list_lru *lru,
int nid, struct mem_cgroup *memcg)
{
struct list_lru_one *l;
long count;
rcu_read_lock();
l = list_lru_from_memcg_idx(lru, nid, memcg_kmem_id(memcg));
count = l ? READ_ONCE(l->nr_items) : 0;
rcu_read_unlock();
if (unlikely(count < 0))
count = 0;
return count;
}
EXPORT_SYMBOL_GPL(list_lru_count_one);
unsigned long list_lru_count_node(struct list_lru *lru, int nid)
{
struct list_lru_node *nlru;
nlru = &lru->node[nid];
return atomic_long_read(&nlru->nr_items);
}
EXPORT_SYMBOL_GPL(list_lru_count_node);
static unsigned long
__list_lru_walk_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg,
list_lru_walk_cb isolate, void *cb_arg,
unsigned long *nr_to_walk, bool irq_off)
{
struct list_lru_node *nlru = &lru->node[nid];
struct list_lru_one *l = NULL;
struct list_head *item, *n;
unsigned long isolated = 0;
restart:
l = lock_list_lru_of_memcg(lru, nid, memcg, irq_off, true);
if (!l)
return isolated;
list_for_each_safe(item, n, &l->list) {
enum lru_status ret;
/*
* decrement nr_to_walk first so that we don't livelock if we
* get stuck on large numbers of LRU_RETRY items
*/
if (!*nr_to_walk)
break;
--*nr_to_walk;
ret = isolate(item, l, &l->lock, cb_arg);
switch (ret) {
/*
* LRU_RETRY, LRU_REMOVED_RETRY and LRU_STOP will drop the lru
* lock. List traversal will have to restart from scratch.
*/
case LRU_RETRY:
goto restart;
case LRU_REMOVED_RETRY:
fallthrough;
case LRU_REMOVED:
isolated++;
atomic_long_dec(&nlru->nr_items);
if (ret == LRU_REMOVED_RETRY)
goto restart;
break;
case LRU_ROTATE:
list_move_tail(item, &l->list);
break;
case LRU_SKIP:
break;
case LRU_STOP:
goto out;
default:
BUG();
}
}
unlock_list_lru(l, irq_off);
out:
return isolated;
}
unsigned long
list_lru_walk_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg,
list_lru_walk_cb isolate, void *cb_arg,
unsigned long *nr_to_walk)
{
return __list_lru_walk_one(lru, nid, memcg, isolate,
cb_arg, nr_to_walk, false);
}
EXPORT_SYMBOL_GPL(list_lru_walk_one);
unsigned long
list_lru_walk_one_irq(struct list_lru *lru, int nid, struct mem_cgroup *memcg,
list_lru_walk_cb isolate, void *cb_arg,
unsigned long *nr_to_walk)
{
return __list_lru_walk_one(lru, nid, memcg, isolate,
cb_arg, nr_to_walk, true);
}
unsigned long list_lru_walk_node(struct list_lru *lru, int nid,
list_lru_walk_cb isolate, void *cb_arg,
unsigned long *nr_to_walk)
{
long isolated = 0;
isolated += list_lru_walk_one(lru, nid, NULL, isolate, cb_arg,
nr_to_walk);
#ifdef CONFIG_MEMCG
if (*nr_to_walk > 0 && list_lru_memcg_aware(lru)) {
struct list_lru_memcg *mlru;
struct mem_cgroup *memcg;
unsigned long index;
xa_for_each(&lru->xa, index, mlru) {
rcu_read_lock();
memcg = mem_cgroup_from_id(index);
if (!mem_cgroup_tryget(memcg)) {
rcu_read_unlock();
continue;
}
rcu_read_unlock();
isolated += __list_lru_walk_one(lru, nid, memcg,
isolate, cb_arg,
nr_to_walk, false);
mem_cgroup_put(memcg);
if (*nr_to_walk <= 0)
break;
}
}
#endif
return isolated;
}
EXPORT_SYMBOL_GPL(list_lru_walk_node);
static void init_one_lru(struct list_lru *lru, struct list_lru_one *l)
{
INIT_LIST_HEAD(&l->list);
spin_lock_init(&l->lock);
l->nr_items = 0;
#ifdef CONFIG_LOCKDEP
if (lru->key)
lockdep_set_class(&l->lock, lru->key);
#endif
}
#ifdef CONFIG_MEMCG
static struct list_lru_memcg *memcg_init_list_lru_one(struct list_lru *lru, gfp_t gfp)
{
int nid;
struct list_lru_memcg *mlru;
mlru = kmalloc(struct_size(mlru, node, nr_node_ids), gfp);
if (!mlru)
return NULL;
for_each_node(nid)
init_one_lru(lru, &mlru->node[nid]);
return mlru;
}
static inline void memcg_init_list_lru(struct list_lru *lru, bool memcg_aware)
{
if (memcg_aware)
xa_init_flags(&lru->xa, XA_FLAGS_LOCK_IRQ);
lru->memcg_aware = memcg_aware;
}
static void memcg_destroy_list_lru(struct list_lru *lru)
{
XA_STATE(xas, &lru->xa, 0);
struct list_lru_memcg *mlru;
if (!list_lru_memcg_aware(lru))
return;
xas_lock_irq(&xas);
xas_for_each(&xas, mlru, ULONG_MAX) {
kfree(mlru);
xas_store(&xas, NULL);
}
xas_unlock_irq(&xas);
}
static void memcg_reparent_list_lru_one(struct list_lru *lru, int nid,
struct list_lru_one *src,
struct mem_cgroup *dst_memcg)
{
int dst_idx = dst_memcg->kmemcg_id;
struct list_lru_one *dst;
spin_lock_irq(&src->lock);
dst = list_lru_from_memcg_idx(lru, nid, dst_idx);
spin_lock_nested(&dst->lock, SINGLE_DEPTH_NESTING);
list_splice_init(&src->list, &dst->list);
if (src->nr_items) {
dst->nr_items += src->nr_items;
set_shrinker_bit(dst_memcg, nid, lru_shrinker_id(lru));
}
/* Mark the list_lru_one dead */
src->nr_items = LONG_MIN;
spin_unlock(&dst->lock);
spin_unlock_irq(&src->lock);
}
void memcg_reparent_list_lrus(struct mem_cgroup *memcg, struct mem_cgroup *parent)
{
struct list_lru *lru;
int i;
mutex_lock(&list_lrus_mutex);
list_for_each_entry(lru, &memcg_list_lrus, list) {
struct list_lru_memcg *mlru;
XA_STATE(xas, &lru->xa, memcg->kmemcg_id);
/*
* Lock the Xarray to ensure no on going list_lru_memcg
* allocation and further allocation will see css_is_dying().
*/
xas_lock_irq(&xas);
mlru = xas_store(&xas, NULL);
xas_unlock_irq(&xas);
if (!mlru)
continue;
/*
* With Xarray value set to NULL, holding the lru lock below
* prevents list_lru_{add,del,isolate} from touching the lru,
* safe to reparent.
*/
for_each_node(i)
memcg_reparent_list_lru_one(lru, i, &mlru->node[i], parent);
/*
* Here all list_lrus corresponding to the cgroup are guaranteed
* to remain empty, we can safely free this lru, any further
* memcg_list_lru_alloc() call will simply bail out.
*/
kvfree_rcu(mlru, rcu);
}
mutex_unlock(&list_lrus_mutex);
}
static inline bool memcg_list_lru_allocated(struct mem_cgroup *memcg,
struct list_lru *lru)
{
int idx = memcg->kmemcg_id;
return idx < 0 || xa_load(&lru->xa, idx);
}
int memcg_list_lru_alloc(struct mem_cgroup *memcg, struct list_lru *lru,
gfp_t gfp)
{
unsigned long flags;
struct list_lru_memcg *mlru;
struct mem_cgroup *pos, *parent;
XA_STATE(xas, &lru->xa, 0);
if (!list_lru_memcg_aware(lru) || memcg_list_lru_allocated(memcg, lru))
return 0;
gfp &= GFP_RECLAIM_MASK;
/*
* Because the list_lru can be reparented to the parent cgroup's
* list_lru, we should make sure that this cgroup and all its
* ancestors have allocated list_lru_memcg.
*/
do {
/*
* Keep finding the farest parent that wasn't populated
* until found memcg itself.
*/
pos = memcg;
parent = parent_mem_cgroup(pos);
while (!memcg_list_lru_allocated(parent, lru)) {
pos = parent;
parent = parent_mem_cgroup(pos);
}
mlru = memcg_init_list_lru_one(lru, gfp);
if (!mlru)
return -ENOMEM;
xas_set(&xas, pos->kmemcg_id);
do {
xas_lock_irqsave(&xas, flags);
if (!xas_load(&xas) && !css_is_dying(&pos->css)) {
xas_store(&xas, mlru);
if (!xas_error(&xas))
mlru = NULL;
}
xas_unlock_irqrestore(&xas, flags);
} while (xas_nomem(&xas, gfp));
if (mlru)
kfree(mlru);
} while (pos != memcg && !css_is_dying(&pos->css));
return xas_error(&xas);
}
#else
static inline void memcg_init_list_lru(struct list_lru *lru, bool memcg_aware)
{
}
static void memcg_destroy_list_lru(struct list_lru *lru)
{
}
#endif /* CONFIG_MEMCG */
int __list_lru_init(struct list_lru *lru, bool memcg_aware, struct shrinker *shrinker)
{
int i;
#ifdef CONFIG_MEMCG
if (shrinker)
lru->shrinker_id = shrinker->id;
else
lru->shrinker_id = -1;
if (mem_cgroup_kmem_disabled())
memcg_aware = false;
#endif
lru->node = kcalloc(nr_node_ids, sizeof(*lru->node), GFP_KERNEL);
if (!lru->node)
return -ENOMEM;
for_each_node(i)
init_one_lru(lru, &lru->node[i].lru);
memcg_init_list_lru(lru, memcg_aware);
list_lru_register(lru);
return 0;
}
EXPORT_SYMBOL_GPL(__list_lru_init);
void list_lru_destroy(struct list_lru *lru)
{
/* Already destroyed or not yet initialized? */
if (!lru->node)
return;
list_lru_unregister(lru);
memcg_destroy_list_lru(lru);
kfree(lru->node);
lru->node = NULL;
#ifdef CONFIG_MEMCG
lru->shrinker_id = -1;
#endif
}
EXPORT_SYMBOL_GPL(list_lru_destroy);