linux-next/drivers/power/ab8500_fg.c
Anton Vorontsov 5ae2b822e4 ab8500_fg: Fix some build warnings on x86_64
Noticed the following warnings:

  CC      drivers/power/ab8500_fg.o
drivers/power/ab8500_fg.c: In function 'charge_full_store':
drivers/power/ab8500_fg.c:2258:2: warning: format '%d' expects argument of type 'int', but argument 4 has type 'ssize_t' [-Wformat]
drivers/power/ab8500_fg.c: In function ‘charge_now_store’:
drivers/power/ab8500_fg.c:2280:2: warning: format '%d' expects argument of type 'int', but argument 4 has type 'ssize_t' [-Wformat]

This patch fixes the issues.

Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
2012-03-26 20:41:26 +04:00

2638 lines
67 KiB
C

/*
* Copyright (C) ST-Ericsson AB 2012
*
* Main and Back-up battery management driver.
*
* Note: Backup battery management is required in case of Li-Ion battery and not
* for capacitive battery. HREF boards have capacitive battery and hence backup
* battery management is not used and the supported code is available in this
* driver.
*
* License Terms: GNU General Public License v2
* Author:
* Johan Palsson <johan.palsson@stericsson.com>
* Karl Komierowski <karl.komierowski@stericsson.com>
* Arun R Murthy <arun.murthy@stericsson.com>
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/kobject.h>
#include <linux/mfd/abx500/ab8500.h>
#include <linux/mfd/abx500.h>
#include <linux/slab.h>
#include <linux/mfd/abx500/ab8500-bm.h>
#include <linux/delay.h>
#include <linux/mfd/abx500/ab8500-gpadc.h>
#include <linux/mfd/abx500.h>
#include <linux/time.h>
#include <linux/completion.h>
#define MILLI_TO_MICRO 1000
#define FG_LSB_IN_MA 1627
#define QLSB_NANO_AMP_HOURS_X10 1129
#define INS_CURR_TIMEOUT (3 * HZ)
#define SEC_TO_SAMPLE(S) (S * 4)
#define NBR_AVG_SAMPLES 20
#define LOW_BAT_CHECK_INTERVAL (2 * HZ)
#define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
#define BATT_OK_MIN 2360 /* mV */
#define BATT_OK_INCREMENT 50 /* mV */
#define BATT_OK_MAX_NR_INCREMENTS 0xE
/* FG constants */
#define BATT_OVV 0x01
#define interpolate(x, x1, y1, x2, y2) \
((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
#define to_ab8500_fg_device_info(x) container_of((x), \
struct ab8500_fg, fg_psy);
/**
* struct ab8500_fg_interrupts - ab8500 fg interupts
* @name: name of the interrupt
* @isr function pointer to the isr
*/
struct ab8500_fg_interrupts {
char *name;
irqreturn_t (*isr)(int irq, void *data);
};
enum ab8500_fg_discharge_state {
AB8500_FG_DISCHARGE_INIT,
AB8500_FG_DISCHARGE_INITMEASURING,
AB8500_FG_DISCHARGE_INIT_RECOVERY,
AB8500_FG_DISCHARGE_RECOVERY,
AB8500_FG_DISCHARGE_READOUT_INIT,
AB8500_FG_DISCHARGE_READOUT,
AB8500_FG_DISCHARGE_WAKEUP,
};
static char *discharge_state[] = {
"DISCHARGE_INIT",
"DISCHARGE_INITMEASURING",
"DISCHARGE_INIT_RECOVERY",
"DISCHARGE_RECOVERY",
"DISCHARGE_READOUT_INIT",
"DISCHARGE_READOUT",
"DISCHARGE_WAKEUP",
};
enum ab8500_fg_charge_state {
AB8500_FG_CHARGE_INIT,
AB8500_FG_CHARGE_READOUT,
};
static char *charge_state[] = {
"CHARGE_INIT",
"CHARGE_READOUT",
};
enum ab8500_fg_calibration_state {
AB8500_FG_CALIB_INIT,
AB8500_FG_CALIB_WAIT,
AB8500_FG_CALIB_END,
};
struct ab8500_fg_avg_cap {
int avg;
int samples[NBR_AVG_SAMPLES];
__kernel_time_t time_stamps[NBR_AVG_SAMPLES];
int pos;
int nbr_samples;
int sum;
};
struct ab8500_fg_battery_capacity {
int max_mah_design;
int max_mah;
int mah;
int permille;
int level;
int prev_mah;
int prev_percent;
int prev_level;
int user_mah;
};
struct ab8500_fg_flags {
bool fg_enabled;
bool conv_done;
bool charging;
bool fully_charged;
bool force_full;
bool low_bat_delay;
bool low_bat;
bool bat_ovv;
bool batt_unknown;
bool calibrate;
bool user_cap;
bool batt_id_received;
};
struct inst_curr_result_list {
struct list_head list;
int *result;
};
/**
* struct ab8500_fg - ab8500 FG device information
* @dev: Pointer to the structure device
* @node: a list of AB8500 FGs, hence prepared for reentrance
* @irq holds the CCEOC interrupt number
* @vbat: Battery voltage in mV
* @vbat_nom: Nominal battery voltage in mV
* @inst_curr: Instantenous battery current in mA
* @avg_curr: Average battery current in mA
* @bat_temp battery temperature
* @fg_samples: Number of samples used in the FG accumulation
* @accu_charge: Accumulated charge from the last conversion
* @recovery_cnt: Counter for recovery mode
* @high_curr_cnt: Counter for high current mode
* @init_cnt: Counter for init mode
* @recovery_needed: Indicate if recovery is needed
* @high_curr_mode: Indicate if we're in high current mode
* @init_capacity: Indicate if initial capacity measuring should be done
* @turn_off_fg: True if fg was off before current measurement
* @calib_state State during offset calibration
* @discharge_state: Current discharge state
* @charge_state: Current charge state
* @ab8500_fg_complete Completion struct used for the instant current reading
* @flags: Structure for information about events triggered
* @bat_cap: Structure for battery capacity specific parameters
* @avg_cap: Average capacity filter
* @parent: Pointer to the struct ab8500
* @gpadc: Pointer to the struct gpadc
* @pdata: Pointer to the abx500_fg platform data
* @bat: Pointer to the abx500_bm platform data
* @fg_psy: Structure that holds the FG specific battery properties
* @fg_wq: Work queue for running the FG algorithm
* @fg_periodic_work: Work to run the FG algorithm periodically
* @fg_low_bat_work: Work to check low bat condition
* @fg_reinit_work Work used to reset and reinitialise the FG algorithm
* @fg_work: Work to run the FG algorithm instantly
* @fg_acc_cur_work: Work to read the FG accumulator
* @fg_check_hw_failure_work: Work for checking HW state
* @cc_lock: Mutex for locking the CC
* @fg_kobject: Structure of type kobject
*/
struct ab8500_fg {
struct device *dev;
struct list_head node;
int irq;
int vbat;
int vbat_nom;
int inst_curr;
int avg_curr;
int bat_temp;
int fg_samples;
int accu_charge;
int recovery_cnt;
int high_curr_cnt;
int init_cnt;
bool recovery_needed;
bool high_curr_mode;
bool init_capacity;
bool turn_off_fg;
enum ab8500_fg_calibration_state calib_state;
enum ab8500_fg_discharge_state discharge_state;
enum ab8500_fg_charge_state charge_state;
struct completion ab8500_fg_complete;
struct ab8500_fg_flags flags;
struct ab8500_fg_battery_capacity bat_cap;
struct ab8500_fg_avg_cap avg_cap;
struct ab8500 *parent;
struct ab8500_gpadc *gpadc;
struct abx500_fg_platform_data *pdata;
struct abx500_bm_data *bat;
struct power_supply fg_psy;
struct workqueue_struct *fg_wq;
struct delayed_work fg_periodic_work;
struct delayed_work fg_low_bat_work;
struct delayed_work fg_reinit_work;
struct work_struct fg_work;
struct work_struct fg_acc_cur_work;
struct delayed_work fg_check_hw_failure_work;
struct mutex cc_lock;
struct kobject fg_kobject;
};
static LIST_HEAD(ab8500_fg_list);
/**
* ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
* (i.e. the first fuel gauge in the instance list)
*/
struct ab8500_fg *ab8500_fg_get(void)
{
struct ab8500_fg *fg;
if (list_empty(&ab8500_fg_list))
return NULL;
fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
return fg;
}
/* Main battery properties */
static enum power_supply_property ab8500_fg_props[] = {
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CURRENT_AVG,
POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
POWER_SUPPLY_PROP_ENERGY_FULL,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
};
/*
* This array maps the raw hex value to lowbat voltage used by the AB8500
* Values taken from the UM0836
*/
static int ab8500_fg_lowbat_voltage_map[] = {
2300 ,
2325 ,
2350 ,
2375 ,
2400 ,
2425 ,
2450 ,
2475 ,
2500 ,
2525 ,
2550 ,
2575 ,
2600 ,
2625 ,
2650 ,
2675 ,
2700 ,
2725 ,
2750 ,
2775 ,
2800 ,
2825 ,
2850 ,
2875 ,
2900 ,
2925 ,
2950 ,
2975 ,
3000 ,
3025 ,
3050 ,
3075 ,
3100 ,
3125 ,
3150 ,
3175 ,
3200 ,
3225 ,
3250 ,
3275 ,
3300 ,
3325 ,
3350 ,
3375 ,
3400 ,
3425 ,
3450 ,
3475 ,
3500 ,
3525 ,
3550 ,
3575 ,
3600 ,
3625 ,
3650 ,
3675 ,
3700 ,
3725 ,
3750 ,
3775 ,
3800 ,
3825 ,
3850 ,
3850 ,
};
static u8 ab8500_volt_to_regval(int voltage)
{
int i;
if (voltage < ab8500_fg_lowbat_voltage_map[0])
return 0;
for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
if (voltage < ab8500_fg_lowbat_voltage_map[i])
return (u8) i - 1;
}
/* If not captured above, return index of last element */
return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
}
/**
* ab8500_fg_is_low_curr() - Low or high current mode
* @di: pointer to the ab8500_fg structure
* @curr: the current to base or our decision on
*
* Low current mode if the current consumption is below a certain threshold
*/
static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
{
/*
* We want to know if we're in low current mode
*/
if (curr > -di->bat->fg_params->high_curr_threshold)
return true;
else
return false;
}
/**
* ab8500_fg_add_cap_sample() - Add capacity to average filter
* @di: pointer to the ab8500_fg structure
* @sample: the capacity in mAh to add to the filter
*
* A capacity is added to the filter and a new mean capacity is calculated and
* returned
*/
static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
{
struct timespec ts;
struct ab8500_fg_avg_cap *avg = &di->avg_cap;
getnstimeofday(&ts);
do {
avg->sum += sample - avg->samples[avg->pos];
avg->samples[avg->pos] = sample;
avg->time_stamps[avg->pos] = ts.tv_sec;
avg->pos++;
if (avg->pos == NBR_AVG_SAMPLES)
avg->pos = 0;
if (avg->nbr_samples < NBR_AVG_SAMPLES)
avg->nbr_samples++;
/*
* Check the time stamp for each sample. If too old,
* replace with latest sample
*/
} while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
avg->avg = avg->sum / avg->nbr_samples;
return avg->avg;
}
/**
* ab8500_fg_clear_cap_samples() - Clear average filter
* @di: pointer to the ab8500_fg structure
*
* The capacity filter is is reset to zero.
*/
static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
{
int i;
struct ab8500_fg_avg_cap *avg = &di->avg_cap;
avg->pos = 0;
avg->nbr_samples = 0;
avg->sum = 0;
avg->avg = 0;
for (i = 0; i < NBR_AVG_SAMPLES; i++) {
avg->samples[i] = 0;
avg->time_stamps[i] = 0;
}
}
/**
* ab8500_fg_fill_cap_sample() - Fill average filter
* @di: pointer to the ab8500_fg structure
* @sample: the capacity in mAh to fill the filter with
*
* The capacity filter is filled with a capacity in mAh
*/
static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
{
int i;
struct timespec ts;
struct ab8500_fg_avg_cap *avg = &di->avg_cap;
getnstimeofday(&ts);
for (i = 0; i < NBR_AVG_SAMPLES; i++) {
avg->samples[i] = sample;
avg->time_stamps[i] = ts.tv_sec;
}
avg->pos = 0;
avg->nbr_samples = NBR_AVG_SAMPLES;
avg->sum = sample * NBR_AVG_SAMPLES;
avg->avg = sample;
}
/**
* ab8500_fg_coulomb_counter() - enable coulomb counter
* @di: pointer to the ab8500_fg structure
* @enable: enable/disable
*
* Enable/Disable coulomb counter.
* On failure returns negative value.
*/
static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
{
int ret = 0;
mutex_lock(&di->cc_lock);
if (enable) {
/* To be able to reprogram the number of samples, we have to
* first stop the CC and then enable it again */
ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
AB8500_RTC_CC_CONF_REG, 0x00);
if (ret)
goto cc_err;
/* Program the samples */
ret = abx500_set_register_interruptible(di->dev,
AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
di->fg_samples);
if (ret)
goto cc_err;
/* Start the CC */
ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
AB8500_RTC_CC_CONF_REG,
(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
if (ret)
goto cc_err;
di->flags.fg_enabled = true;
} else {
/* Clear any pending read requests */
ret = abx500_set_register_interruptible(di->dev,
AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
if (ret)
goto cc_err;
ret = abx500_set_register_interruptible(di->dev,
AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
if (ret)
goto cc_err;
/* Stop the CC */
ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
AB8500_RTC_CC_CONF_REG, 0);
if (ret)
goto cc_err;
di->flags.fg_enabled = false;
}
dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
enable, di->fg_samples);
mutex_unlock(&di->cc_lock);
return ret;
cc_err:
dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
mutex_unlock(&di->cc_lock);
return ret;
}
/**
* ab8500_fg_inst_curr_start() - start battery instantaneous current
* @di: pointer to the ab8500_fg structure
*
* Returns 0 or error code
* Note: This is part "one" and has to be called before
* ab8500_fg_inst_curr_finalize()
*/
int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
{
u8 reg_val;
int ret;
mutex_lock(&di->cc_lock);
ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
AB8500_RTC_CC_CONF_REG, &reg_val);
if (ret < 0)
goto fail;
if (!(reg_val & CC_PWR_UP_ENA)) {
dev_dbg(di->dev, "%s Enable FG\n", __func__);
di->turn_off_fg = true;
/* Program the samples */
ret = abx500_set_register_interruptible(di->dev,
AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
SEC_TO_SAMPLE(10));
if (ret)
goto fail;
/* Start the CC */
ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
AB8500_RTC_CC_CONF_REG,
(CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
if (ret)
goto fail;
} else {
di->turn_off_fg = false;
}
/* Return and WFI */
INIT_COMPLETION(di->ab8500_fg_complete);
enable_irq(di->irq);
/* Note: cc_lock is still locked */
return 0;
fail:
mutex_unlock(&di->cc_lock);
return ret;
}
/**
* ab8500_fg_inst_curr_done() - check if fg conversion is done
* @di: pointer to the ab8500_fg structure
*
* Returns 1 if conversion done, 0 if still waiting
*/
int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
{
return completion_done(&di->ab8500_fg_complete);
}
/**
* ab8500_fg_inst_curr_finalize() - battery instantaneous current
* @di: pointer to the ab8500_fg structure
* @res: battery instantenous current(on success)
*
* Returns 0 or an error code
* Note: This is part "two" and has to be called at earliest 250 ms
* after ab8500_fg_inst_curr_start()
*/
int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
{
u8 low, high;
int val;
int ret;
int timeout;
if (!completion_done(&di->ab8500_fg_complete)) {
timeout = wait_for_completion_timeout(&di->ab8500_fg_complete,
INS_CURR_TIMEOUT);
dev_dbg(di->dev, "Finalize time: %d ms\n",
((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
if (!timeout) {
ret = -ETIME;
disable_irq(di->irq);
dev_err(di->dev, "completion timed out [%d]\n",
__LINE__);
goto fail;
}
}
disable_irq(di->irq);
ret = abx500_mask_and_set_register_interruptible(di->dev,
AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
READ_REQ, READ_REQ);
/* 100uS between read request and read is needed */
usleep_range(100, 100);
/* Read CC Sample conversion value Low and high */
ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
AB8500_GASG_CC_SMPL_CNVL_REG, &low);
if (ret < 0)
goto fail;
ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
AB8500_GASG_CC_SMPL_CNVH_REG, &high);
if (ret < 0)
goto fail;
/*
* negative value for Discharging
* convert 2's compliment into decimal
*/
if (high & 0x10)
val = (low | (high << 8) | 0xFFFFE000);
else
val = (low | (high << 8));
/*
* Convert to unit value in mA
* Full scale input voltage is
* 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
* Given a 250ms conversion cycle time the LSB corresponds
* to 112.9 nAh. Convert to current by dividing by the conversion
* time in hours (250ms = 1 / (3600 * 4)h)
* 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
*/
val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
(1000 * di->bat->fg_res);
if (di->turn_off_fg) {
dev_dbg(di->dev, "%s Disable FG\n", __func__);
/* Clear any pending read requests */
ret = abx500_set_register_interruptible(di->dev,
AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
if (ret)
goto fail;
/* Stop the CC */
ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
AB8500_RTC_CC_CONF_REG, 0);
if (ret)
goto fail;
}
mutex_unlock(&di->cc_lock);
(*res) = val;
return 0;
fail:
mutex_unlock(&di->cc_lock);
return ret;
}
/**
* ab8500_fg_inst_curr_blocking() - battery instantaneous current
* @di: pointer to the ab8500_fg structure
* @res: battery instantenous current(on success)
*
* Returns 0 else error code
*/
int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
{
int ret;
int res = 0;
ret = ab8500_fg_inst_curr_start(di);
if (ret) {
dev_err(di->dev, "Failed to initialize fg_inst\n");
return 0;
}
ret = ab8500_fg_inst_curr_finalize(di, &res);
if (ret) {
dev_err(di->dev, "Failed to finalize fg_inst\n");
return 0;
}
return res;
}
/**
* ab8500_fg_acc_cur_work() - average battery current
* @work: pointer to the work_struct structure
*
* Updated the average battery current obtained from the
* coulomb counter.
*/
static void ab8500_fg_acc_cur_work(struct work_struct *work)
{
int val;
int ret;
u8 low, med, high;
struct ab8500_fg *di = container_of(work,
struct ab8500_fg, fg_acc_cur_work);
mutex_lock(&di->cc_lock);
ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
if (ret)
goto exit;
ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
AB8500_GASG_CC_NCOV_ACCU_LOW, &low);
if (ret < 0)
goto exit;
ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
AB8500_GASG_CC_NCOV_ACCU_MED, &med);
if (ret < 0)
goto exit;
ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
if (ret < 0)
goto exit;
/* Check for sign bit in case of negative value, 2's compliment */
if (high & 0x10)
val = (low | (med << 8) | (high << 16) | 0xFFE00000);
else
val = (low | (med << 8) | (high << 16));
/*
* Convert to uAh
* Given a 250ms conversion cycle time the LSB corresponds
* to 112.9 nAh.
* 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
*/
di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
(100 * di->bat->fg_res);
/*
* Convert to unit value in mA
* Full scale input voltage is
* 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
* Given a 250ms conversion cycle time the LSB corresponds
* to 112.9 nAh. Convert to current by dividing by the conversion
* time in hours (= samples / (3600 * 4)h)
* 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
*/
di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
(1000 * di->bat->fg_res * (di->fg_samples / 4));
di->flags.conv_done = true;
mutex_unlock(&di->cc_lock);
queue_work(di->fg_wq, &di->fg_work);
return;
exit:
dev_err(di->dev,
"Failed to read or write gas gauge registers\n");
mutex_unlock(&di->cc_lock);
queue_work(di->fg_wq, &di->fg_work);
}
/**
* ab8500_fg_bat_voltage() - get battery voltage
* @di: pointer to the ab8500_fg structure
*
* Returns battery voltage(on success) else error code
*/
static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
{
int vbat;
static int prev;
vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
if (vbat < 0) {
dev_err(di->dev,
"%s gpadc conversion failed, using previous value\n",
__func__);
return prev;
}
prev = vbat;
return vbat;
}
/**
* ab8500_fg_volt_to_capacity() - Voltage based capacity
* @di: pointer to the ab8500_fg structure
* @voltage: The voltage to convert to a capacity
*
* Returns battery capacity in per mille based on voltage
*/
static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
{
int i, tbl_size;
struct abx500_v_to_cap *tbl;
int cap = 0;
tbl = di->bat->bat_type[di->bat->batt_id].v_to_cap_tbl,
tbl_size = di->bat->bat_type[di->bat->batt_id].n_v_cap_tbl_elements;
for (i = 0; i < tbl_size; ++i) {
if (voltage > tbl[i].voltage)
break;
}
if ((i > 0) && (i < tbl_size)) {
cap = interpolate(voltage,
tbl[i].voltage,
tbl[i].capacity * 10,
tbl[i-1].voltage,
tbl[i-1].capacity * 10);
} else if (i == 0) {
cap = 1000;
} else {
cap = 0;
}
dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
__func__, voltage, cap);
return cap;
}
/**
* ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
* @di: pointer to the ab8500_fg structure
*
* Returns battery capacity based on battery voltage that is not compensated
* for the voltage drop due to the load
*/
static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
{
di->vbat = ab8500_fg_bat_voltage(di);
return ab8500_fg_volt_to_capacity(di, di->vbat);
}
/**
* ab8500_fg_battery_resistance() - Returns the battery inner resistance
* @di: pointer to the ab8500_fg structure
*
* Returns battery inner resistance added with the fuel gauge resistor value
* to get the total resistance in the whole link from gnd to bat+ node.
*/
static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
{
int i, tbl_size;
struct batres_vs_temp *tbl;
int resist = 0;
tbl = di->bat->bat_type[di->bat->batt_id].batres_tbl;
tbl_size = di->bat->bat_type[di->bat->batt_id].n_batres_tbl_elements;
for (i = 0; i < tbl_size; ++i) {
if (di->bat_temp / 10 > tbl[i].temp)
break;
}
if ((i > 0) && (i < tbl_size)) {
resist = interpolate(di->bat_temp / 10,
tbl[i].temp,
tbl[i].resist,
tbl[i-1].temp,
tbl[i-1].resist);
} else if (i == 0) {
resist = tbl[0].resist;
} else {
resist = tbl[tbl_size - 1].resist;
}
dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
" fg resistance %d, total: %d (mOhm)\n",
__func__, di->bat_temp, resist, di->bat->fg_res / 10,
(di->bat->fg_res / 10) + resist);
/* fg_res variable is in 0.1mOhm */
resist += di->bat->fg_res / 10;
return resist;
}
/**
* ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
* @di: pointer to the ab8500_fg structure
*
* Returns battery capacity based on battery voltage that is load compensated
* for the voltage drop
*/
static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
{
int vbat_comp, res;
int i = 0;
int vbat = 0;
ab8500_fg_inst_curr_start(di);
do {
vbat += ab8500_fg_bat_voltage(di);
i++;
msleep(5);
} while (!ab8500_fg_inst_curr_done(di));
ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
di->vbat = vbat / i;
res = ab8500_fg_battery_resistance(di);
/* Use Ohms law to get the load compensated voltage */
vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
"R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
__func__, di->vbat, vbat_comp, res, di->inst_curr, i);
return ab8500_fg_volt_to_capacity(di, vbat_comp);
}
/**
* ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
* @di: pointer to the ab8500_fg structure
* @cap_mah: capacity in mAh
*
* Converts capacity in mAh to capacity in permille
*/
static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
{
return (cap_mah * 1000) / di->bat_cap.max_mah_design;
}
/**
* ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
* @di: pointer to the ab8500_fg structure
* @cap_pm: capacity in permille
*
* Converts capacity in permille to capacity in mAh
*/
static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
{
return cap_pm * di->bat_cap.max_mah_design / 1000;
}
/**
* ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
* @di: pointer to the ab8500_fg structure
* @cap_mah: capacity in mAh
*
* Converts capacity in mAh to capacity in uWh
*/
static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
{
u64 div_res;
u32 div_rem;
div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
div_rem = do_div(div_res, 1000);
/* Make sure to round upwards if necessary */
if (div_rem >= 1000 / 2)
div_res++;
return (int) div_res;
}
/**
* ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
* @di: pointer to the ab8500_fg structure
*
* Return the capacity in mAh based on previous calculated capcity and the FG
* accumulator register value. The filter is filled with this capacity
*/
static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
{
dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
__func__,
di->bat_cap.mah,
di->accu_charge);
/* Capacity should not be less than 0 */
if (di->bat_cap.mah + di->accu_charge > 0)
di->bat_cap.mah += di->accu_charge;
else
di->bat_cap.mah = 0;
/*
* We force capacity to 100% once when the algorithm
* reports that it's full.
*/
if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
di->flags.force_full) {
di->bat_cap.mah = di->bat_cap.max_mah_design;
}
ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
di->bat_cap.permille =
ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
/* We need to update battery voltage and inst current when charging */
di->vbat = ab8500_fg_bat_voltage(di);
di->inst_curr = ab8500_fg_inst_curr_blocking(di);
return di->bat_cap.mah;
}
/**
* ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
* @di: pointer to the ab8500_fg structure
* @comp: if voltage should be load compensated before capacity calc
*
* Return the capacity in mAh based on the battery voltage. The voltage can
* either be load compensated or not. This value is added to the filter and a
* new mean value is calculated and returned.
*/
static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
{
int permille, mah;
if (comp)
permille = ab8500_fg_load_comp_volt_to_capacity(di);
else
permille = ab8500_fg_uncomp_volt_to_capacity(di);
mah = ab8500_fg_convert_permille_to_mah(di, permille);
di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
di->bat_cap.permille =
ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
return di->bat_cap.mah;
}
/**
* ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
* @di: pointer to the ab8500_fg structure
*
* Return the capacity in mAh based on previous calculated capcity and the FG
* accumulator register value. This value is added to the filter and a
* new mean value is calculated and returned.
*/
static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
{
int permille_volt, permille;
dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
__func__,
di->bat_cap.mah,
di->accu_charge);
/* Capacity should not be less than 0 */
if (di->bat_cap.mah + di->accu_charge > 0)
di->bat_cap.mah += di->accu_charge;
else
di->bat_cap.mah = 0;
if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
di->bat_cap.mah = di->bat_cap.max_mah_design;
/*
* Check against voltage based capacity. It can not be lower
* than what the uncompensated voltage says
*/
permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
if (permille < permille_volt) {
di->bat_cap.permille = permille_volt;
di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
di->bat_cap.permille);
dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
__func__,
permille,
permille_volt);
ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
} else {
ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
di->bat_cap.permille =
ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
}
return di->bat_cap.mah;
}
/**
* ab8500_fg_capacity_level() - Get the battery capacity level
* @di: pointer to the ab8500_fg structure
*
* Get the battery capacity level based on the capacity in percent
*/
static int ab8500_fg_capacity_level(struct ab8500_fg *di)
{
int ret, percent;
percent = di->bat_cap.permille / 10;
if (percent <= di->bat->cap_levels->critical ||
di->flags.low_bat)
ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
else if (percent <= di->bat->cap_levels->low)
ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
else if (percent <= di->bat->cap_levels->normal)
ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
else if (percent <= di->bat->cap_levels->high)
ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
else
ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
return ret;
}
/**
* ab8500_fg_check_capacity_limits() - Check if capacity has changed
* @di: pointer to the ab8500_fg structure
* @init: capacity is allowed to go up in init mode
*
* Check if capacity or capacity limit has changed and notify the system
* about it using the power_supply framework
*/
static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
{
bool changed = false;
di->bat_cap.level = ab8500_fg_capacity_level(di);
if (di->bat_cap.level != di->bat_cap.prev_level) {
/*
* We do not allow reported capacity level to go up
* unless we're charging or if we're in init
*/
if (!(!di->flags.charging && di->bat_cap.level >
di->bat_cap.prev_level) || init) {
dev_dbg(di->dev, "level changed from %d to %d\n",
di->bat_cap.prev_level,
di->bat_cap.level);
di->bat_cap.prev_level = di->bat_cap.level;
changed = true;
} else {
dev_dbg(di->dev, "level not allowed to go up "
"since no charger is connected: %d to %d\n",
di->bat_cap.prev_level,
di->bat_cap.level);
}
}
/*
* If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
* shutdown
*/
if (di->flags.low_bat) {
dev_dbg(di->dev, "Battery low, set capacity to 0\n");
di->bat_cap.prev_percent = 0;
di->bat_cap.permille = 0;
di->bat_cap.prev_mah = 0;
di->bat_cap.mah = 0;
changed = true;
} else if (di->flags.fully_charged) {
/*
* We report 100% if algorithm reported fully charged
* unless capacity drops too much
*/
if (di->flags.force_full) {
di->bat_cap.prev_percent = di->bat_cap.permille / 10;
di->bat_cap.prev_mah = di->bat_cap.mah;
} else if (!di->flags.force_full &&
di->bat_cap.prev_percent !=
(di->bat_cap.permille) / 10 &&
(di->bat_cap.permille / 10) <
di->bat->fg_params->maint_thres) {
dev_dbg(di->dev,
"battery reported full "
"but capacity dropping: %d\n",
di->bat_cap.permille / 10);
di->bat_cap.prev_percent = di->bat_cap.permille / 10;
di->bat_cap.prev_mah = di->bat_cap.mah;
changed = true;
}
} else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) {
if (di->bat_cap.permille / 10 == 0) {
/*
* We will not report 0% unless we've got
* the LOW_BAT IRQ, no matter what the FG
* algorithm says.
*/
di->bat_cap.prev_percent = 1;
di->bat_cap.permille = 1;
di->bat_cap.prev_mah = 1;
di->bat_cap.mah = 1;
changed = true;
} else if (!(!di->flags.charging &&
(di->bat_cap.permille / 10) >
di->bat_cap.prev_percent) || init) {
/*
* We do not allow reported capacity to go up
* unless we're charging or if we're in init
*/
dev_dbg(di->dev,
"capacity changed from %d to %d (%d)\n",
di->bat_cap.prev_percent,
di->bat_cap.permille / 10,
di->bat_cap.permille);
di->bat_cap.prev_percent = di->bat_cap.permille / 10;
di->bat_cap.prev_mah = di->bat_cap.mah;
changed = true;
} else {
dev_dbg(di->dev, "capacity not allowed to go up since "
"no charger is connected: %d to %d (%d)\n",
di->bat_cap.prev_percent,
di->bat_cap.permille / 10,
di->bat_cap.permille);
}
}
if (changed) {
power_supply_changed(&di->fg_psy);
if (di->flags.fully_charged && di->flags.force_full) {
dev_dbg(di->dev, "Battery full, notifying.\n");
di->flags.force_full = false;
sysfs_notify(&di->fg_kobject, NULL, "charge_full");
}
sysfs_notify(&di->fg_kobject, NULL, "charge_now");
}
}
static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
enum ab8500_fg_charge_state new_state)
{
dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
di->charge_state,
charge_state[di->charge_state],
new_state,
charge_state[new_state]);
di->charge_state = new_state;
}
static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
enum ab8500_fg_discharge_state new_state)
{
dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
di->discharge_state,
discharge_state[di->discharge_state],
new_state,
discharge_state[new_state]);
di->discharge_state = new_state;
}
/**
* ab8500_fg_algorithm_charging() - FG algorithm for when charging
* @di: pointer to the ab8500_fg structure
*
* Battery capacity calculation state machine for when we're charging
*/
static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
{
/*
* If we change to discharge mode
* we should start with recovery
*/
if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
ab8500_fg_discharge_state_to(di,
AB8500_FG_DISCHARGE_INIT_RECOVERY);
switch (di->charge_state) {
case AB8500_FG_CHARGE_INIT:
di->fg_samples = SEC_TO_SAMPLE(
di->bat->fg_params->accu_charging);
ab8500_fg_coulomb_counter(di, true);
ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
break;
case AB8500_FG_CHARGE_READOUT:
/*
* Read the FG and calculate the new capacity
*/
mutex_lock(&di->cc_lock);
if (!di->flags.conv_done) {
/* Wasn't the CC IRQ that got us here */
mutex_unlock(&di->cc_lock);
dev_dbg(di->dev, "%s CC conv not done\n",
__func__);
break;
}
di->flags.conv_done = false;
mutex_unlock(&di->cc_lock);
ab8500_fg_calc_cap_charging(di);
break;
default:
break;
}
/* Check capacity limits */
ab8500_fg_check_capacity_limits(di, false);
}
static void force_capacity(struct ab8500_fg *di)
{
int cap;
ab8500_fg_clear_cap_samples(di);
cap = di->bat_cap.user_mah;
if (cap > di->bat_cap.max_mah_design) {
dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
" %d\n", cap, di->bat_cap.max_mah_design);
cap = di->bat_cap.max_mah_design;
}
ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
di->bat_cap.mah = cap;
ab8500_fg_check_capacity_limits(di, true);
}
static bool check_sysfs_capacity(struct ab8500_fg *di)
{
int cap, lower, upper;
int cap_permille;
cap = di->bat_cap.user_mah;
cap_permille = ab8500_fg_convert_mah_to_permille(di,
di->bat_cap.user_mah);
lower = di->bat_cap.permille - di->bat->fg_params->user_cap_limit * 10;
upper = di->bat_cap.permille + di->bat->fg_params->user_cap_limit * 10;
if (lower < 0)
lower = 0;
/* 1000 is permille, -> 100 percent */
if (upper > 1000)
upper = 1000;
dev_dbg(di->dev, "Capacity limits:"
" (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
lower, cap_permille, upper, cap, di->bat_cap.mah);
/* If within limits, use the saved capacity and exit estimation...*/
if (cap_permille > lower && cap_permille < upper) {
dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
force_capacity(di);
return true;
}
dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
return false;
}
/**
* ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
* @di: pointer to the ab8500_fg structure
*
* Battery capacity calculation state machine for when we're discharging
*/
static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
{
int sleep_time;
/* If we change to charge mode we should start with init */
if (di->charge_state != AB8500_FG_CHARGE_INIT)
ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
switch (di->discharge_state) {
case AB8500_FG_DISCHARGE_INIT:
/* We use the FG IRQ to work on */
di->init_cnt = 0;
di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
ab8500_fg_coulomb_counter(di, true);
ab8500_fg_discharge_state_to(di,
AB8500_FG_DISCHARGE_INITMEASURING);
/* Intentional fallthrough */
case AB8500_FG_DISCHARGE_INITMEASURING:
/*
* Discard a number of samples during startup.
* After that, use compensated voltage for a few
* samples to get an initial capacity.
* Then go to READOUT
*/
sleep_time = di->bat->fg_params->init_timer;
/* Discard the first [x] seconds */
if (di->init_cnt >
di->bat->fg_params->init_discard_time) {
ab8500_fg_calc_cap_discharge_voltage(di, true);
ab8500_fg_check_capacity_limits(di, true);
}
di->init_cnt += sleep_time;
if (di->init_cnt > di->bat->fg_params->init_total_time)
ab8500_fg_discharge_state_to(di,
AB8500_FG_DISCHARGE_READOUT_INIT);
break;
case AB8500_FG_DISCHARGE_INIT_RECOVERY:
di->recovery_cnt = 0;
di->recovery_needed = true;
ab8500_fg_discharge_state_to(di,
AB8500_FG_DISCHARGE_RECOVERY);
/* Intentional fallthrough */
case AB8500_FG_DISCHARGE_RECOVERY:
sleep_time = di->bat->fg_params->recovery_sleep_timer;
/*
* We should check the power consumption
* If low, go to READOUT (after x min) or
* RECOVERY_SLEEP if time left.
* If high, go to READOUT
*/
di->inst_curr = ab8500_fg_inst_curr_blocking(di);
if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
if (di->recovery_cnt >
di->bat->fg_params->recovery_total_time) {
di->fg_samples = SEC_TO_SAMPLE(
di->bat->fg_params->accu_high_curr);
ab8500_fg_coulomb_counter(di, true);
ab8500_fg_discharge_state_to(di,
AB8500_FG_DISCHARGE_READOUT);
di->recovery_needed = false;
} else {
queue_delayed_work(di->fg_wq,
&di->fg_periodic_work,
sleep_time * HZ);
}
di->recovery_cnt += sleep_time;
} else {
di->fg_samples = SEC_TO_SAMPLE(
di->bat->fg_params->accu_high_curr);
ab8500_fg_coulomb_counter(di, true);
ab8500_fg_discharge_state_to(di,
AB8500_FG_DISCHARGE_READOUT);
}
break;
case AB8500_FG_DISCHARGE_READOUT_INIT:
di->fg_samples = SEC_TO_SAMPLE(
di->bat->fg_params->accu_high_curr);
ab8500_fg_coulomb_counter(di, true);
ab8500_fg_discharge_state_to(di,
AB8500_FG_DISCHARGE_READOUT);
break;
case AB8500_FG_DISCHARGE_READOUT:
di->inst_curr = ab8500_fg_inst_curr_blocking(di);
if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
/* Detect mode change */
if (di->high_curr_mode) {
di->high_curr_mode = false;
di->high_curr_cnt = 0;
}
if (di->recovery_needed) {
ab8500_fg_discharge_state_to(di,
AB8500_FG_DISCHARGE_RECOVERY);
queue_delayed_work(di->fg_wq,
&di->fg_periodic_work, 0);
break;
}
ab8500_fg_calc_cap_discharge_voltage(di, true);
} else {
mutex_lock(&di->cc_lock);
if (!di->flags.conv_done) {
/* Wasn't the CC IRQ that got us here */
mutex_unlock(&di->cc_lock);
dev_dbg(di->dev, "%s CC conv not done\n",
__func__);
break;
}
di->flags.conv_done = false;
mutex_unlock(&di->cc_lock);
/* Detect mode change */
if (!di->high_curr_mode) {
di->high_curr_mode = true;
di->high_curr_cnt = 0;
}
di->high_curr_cnt +=
di->bat->fg_params->accu_high_curr;
if (di->high_curr_cnt >
di->bat->fg_params->high_curr_time)
di->recovery_needed = true;
ab8500_fg_calc_cap_discharge_fg(di);
}
ab8500_fg_check_capacity_limits(di, false);
break;
case AB8500_FG_DISCHARGE_WAKEUP:
ab8500_fg_coulomb_counter(di, true);
di->inst_curr = ab8500_fg_inst_curr_blocking(di);
ab8500_fg_calc_cap_discharge_voltage(di, true);
di->fg_samples = SEC_TO_SAMPLE(
di->bat->fg_params->accu_high_curr);
ab8500_fg_coulomb_counter(di, true);
ab8500_fg_discharge_state_to(di,
AB8500_FG_DISCHARGE_READOUT);
ab8500_fg_check_capacity_limits(di, false);
break;
default:
break;
}
}
/**
* ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
* @di: pointer to the ab8500_fg structure
*
*/
static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
{
int ret;
switch (di->calib_state) {
case AB8500_FG_CALIB_INIT:
dev_dbg(di->dev, "Calibration ongoing...\n");
ret = abx500_mask_and_set_register_interruptible(di->dev,
AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
if (ret < 0)
goto err;
ret = abx500_mask_and_set_register_interruptible(di->dev,
AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
if (ret < 0)
goto err;
di->calib_state = AB8500_FG_CALIB_WAIT;
break;
case AB8500_FG_CALIB_END:
ret = abx500_mask_and_set_register_interruptible(di->dev,
AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
CC_MUXOFFSET, CC_MUXOFFSET);
if (ret < 0)
goto err;
di->flags.calibrate = false;
dev_dbg(di->dev, "Calibration done...\n");
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
break;
case AB8500_FG_CALIB_WAIT:
dev_dbg(di->dev, "Calibration WFI\n");
default:
break;
}
return;
err:
/* Something went wrong, don't calibrate then */
dev_err(di->dev, "failed to calibrate the CC\n");
di->flags.calibrate = false;
di->calib_state = AB8500_FG_CALIB_INIT;
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
}
/**
* ab8500_fg_algorithm() - Entry point for the FG algorithm
* @di: pointer to the ab8500_fg structure
*
* Entry point for the battery capacity calculation state machine
*/
static void ab8500_fg_algorithm(struct ab8500_fg *di)
{
if (di->flags.calibrate)
ab8500_fg_algorithm_calibrate(di);
else {
if (di->flags.charging)
ab8500_fg_algorithm_charging(di);
else
ab8500_fg_algorithm_discharging(di);
}
dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
"%d %d %d %d %d %d %d\n",
di->bat_cap.max_mah_design,
di->bat_cap.mah,
di->bat_cap.permille,
di->bat_cap.level,
di->bat_cap.prev_mah,
di->bat_cap.prev_percent,
di->bat_cap.prev_level,
di->vbat,
di->inst_curr,
di->avg_curr,
di->accu_charge,
di->flags.charging,
di->charge_state,
di->discharge_state,
di->high_curr_mode,
di->recovery_needed);
}
/**
* ab8500_fg_periodic_work() - Run the FG state machine periodically
* @work: pointer to the work_struct structure
*
* Work queue function for periodic work
*/
static void ab8500_fg_periodic_work(struct work_struct *work)
{
struct ab8500_fg *di = container_of(work, struct ab8500_fg,
fg_periodic_work.work);
if (di->init_capacity) {
/* A dummy read that will return 0 */
di->inst_curr = ab8500_fg_inst_curr_blocking(di);
/* Get an initial capacity calculation */
ab8500_fg_calc_cap_discharge_voltage(di, true);
ab8500_fg_check_capacity_limits(di, true);
di->init_capacity = false;
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
} else if (di->flags.user_cap) {
if (check_sysfs_capacity(di)) {
ab8500_fg_check_capacity_limits(di, true);
if (di->flags.charging)
ab8500_fg_charge_state_to(di,
AB8500_FG_CHARGE_INIT);
else
ab8500_fg_discharge_state_to(di,
AB8500_FG_DISCHARGE_READOUT_INIT);
}
di->flags.user_cap = false;
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
} else
ab8500_fg_algorithm(di);
}
/**
* ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
* @work: pointer to the work_struct structure
*
* Work queue function for checking the OVV_BAT condition
*/
static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
{
int ret;
u8 reg_value;
struct ab8500_fg *di = container_of(work, struct ab8500_fg,
fg_check_hw_failure_work.work);
/*
* If we have had a battery over-voltage situation,
* check ovv-bit to see if it should be reset.
*/
if (di->flags.bat_ovv) {
ret = abx500_get_register_interruptible(di->dev,
AB8500_CHARGER, AB8500_CH_STAT_REG,
&reg_value);
if (ret < 0) {
dev_err(di->dev, "%s ab8500 read failed\n", __func__);
return;
}
if ((reg_value & BATT_OVV) != BATT_OVV) {
dev_dbg(di->dev, "Battery recovered from OVV\n");
di->flags.bat_ovv = false;
power_supply_changed(&di->fg_psy);
return;
}
/* Not yet recovered from ovv, reschedule this test */
queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
round_jiffies(HZ));
}
}
/**
* ab8500_fg_low_bat_work() - Check LOW_BAT condition
* @work: pointer to the work_struct structure
*
* Work queue function for checking the LOW_BAT condition
*/
static void ab8500_fg_low_bat_work(struct work_struct *work)
{
int vbat;
struct ab8500_fg *di = container_of(work, struct ab8500_fg,
fg_low_bat_work.work);
vbat = ab8500_fg_bat_voltage(di);
/* Check if LOW_BAT still fulfilled */
if (vbat < di->bat->fg_params->lowbat_threshold) {
di->flags.low_bat = true;
dev_warn(di->dev, "Battery voltage still LOW\n");
/*
* We need to re-schedule this check to be able to detect
* if the voltage increases again during charging
*/
queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
round_jiffies(LOW_BAT_CHECK_INTERVAL));
} else {
di->flags.low_bat = false;
dev_warn(di->dev, "Battery voltage OK again\n");
}
/* This is needed to dispatch LOW_BAT */
ab8500_fg_check_capacity_limits(di, false);
/* Set this flag to check if LOW_BAT IRQ still occurs */
di->flags.low_bat_delay = false;
}
/**
* ab8500_fg_battok_calc - calculate the bit pattern corresponding
* to the target voltage.
* @di: pointer to the ab8500_fg structure
* @target target voltage
*
* Returns bit pattern closest to the target voltage
* valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
*/
static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
{
if (target > BATT_OK_MIN +
(BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
return BATT_OK_MAX_NR_INCREMENTS;
if (target < BATT_OK_MIN)
return 0;
return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
}
/**
* ab8500_fg_battok_init_hw_register - init battok levels
* @di: pointer to the ab8500_fg structure
*
*/
static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
{
int selected;
int sel0;
int sel1;
int cbp_sel0;
int cbp_sel1;
int ret;
int new_val;
sel0 = di->bat->fg_params->battok_falling_th_sel0;
sel1 = di->bat->fg_params->battok_raising_th_sel1;
cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
if (selected != sel0)
dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
sel0, selected, cbp_sel0);
selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
if (selected != sel1)
dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
sel1, selected, cbp_sel1);
new_val = cbp_sel0 | (cbp_sel1 << 4);
dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
AB8500_BATT_OK_REG, new_val);
return ret;
}
/**
* ab8500_fg_instant_work() - Run the FG state machine instantly
* @work: pointer to the work_struct structure
*
* Work queue function for instant work
*/
static void ab8500_fg_instant_work(struct work_struct *work)
{
struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
ab8500_fg_algorithm(di);
}
/**
* ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
* @irq: interrupt number
* @_di: pointer to the ab8500_fg structure
*
* Returns IRQ status(IRQ_HANDLED)
*/
static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
{
struct ab8500_fg *di = _di;
complete(&di->ab8500_fg_complete);
return IRQ_HANDLED;
}
/**
* ab8500_fg_cc_convend_handler() - isr to get battery avg current.
* @irq: interrupt number
* @_di: pointer to the ab8500_fg structure
*
* Returns IRQ status(IRQ_HANDLED)
*/
static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
{
struct ab8500_fg *di = _di;
di->calib_state = AB8500_FG_CALIB_END;
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
return IRQ_HANDLED;
}
/**
* ab8500_fg_cc_convend_handler() - isr to get battery avg current.
* @irq: interrupt number
* @_di: pointer to the ab8500_fg structure
*
* Returns IRQ status(IRQ_HANDLED)
*/
static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
{
struct ab8500_fg *di = _di;
queue_work(di->fg_wq, &di->fg_acc_cur_work);
return IRQ_HANDLED;
}
/**
* ab8500_fg_batt_ovv_handler() - Battery OVV occured
* @irq: interrupt number
* @_di: pointer to the ab8500_fg structure
*
* Returns IRQ status(IRQ_HANDLED)
*/
static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
{
struct ab8500_fg *di = _di;
dev_dbg(di->dev, "Battery OVV\n");
di->flags.bat_ovv = true;
power_supply_changed(&di->fg_psy);
/* Schedule a new HW failure check */
queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
return IRQ_HANDLED;
}
/**
* ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
* @irq: interrupt number
* @_di: pointer to the ab8500_fg structure
*
* Returns IRQ status(IRQ_HANDLED)
*/
static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
{
struct ab8500_fg *di = _di;
if (!di->flags.low_bat_delay) {
dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
di->flags.low_bat_delay = true;
/*
* Start a timer to check LOW_BAT again after some time
* This is done to avoid shutdown on single voltage dips
*/
queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
round_jiffies(LOW_BAT_CHECK_INTERVAL));
}
return IRQ_HANDLED;
}
/**
* ab8500_fg_get_property() - get the fg properties
* @psy: pointer to the power_supply structure
* @psp: pointer to the power_supply_property structure
* @val: pointer to the power_supply_propval union
*
* This function gets called when an application tries to get the
* fg properties by reading the sysfs files.
* voltage_now: battery voltage
* current_now: battery instant current
* current_avg: battery average current
* charge_full_design: capacity where battery is considered full
* charge_now: battery capacity in nAh
* capacity: capacity in percent
* capacity_level: capacity level
*
* Returns error code in case of failure else 0 on success
*/
static int ab8500_fg_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct ab8500_fg *di;
di = to_ab8500_fg_device_info(psy);
/*
* If battery is identified as unknown and charging of unknown
* batteries is disabled, we always report 100% capacity and
* capacity level UNKNOWN, since we can't calculate
* remaining capacity
*/
switch (psp) {
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
if (di->flags.bat_ovv)
val->intval = BATT_OVV_VALUE * 1000;
else
val->intval = di->vbat * 1000;
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = di->inst_curr * 1000;
break;
case POWER_SUPPLY_PROP_CURRENT_AVG:
val->intval = di->avg_curr * 1000;
break;
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
val->intval = ab8500_fg_convert_mah_to_uwh(di,
di->bat_cap.max_mah_design);
break;
case POWER_SUPPLY_PROP_ENERGY_FULL:
val->intval = ab8500_fg_convert_mah_to_uwh(di,
di->bat_cap.max_mah);
break;
case POWER_SUPPLY_PROP_ENERGY_NOW:
if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
di->flags.batt_id_received)
val->intval = ab8500_fg_convert_mah_to_uwh(di,
di->bat_cap.max_mah);
else
val->intval = ab8500_fg_convert_mah_to_uwh(di,
di->bat_cap.prev_mah);
break;
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
val->intval = di->bat_cap.max_mah_design;
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
val->intval = di->bat_cap.max_mah;
break;
case POWER_SUPPLY_PROP_CHARGE_NOW:
if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
di->flags.batt_id_received)
val->intval = di->bat_cap.max_mah;
else
val->intval = di->bat_cap.prev_mah;
break;
case POWER_SUPPLY_PROP_CAPACITY:
if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
di->flags.batt_id_received)
val->intval = 100;
else
val->intval = di->bat_cap.prev_percent;
break;
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
di->flags.batt_id_received)
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
else
val->intval = di->bat_cap.prev_level;
break;
default:
return -EINVAL;
}
return 0;
}
static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
{
struct power_supply *psy;
struct power_supply *ext;
struct ab8500_fg *di;
union power_supply_propval ret;
int i, j;
bool psy_found = false;
psy = (struct power_supply *)data;
ext = dev_get_drvdata(dev);
di = to_ab8500_fg_device_info(psy);
/*
* For all psy where the name of your driver
* appears in any supplied_to
*/
for (i = 0; i < ext->num_supplicants; i++) {
if (!strcmp(ext->supplied_to[i], psy->name))
psy_found = true;
}
if (!psy_found)
return 0;
/* Go through all properties for the psy */
for (j = 0; j < ext->num_properties; j++) {
enum power_supply_property prop;
prop = ext->properties[j];
if (ext->get_property(ext, prop, &ret))
continue;
switch (prop) {
case POWER_SUPPLY_PROP_STATUS:
switch (ext->type) {
case POWER_SUPPLY_TYPE_BATTERY:
switch (ret.intval) {
case POWER_SUPPLY_STATUS_UNKNOWN:
case POWER_SUPPLY_STATUS_DISCHARGING:
case POWER_SUPPLY_STATUS_NOT_CHARGING:
if (!di->flags.charging)
break;
di->flags.charging = false;
di->flags.fully_charged = false;
queue_work(di->fg_wq, &di->fg_work);
break;
case POWER_SUPPLY_STATUS_FULL:
if (di->flags.fully_charged)
break;
di->flags.fully_charged = true;
di->flags.force_full = true;
/* Save current capacity as maximum */
di->bat_cap.max_mah = di->bat_cap.mah;
queue_work(di->fg_wq, &di->fg_work);
break;
case POWER_SUPPLY_STATUS_CHARGING:
if (di->flags.charging)
break;
di->flags.charging = true;
di->flags.fully_charged = false;
queue_work(di->fg_wq, &di->fg_work);
break;
};
default:
break;
};
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
switch (ext->type) {
case POWER_SUPPLY_TYPE_BATTERY:
if (!di->flags.batt_id_received) {
const struct abx500_battery_type *b;
b = &(di->bat->bat_type[di->bat->batt_id]);
di->flags.batt_id_received = true;
di->bat_cap.max_mah_design =
MILLI_TO_MICRO *
b->charge_full_design;
di->bat_cap.max_mah =
di->bat_cap.max_mah_design;
di->vbat_nom = b->nominal_voltage;
}
if (ret.intval)
di->flags.batt_unknown = false;
else
di->flags.batt_unknown = true;
break;
default:
break;
}
break;
case POWER_SUPPLY_PROP_TEMP:
switch (ext->type) {
case POWER_SUPPLY_TYPE_BATTERY:
if (di->flags.batt_id_received)
di->bat_temp = ret.intval;
break;
default:
break;
}
break;
default:
break;
}
}
return 0;
}
/**
* ab8500_fg_init_hw_registers() - Set up FG related registers
* @di: pointer to the ab8500_fg structure
*
* Set up battery OVV, low battery voltage registers
*/
static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
{
int ret;
/* Set VBAT OVV threshold */
ret = abx500_mask_and_set_register_interruptible(di->dev,
AB8500_CHARGER,
AB8500_BATT_OVV,
BATT_OVV_TH_4P75,
BATT_OVV_TH_4P75);
if (ret) {
dev_err(di->dev, "failed to set BATT_OVV\n");
goto out;
}
/* Enable VBAT OVV detection */
ret = abx500_mask_and_set_register_interruptible(di->dev,
AB8500_CHARGER,
AB8500_BATT_OVV,
BATT_OVV_ENA,
BATT_OVV_ENA);
if (ret) {
dev_err(di->dev, "failed to enable BATT_OVV\n");
goto out;
}
/* Low Battery Voltage */
ret = abx500_set_register_interruptible(di->dev,
AB8500_SYS_CTRL2_BLOCK,
AB8500_LOW_BAT_REG,
ab8500_volt_to_regval(
di->bat->fg_params->lowbat_threshold) << 1 |
LOW_BAT_ENABLE);
if (ret) {
dev_err(di->dev, "%s write failed\n", __func__);
goto out;
}
/* Battery OK threshold */
ret = ab8500_fg_battok_init_hw_register(di);
if (ret) {
dev_err(di->dev, "BattOk init write failed.\n");
goto out;
}
out:
return ret;
}
/**
* ab8500_fg_external_power_changed() - callback for power supply changes
* @psy: pointer to the structure power_supply
*
* This function is the entry point of the pointer external_power_changed
* of the structure power_supply.
* This function gets executed when there is a change in any external power
* supply that this driver needs to be notified of.
*/
static void ab8500_fg_external_power_changed(struct power_supply *psy)
{
struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
class_for_each_device(power_supply_class, NULL,
&di->fg_psy, ab8500_fg_get_ext_psy_data);
}
/**
* abab8500_fg_reinit_work() - work to reset the FG algorithm
* @work: pointer to the work_struct structure
*
* Used to reset the current battery capacity to be able to
* retrigger a new voltage base capacity calculation. For
* test and verification purpose.
*/
static void ab8500_fg_reinit_work(struct work_struct *work)
{
struct ab8500_fg *di = container_of(work, struct ab8500_fg,
fg_reinit_work.work);
if (di->flags.calibrate == false) {
dev_dbg(di->dev, "Resetting FG state machine to init.\n");
ab8500_fg_clear_cap_samples(di);
ab8500_fg_calc_cap_discharge_voltage(di, true);
ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
} else {
dev_err(di->dev, "Residual offset calibration ongoing "
"retrying..\n");
/* Wait one second until next try*/
queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
round_jiffies(1));
}
}
/**
* ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
*
* This function can be used to force the FG algorithm to recalculate a new
* voltage based battery capacity.
*/
void ab8500_fg_reinit(void)
{
struct ab8500_fg *di = ab8500_fg_get();
/* User won't be notified if a null pointer returned. */
if (di != NULL)
queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
}
/* Exposure to the sysfs interface */
struct ab8500_fg_sysfs_entry {
struct attribute attr;
ssize_t (*show)(struct ab8500_fg *, char *);
ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
};
static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
{
return sprintf(buf, "%d\n", di->bat_cap.max_mah);
}
static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
size_t count)
{
unsigned long charge_full;
ssize_t ret = -EINVAL;
ret = strict_strtoul(buf, 10, &charge_full);
dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
if (!ret) {
di->bat_cap.max_mah = (int) charge_full;
ret = count;
}
return ret;
}
static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
{
return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
}
static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
size_t count)
{
unsigned long charge_now;
ssize_t ret;
ret = strict_strtoul(buf, 10, &charge_now);
dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
ret, charge_now, di->bat_cap.prev_mah);
if (!ret) {
di->bat_cap.user_mah = (int) charge_now;
di->flags.user_cap = true;
ret = count;
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
}
return ret;
}
static struct ab8500_fg_sysfs_entry charge_full_attr =
__ATTR(charge_full, 0644, charge_full_show, charge_full_store);
static struct ab8500_fg_sysfs_entry charge_now_attr =
__ATTR(charge_now, 0644, charge_now_show, charge_now_store);
static ssize_t
ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
{
struct ab8500_fg_sysfs_entry *entry;
struct ab8500_fg *di;
entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
di = container_of(kobj, struct ab8500_fg, fg_kobject);
if (!entry->show)
return -EIO;
return entry->show(di, buf);
}
static ssize_t
ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
size_t count)
{
struct ab8500_fg_sysfs_entry *entry;
struct ab8500_fg *di;
entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
di = container_of(kobj, struct ab8500_fg, fg_kobject);
if (!entry->store)
return -EIO;
return entry->store(di, buf, count);
}
static const struct sysfs_ops ab8500_fg_sysfs_ops = {
.show = ab8500_fg_show,
.store = ab8500_fg_store,
};
static struct attribute *ab8500_fg_attrs[] = {
&charge_full_attr.attr,
&charge_now_attr.attr,
NULL,
};
static struct kobj_type ab8500_fg_ktype = {
.sysfs_ops = &ab8500_fg_sysfs_ops,
.default_attrs = ab8500_fg_attrs,
};
/**
* ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
* @di: pointer to the struct ab8500_chargalg
*
* This function removes the entry in sysfs.
*/
static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
{
kobject_del(&di->fg_kobject);
}
/**
* ab8500_chargalg_sysfs_init() - init of sysfs entry
* @di: pointer to the struct ab8500_chargalg
*
* This function adds an entry in sysfs.
* Returns error code in case of failure else 0(on success)
*/
static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
{
int ret = 0;
ret = kobject_init_and_add(&di->fg_kobject,
&ab8500_fg_ktype,
NULL, "battery");
if (ret < 0)
dev_err(di->dev, "failed to create sysfs entry\n");
return ret;
}
/* Exposure to the sysfs interface <<END>> */
#if defined(CONFIG_PM)
static int ab8500_fg_resume(struct platform_device *pdev)
{
struct ab8500_fg *di = platform_get_drvdata(pdev);
/*
* Change state if we're not charging. If we're charging we will wake
* up on the FG IRQ
*/
if (!di->flags.charging) {
ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
queue_work(di->fg_wq, &di->fg_work);
}
return 0;
}
static int ab8500_fg_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct ab8500_fg *di = platform_get_drvdata(pdev);
flush_delayed_work(&di->fg_periodic_work);
/*
* If the FG is enabled we will disable it before going to suspend
* only if we're not charging
*/
if (di->flags.fg_enabled && !di->flags.charging)
ab8500_fg_coulomb_counter(di, false);
return 0;
}
#else
#define ab8500_fg_suspend NULL
#define ab8500_fg_resume NULL
#endif
static int __devexit ab8500_fg_remove(struct platform_device *pdev)
{
int ret = 0;
struct ab8500_fg *di = platform_get_drvdata(pdev);
list_del(&di->node);
/* Disable coulomb counter */
ret = ab8500_fg_coulomb_counter(di, false);
if (ret)
dev_err(di->dev, "failed to disable coulomb counter\n");
destroy_workqueue(di->fg_wq);
ab8500_fg_sysfs_exit(di);
flush_scheduled_work();
power_supply_unregister(&di->fg_psy);
platform_set_drvdata(pdev, NULL);
kfree(di);
return ret;
}
/* ab8500 fg driver interrupts and their respective isr */
static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
{"NCONV_ACCU", ab8500_fg_cc_convend_handler},
{"BATT_OVV", ab8500_fg_batt_ovv_handler},
{"LOW_BAT_F", ab8500_fg_lowbatf_handler},
{"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
{"CCEOC", ab8500_fg_cc_data_end_handler},
};
static int __devinit ab8500_fg_probe(struct platform_device *pdev)
{
int i, irq;
int ret = 0;
struct abx500_bm_plat_data *plat_data;
struct ab8500_fg *di =
kzalloc(sizeof(struct ab8500_fg), GFP_KERNEL);
if (!di)
return -ENOMEM;
mutex_init(&di->cc_lock);
/* get parent data */
di->dev = &pdev->dev;
di->parent = dev_get_drvdata(pdev->dev.parent);
di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
/* get fg specific platform data */
plat_data = pdev->dev.platform_data;
di->pdata = plat_data->fg;
if (!di->pdata) {
dev_err(di->dev, "no fg platform data supplied\n");
ret = -EINVAL;
goto free_device_info;
}
/* get battery specific platform data */
di->bat = plat_data->battery;
if (!di->bat) {
dev_err(di->dev, "no battery platform data supplied\n");
ret = -EINVAL;
goto free_device_info;
}
di->fg_psy.name = "ab8500_fg";
di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
di->fg_psy.properties = ab8500_fg_props;
di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
di->fg_psy.get_property = ab8500_fg_get_property;
di->fg_psy.supplied_to = di->pdata->supplied_to;
di->fg_psy.num_supplicants = di->pdata->num_supplicants;
di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
di->bat_cap.max_mah_design = MILLI_TO_MICRO *
di->bat->bat_type[di->bat->batt_id].charge_full_design;
di->bat_cap.max_mah = di->bat_cap.max_mah_design;
di->vbat_nom = di->bat->bat_type[di->bat->batt_id].nominal_voltage;
di->init_capacity = true;
ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
/* Create a work queue for running the FG algorithm */
di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
if (di->fg_wq == NULL) {
dev_err(di->dev, "failed to create work queue\n");
goto free_device_info;
}
/* Init work for running the fg algorithm instantly */
INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
/* Init work for getting the battery accumulated current */
INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
/* Init work for reinitialising the fg algorithm */
INIT_DELAYED_WORK_DEFERRABLE(&di->fg_reinit_work,
ab8500_fg_reinit_work);
/* Work delayed Queue to run the state machine */
INIT_DELAYED_WORK_DEFERRABLE(&di->fg_periodic_work,
ab8500_fg_periodic_work);
/* Work to check low battery condition */
INIT_DELAYED_WORK_DEFERRABLE(&di->fg_low_bat_work,
ab8500_fg_low_bat_work);
/* Init work for HW failure check */
INIT_DELAYED_WORK_DEFERRABLE(&di->fg_check_hw_failure_work,
ab8500_fg_check_hw_failure_work);
/* Initialize OVV, and other registers */
ret = ab8500_fg_init_hw_registers(di);
if (ret) {
dev_err(di->dev, "failed to initialize registers\n");
goto free_inst_curr_wq;
}
/* Consider battery unknown until we're informed otherwise */
di->flags.batt_unknown = true;
di->flags.batt_id_received = false;
/* Register FG power supply class */
ret = power_supply_register(di->dev, &di->fg_psy);
if (ret) {
dev_err(di->dev, "failed to register FG psy\n");
goto free_inst_curr_wq;
}
di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
ab8500_fg_coulomb_counter(di, true);
/* Initialize completion used to notify completion of inst current */
init_completion(&di->ab8500_fg_complete);
/* Register interrupts */
for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
IRQF_SHARED | IRQF_NO_SUSPEND,
ab8500_fg_irq[i].name, di);
if (ret != 0) {
dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
, ab8500_fg_irq[i].name, irq, ret);
goto free_irq;
}
dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
ab8500_fg_irq[i].name, irq, ret);
}
di->irq = platform_get_irq_byname(pdev, "CCEOC");
disable_irq(di->irq);
platform_set_drvdata(pdev, di);
ret = ab8500_fg_sysfs_init(di);
if (ret) {
dev_err(di->dev, "failed to create sysfs entry\n");
goto free_irq;
}
/* Calibrate the fg first time */
di->flags.calibrate = true;
di->calib_state = AB8500_FG_CALIB_INIT;
/* Use room temp as default value until we get an update from driver. */
di->bat_temp = 210;
/* Run the FG algorithm */
queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
list_add_tail(&di->node, &ab8500_fg_list);
return ret;
free_irq:
power_supply_unregister(&di->fg_psy);
/* We also have to free all successfully registered irqs */
for (i = i - 1; i >= 0; i--) {
irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
free_irq(irq, di);
}
free_inst_curr_wq:
destroy_workqueue(di->fg_wq);
free_device_info:
kfree(di);
return ret;
}
static struct platform_driver ab8500_fg_driver = {
.probe = ab8500_fg_probe,
.remove = __devexit_p(ab8500_fg_remove),
.suspend = ab8500_fg_suspend,
.resume = ab8500_fg_resume,
.driver = {
.name = "ab8500-fg",
.owner = THIS_MODULE,
},
};
static int __init ab8500_fg_init(void)
{
return platform_driver_register(&ab8500_fg_driver);
}
static void __exit ab8500_fg_exit(void)
{
platform_driver_unregister(&ab8500_fg_driver);
}
subsys_initcall_sync(ab8500_fg_init);
module_exit(ab8500_fg_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
MODULE_ALIAS("platform:ab8500-fg");
MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");