2019-05-20 19:08:01 +02:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
2012-09-21 23:24:55 +01:00
|
|
|
/* In-software asymmetric public-key crypto subtype
|
|
|
|
*
|
2020-06-15 08:50:08 +02:00
|
|
|
* See Documentation/crypto/asymmetric-keys.rst
|
2012-09-21 23:24:55 +01:00
|
|
|
*
|
|
|
|
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
|
|
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define pr_fmt(fmt) "PKEY: "fmt
|
2023-06-15 18:28:55 +08:00
|
|
|
#include <crypto/akcipher.h>
|
|
|
|
#include <crypto/public_key.h>
|
|
|
|
#include <crypto/sig.h>
|
|
|
|
#include <keys/asymmetric-subtype.h>
|
|
|
|
#include <linux/asn1.h>
|
|
|
|
#include <linux/err.h>
|
2012-09-21 23:24:55 +01:00
|
|
|
#include <linux/kernel.h>
|
2023-06-15 18:28:55 +08:00
|
|
|
#include <linux/module.h>
|
2012-09-21 23:24:55 +01:00
|
|
|
#include <linux/seq_file.h>
|
2023-06-15 18:28:55 +08:00
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/string.h>
|
2012-09-21 23:24:55 +01:00
|
|
|
|
2017-11-15 16:38:45 +00:00
|
|
|
MODULE_DESCRIPTION("In-software asymmetric public-key subtype");
|
|
|
|
MODULE_AUTHOR("Red Hat, Inc.");
|
2012-09-21 23:24:55 +01:00
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Provide a part of a description of the key for /proc/keys.
|
|
|
|
*/
|
|
|
|
static void public_key_describe(const struct key *asymmetric_key,
|
|
|
|
struct seq_file *m)
|
|
|
|
{
|
2015-10-21 14:04:48 +01:00
|
|
|
struct public_key *key = asymmetric_key->payload.data[asym_crypto];
|
2012-09-21 23:24:55 +01:00
|
|
|
|
|
|
|
if (key)
|
2016-03-03 21:49:27 +00:00
|
|
|
seq_printf(m, "%s.%s", key->id_type, key->pkey_algo);
|
2012-09-21 23:24:55 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Destroy a public key algorithm key.
|
|
|
|
*/
|
2016-04-06 16:13:33 +01:00
|
|
|
void public_key_free(struct public_key *key)
|
2012-09-21 23:24:55 +01:00
|
|
|
{
|
2016-04-06 16:13:33 +01:00
|
|
|
if (key) {
|
2023-07-17 12:55:09 +00:00
|
|
|
kfree_sensitive(key->key);
|
2019-04-11 18:51:17 +03:00
|
|
|
kfree(key->params);
|
2016-04-06 16:13:33 +01:00
|
|
|
kfree(key);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(public_key_free);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Destroy a public key algorithm key.
|
|
|
|
*/
|
|
|
|
static void public_key_destroy(void *payload0, void *payload3)
|
|
|
|
{
|
|
|
|
public_key_free(payload0);
|
|
|
|
public_key_signature_free(payload3);
|
2012-09-21 23:24:55 +01:00
|
|
|
}
|
|
|
|
|
2018-10-09 17:47:23 +01:00
|
|
|
/*
|
2022-02-07 21:24:48 -08:00
|
|
|
* Given a public_key, and an encoding and hash_algo to be used for signing
|
|
|
|
* and/or verification with that key, determine the name of the corresponding
|
|
|
|
* akcipher algorithm. Also check that encoding and hash_algo are allowed.
|
2018-10-09 17:47:23 +01:00
|
|
|
*/
|
2022-02-07 21:24:48 -08:00
|
|
|
static int
|
|
|
|
software_key_determine_akcipher(const struct public_key *pkey,
|
|
|
|
const char *encoding, const char *hash_algo,
|
2023-06-15 18:28:55 +08:00
|
|
|
char alg_name[CRYPTO_MAX_ALG_NAME], bool *sig,
|
|
|
|
enum kernel_pkey_operation op)
|
2018-10-09 17:47:23 +01:00
|
|
|
{
|
|
|
|
int n;
|
|
|
|
|
2023-06-15 18:28:55 +08:00
|
|
|
*sig = true;
|
|
|
|
|
2022-02-07 21:24:48 -08:00
|
|
|
if (!encoding)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (strcmp(pkey->pkey_algo, "rsa") == 0) {
|
|
|
|
/*
|
|
|
|
* RSA signatures usually use EMSA-PKCS1-1_5 [RFC3447 sec 8.2].
|
|
|
|
*/
|
|
|
|
if (strcmp(encoding, "pkcs1") == 0) {
|
2023-10-16 16:35:36 +08:00
|
|
|
*sig = op == kernel_pkey_sign ||
|
|
|
|
op == kernel_pkey_verify;
|
crypto: rsassa-pkcs1 - Migrate to sig_alg backend
A sig_alg backend has just been introduced with the intent of moving all
asymmetric sign/verify algorithms to it one by one.
Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate
rsassa-pkcs1.c which uses the new backend.
Consequently there are now two templates which build on the "rsa"
akcipher_alg:
* The existing "pkcs1pad" template, which is instantiated as an
akcipher_instance and retains the encrypt/decrypt operations of
RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2).
* The new "pkcs1" template, which is instantiated as a sig_instance
and contains the sign/verify operations of RSASSA-PKCS1-v1_5
(RFC 8017 sec 8.2).
In a separate step, rsa-pkcs1pad.c could optionally be renamed to
rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates
could be added for RSAES-OAEP and RSASSA-PSS.
Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform
without specifying a hash algorithm. That makes sense if the transform
is only used for encrypt/decrypt and continues to be supported. But for
sign/verify, such transforms previously did not insert the Full Hash
Prefix into the padding. The resulting message encoding was incompliant
with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical.
From here on in, it is no longer allowed to allocate a transform without
specifying a hash algorithm if the transform is used for sign/verify
operations. This simplifies the code because the insertion of the Full
Hash Prefix is no longer optional, so various "if (digest_info)" clauses
can be removed.
There has been a previous attempt to forbid transform allocation without
specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto:
rsa-pkcs1pad - Require hash to be present"). It had to be rolled back
with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be
optional [ver #2]"), presumably because it broke allocation of a
transform which was solely used for encrypt/decrypt, not sign/verify.
Avoid such breakage by allowing transform allocation for encrypt/decrypt
with and without specifying a hash algorithm (and simply ignoring the
hash algorithm in the former case).
So again, specifying a hash algorithm is now mandatory for sign/verify,
but optional and ignored for encrypt/decrypt.
The new sig_alg API uses kernel buffers instead of sglists, which
avoids the overhead of copying signature and digest from sglists back
into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit.
sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg
may be asynchronous. So await the result of the akcipher_alg, similar
to crypto_akcipher_sync_{en,de}crypt().
As part of the migration, rename "rsa_digest_info" to "hash_prefix" to
adhere to the spec language in RFC 9580. Otherwise keep the code
unmodified wherever possible to ease reviewing and bisecting. Leave
several simplification and hardening opportunities to separate commits.
rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers
which need to be freed by kfree_sensitive(), hence a DEFINE_FREE()
clause for kfree_sensitive() is introduced herein as a byproduct.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 16:30:16 +02:00
|
|
|
if (!*sig) {
|
|
|
|
/*
|
|
|
|
* For encrypt/decrypt, hash_algo is not used
|
|
|
|
* but allowed to be set for historic reasons.
|
|
|
|
*/
|
2022-02-07 21:24:48 -08:00
|
|
|
n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
|
|
|
|
"pkcs1pad(%s)",
|
|
|
|
pkey->pkey_algo);
|
2023-06-15 18:28:55 +08:00
|
|
|
} else {
|
crypto: rsassa-pkcs1 - Migrate to sig_alg backend
A sig_alg backend has just been introduced with the intent of moving all
asymmetric sign/verify algorithms to it one by one.
Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate
rsassa-pkcs1.c which uses the new backend.
Consequently there are now two templates which build on the "rsa"
akcipher_alg:
* The existing "pkcs1pad" template, which is instantiated as an
akcipher_instance and retains the encrypt/decrypt operations of
RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2).
* The new "pkcs1" template, which is instantiated as a sig_instance
and contains the sign/verify operations of RSASSA-PKCS1-v1_5
(RFC 8017 sec 8.2).
In a separate step, rsa-pkcs1pad.c could optionally be renamed to
rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates
could be added for RSAES-OAEP and RSASSA-PSS.
Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform
without specifying a hash algorithm. That makes sense if the transform
is only used for encrypt/decrypt and continues to be supported. But for
sign/verify, such transforms previously did not insert the Full Hash
Prefix into the padding. The resulting message encoding was incompliant
with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical.
From here on in, it is no longer allowed to allocate a transform without
specifying a hash algorithm if the transform is used for sign/verify
operations. This simplifies the code because the insertion of the Full
Hash Prefix is no longer optional, so various "if (digest_info)" clauses
can be removed.
There has been a previous attempt to forbid transform allocation without
specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto:
rsa-pkcs1pad - Require hash to be present"). It had to be rolled back
with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be
optional [ver #2]"), presumably because it broke allocation of a
transform which was solely used for encrypt/decrypt, not sign/verify.
Avoid such breakage by allowing transform allocation for encrypt/decrypt
with and without specifying a hash algorithm (and simply ignoring the
hash algorithm in the former case).
So again, specifying a hash algorithm is now mandatory for sign/verify,
but optional and ignored for encrypt/decrypt.
The new sig_alg API uses kernel buffers instead of sglists, which
avoids the overhead of copying signature and digest from sglists back
into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit.
sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg
may be asynchronous. So await the result of the akcipher_alg, similar
to crypto_akcipher_sync_{en,de}crypt().
As part of the migration, rename "rsa_digest_info" to "hash_prefix" to
adhere to the spec language in RFC 9580. Otherwise keep the code
unmodified wherever possible to ease reviewing and bisecting. Leave
several simplification and hardening opportunities to separate commits.
rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers
which need to be freed by kfree_sensitive(), hence a DEFINE_FREE()
clause for kfree_sensitive() is introduced herein as a byproduct.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 16:30:16 +02:00
|
|
|
if (!hash_algo)
|
crypto: rsassa-pkcs1 - Reinstate support for legacy protocols
Commit 1e562deacecc ("crypto: rsassa-pkcs1 - Migrate to sig_alg backend")
enforced that rsassa-pkcs1 sign/verify operations specify a hash
algorithm. That is necessary because per RFC 8017 sec 8.2, a hash
algorithm identifier must be prepended to the hash before generating or
verifying the signature ("Full Hash Prefix").
However the commit went too far in that it changed user space behavior:
KEYCTL_PKEY_QUERY system calls now return -EINVAL unless they specify a
hash algorithm. Intel Wireless Daemon (iwd) is one application issuing
such system calls (for EAP-TLS).
Closer analysis of the Embedded Linux Library (ell) used by iwd reveals
that the problem runs even deeper: When iwd uses TLS 1.1 or earlier, it
not only queries for keys, but performs sign/verify operations without
specifying a hash algorithm. These legacy TLS versions concatenate an
MD5 to a SHA-1 hash and omit the Full Hash Prefix:
https://git.kernel.org/pub/scm/libs/ell/ell.git/tree/ell/tls-suites.c#n97
TLS 1.1 was deprecated in 2021 by RFC 8996, but removal of support was
inadvertent in this case. It probably should be coordinated with iwd
maintainers first.
So reinstate support for such legacy protocols by defaulting to hash
algorithm "none" which uses an empty Full Hash Prefix.
If it is later on decided to remove TLS 1.1 support but still allow
KEYCTL_PKEY_QUERY without a hash algorithm, that can be achieved by
reverting the present commit and replacing it with the following patch:
https://lore.kernel.org/r/ZxalYZwH5UiGX5uj@wunner.de/
It's worth noting that Python's cryptography library gained support for
such legacy use cases very recently, so they do seem to still be a thing.
The Python developers identified IKE version 1 as another protocol
omitting the Full Hash Prefix:
https://github.com/pyca/cryptography/issues/10226
https://github.com/pyca/cryptography/issues/5495
The author of those issues, Zoltan Kelemen, spent considerable effort
searching for test vectors but only found one in a 2019 blog post by
Kevin Jones. Add it to testmgr.h to verify correctness of this feature.
Examination of wpa_supplicant as well as various IKE daemons (libreswan,
strongswan, isakmpd, raccoon) has determined that none of them seems to
use the kernel's Key Retention Service, so iwd is the only affected user
space application known so far.
Fixes: 1e562deacecc ("crypto: rsassa-pkcs1 - Migrate to sig_alg backend")
Reported-by: Klara Modin <klarasmodin@gmail.com>
Tested-by: Klara Modin <klarasmodin@gmail.com>
Closes: https://lore.kernel.org/r/2ed09a22-86c0-4cf0-8bda-ef804ccb3413@gmail.com/
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-10-29 11:24:57 +01:00
|
|
|
hash_algo = "none";
|
2022-02-07 21:24:48 -08:00
|
|
|
n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
|
crypto: rsassa-pkcs1 - Migrate to sig_alg backend
A sig_alg backend has just been introduced with the intent of moving all
asymmetric sign/verify algorithms to it one by one.
Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate
rsassa-pkcs1.c which uses the new backend.
Consequently there are now two templates which build on the "rsa"
akcipher_alg:
* The existing "pkcs1pad" template, which is instantiated as an
akcipher_instance and retains the encrypt/decrypt operations of
RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2).
* The new "pkcs1" template, which is instantiated as a sig_instance
and contains the sign/verify operations of RSASSA-PKCS1-v1_5
(RFC 8017 sec 8.2).
In a separate step, rsa-pkcs1pad.c could optionally be renamed to
rsaes-pkcs1.c for clarity. Additional "oaep" and "pss" templates
could be added for RSAES-OAEP and RSASSA-PSS.
Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform
without specifying a hash algorithm. That makes sense if the transform
is only used for encrypt/decrypt and continues to be supported. But for
sign/verify, such transforms previously did not insert the Full Hash
Prefix into the padding. The resulting message encoding was incompliant
with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical.
From here on in, it is no longer allowed to allocate a transform without
specifying a hash algorithm if the transform is used for sign/verify
operations. This simplifies the code because the insertion of the Full
Hash Prefix is no longer optional, so various "if (digest_info)" clauses
can be removed.
There has been a previous attempt to forbid transform allocation without
specifying a hash algorithm, namely by commit c0d20d22e0ad ("crypto:
rsa-pkcs1pad - Require hash to be present"). It had to be rolled back
with commit b3a8c8a5ebb5 ("crypto: rsa-pkcs1pad: Allow hash to be
optional [ver #2]"), presumably because it broke allocation of a
transform which was solely used for encrypt/decrypt, not sign/verify.
Avoid such breakage by allowing transform allocation for encrypt/decrypt
with and without specifying a hash algorithm (and simply ignoring the
hash algorithm in the former case).
So again, specifying a hash algorithm is now mandatory for sign/verify,
but optional and ignored for encrypt/decrypt.
The new sig_alg API uses kernel buffers instead of sglists, which
avoids the overhead of copying signature and digest from sglists back
into kernel buffers. rsassa-pkcs1.c is thus simplified quite a bit.
sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg
may be asynchronous. So await the result of the akcipher_alg, similar
to crypto_akcipher_sync_{en,de}crypt().
As part of the migration, rename "rsa_digest_info" to "hash_prefix" to
adhere to the spec language in RFC 9580. Otherwise keep the code
unmodified wherever possible to ease reviewing and bisecting. Leave
several simplification and hardening opportunities to separate commits.
rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers
which need to be freed by kfree_sensitive(), hence a DEFINE_FREE()
clause for kfree_sensitive() is introduced herein as a byproduct.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-09-10 16:30:16 +02:00
|
|
|
"pkcs1(%s,%s)",
|
2022-02-07 21:24:48 -08:00
|
|
|
pkey->pkey_algo, hash_algo);
|
2023-06-15 18:28:55 +08:00
|
|
|
}
|
2022-02-07 21:24:48 -08:00
|
|
|
return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0;
|
|
|
|
}
|
|
|
|
if (strcmp(encoding, "raw") != 0)
|
|
|
|
return -EINVAL;
|
|
|
|
/*
|
|
|
|
* Raw RSA cannot differentiate between different hash
|
|
|
|
* algorithms.
|
|
|
|
*/
|
|
|
|
if (hash_algo)
|
|
|
|
return -EINVAL;
|
2023-06-15 18:28:55 +08:00
|
|
|
*sig = false;
|
2022-02-07 21:24:48 -08:00
|
|
|
} else if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) {
|
2024-09-10 16:30:28 +02:00
|
|
|
if (strcmp(encoding, "x962") != 0 &&
|
|
|
|
strcmp(encoding, "p1363") != 0)
|
2022-02-07 21:24:48 -08:00
|
|
|
return -EINVAL;
|
|
|
|
/*
|
|
|
|
* ECDSA signatures are taken over a raw hash, so they don't
|
|
|
|
* differentiate between different hash algorithms. That means
|
|
|
|
* that the verifier should hard-code a specific hash algorithm.
|
|
|
|
* Unfortunately, in practice ECDSA is used with multiple SHAs,
|
|
|
|
* so we have to allow all of them and not just one.
|
2018-10-09 17:47:23 +01:00
|
|
|
*/
|
|
|
|
if (!hash_algo)
|
2022-02-07 21:24:48 -08:00
|
|
|
return -EINVAL;
|
2024-03-13 16:32:27 -07:00
|
|
|
if (strcmp(hash_algo, "sha1") != 0 &&
|
|
|
|
strcmp(hash_algo, "sha224") != 0 &&
|
2022-02-07 21:24:48 -08:00
|
|
|
strcmp(hash_algo, "sha256") != 0 &&
|
|
|
|
strcmp(hash_algo, "sha384") != 0 &&
|
2023-10-22 19:22:06 +01:00
|
|
|
strcmp(hash_algo, "sha512") != 0 &&
|
|
|
|
strcmp(hash_algo, "sha3-256") != 0 &&
|
|
|
|
strcmp(hash_algo, "sha3-384") != 0 &&
|
|
|
|
strcmp(hash_algo, "sha3-512") != 0)
|
2022-02-07 21:24:48 -08:00
|
|
|
return -EINVAL;
|
2024-09-10 16:30:25 +02:00
|
|
|
n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
|
|
|
|
encoding, pkey->pkey_algo);
|
|
|
|
return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0;
|
2022-02-07 21:24:48 -08:00
|
|
|
} else if (strcmp(pkey->pkey_algo, "ecrdsa") == 0) {
|
|
|
|
if (strcmp(encoding, "raw") != 0)
|
|
|
|
return -EINVAL;
|
|
|
|
if (!hash_algo)
|
|
|
|
return -EINVAL;
|
|
|
|
if (strcmp(hash_algo, "streebog256") != 0 &&
|
|
|
|
strcmp(hash_algo, "streebog512") != 0)
|
|
|
|
return -EINVAL;
|
|
|
|
} else {
|
|
|
|
/* Unknown public key algorithm */
|
|
|
|
return -ENOPKG;
|
2018-10-09 17:47:23 +01:00
|
|
|
}
|
2022-02-07 21:24:48 -08:00
|
|
|
if (strscpy(alg_name, pkey->pkey_algo, CRYPTO_MAX_ALG_NAME) < 0)
|
|
|
|
return -EINVAL;
|
|
|
|
return 0;
|
2018-10-09 17:47:23 +01:00
|
|
|
}
|
|
|
|
|
2019-04-11 18:51:17 +03:00
|
|
|
static u8 *pkey_pack_u32(u8 *dst, u32 val)
|
|
|
|
{
|
|
|
|
memcpy(dst, &val, sizeof(val));
|
|
|
|
return dst + sizeof(val);
|
|
|
|
}
|
|
|
|
|
2018-10-09 17:47:23 +01:00
|
|
|
/*
|
|
|
|
* Query information about a key.
|
|
|
|
*/
|
|
|
|
static int software_key_query(const struct kernel_pkey_params *params,
|
|
|
|
struct kernel_pkey_query *info)
|
|
|
|
{
|
|
|
|
struct crypto_akcipher *tfm;
|
|
|
|
struct public_key *pkey = params->key->payload.data[asym_crypto];
|
|
|
|
char alg_name[CRYPTO_MAX_ALG_NAME];
|
2023-06-15 18:28:55 +08:00
|
|
|
struct crypto_sig *sig;
|
2019-04-11 18:51:17 +03:00
|
|
|
u8 *key, *ptr;
|
2018-10-09 17:47:23 +01:00
|
|
|
int ret, len;
|
2023-06-15 18:28:55 +08:00
|
|
|
bool issig;
|
2018-10-09 17:47:23 +01:00
|
|
|
|
2022-02-07 21:24:48 -08:00
|
|
|
ret = software_key_determine_akcipher(pkey, params->encoding,
|
2023-06-15 18:28:55 +08:00
|
|
|
params->hash_algo, alg_name,
|
|
|
|
&issig, kernel_pkey_sign);
|
2018-10-09 17:47:23 +01:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
2019-04-11 18:51:17 +03:00
|
|
|
key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!key)
|
2023-06-15 18:28:55 +08:00
|
|
|
return -ENOMEM;
|
|
|
|
|
2019-04-11 18:51:17 +03:00
|
|
|
memcpy(key, pkey->key, pkey->keylen);
|
|
|
|
ptr = key + pkey->keylen;
|
|
|
|
ptr = pkey_pack_u32(ptr, pkey->algo);
|
|
|
|
ptr = pkey_pack_u32(ptr, pkey->paramlen);
|
|
|
|
memcpy(ptr, pkey->params, pkey->paramlen);
|
|
|
|
|
2023-06-15 18:28:55 +08:00
|
|
|
if (issig) {
|
|
|
|
sig = crypto_alloc_sig(alg_name, 0, 0);
|
2023-07-03 17:18:08 +03:00
|
|
|
if (IS_ERR(sig)) {
|
|
|
|
ret = PTR_ERR(sig);
|
2023-06-15 18:28:55 +08:00
|
|
|
goto error_free_key;
|
2023-07-03 17:18:08 +03:00
|
|
|
}
|
2023-06-15 18:28:55 +08:00
|
|
|
|
|
|
|
if (pkey->key_is_private)
|
|
|
|
ret = crypto_sig_set_privkey(sig, key, pkey->keylen);
|
|
|
|
else
|
|
|
|
ret = crypto_sig_set_pubkey(sig, key, pkey->keylen);
|
|
|
|
if (ret < 0)
|
|
|
|
goto error_free_tfm;
|
|
|
|
|
2024-09-10 16:30:26 +02:00
|
|
|
len = crypto_sig_keysize(sig);
|
2024-09-10 16:30:27 +02:00
|
|
|
info->max_sig_size = crypto_sig_maxsize(sig);
|
|
|
|
info->max_data_size = crypto_sig_digestsize(sig);
|
2023-06-15 18:28:55 +08:00
|
|
|
|
|
|
|
info->supported_ops = KEYCTL_SUPPORTS_VERIFY;
|
|
|
|
if (pkey->key_is_private)
|
|
|
|
info->supported_ops |= KEYCTL_SUPPORTS_SIGN;
|
|
|
|
|
|
|
|
if (strcmp(params->encoding, "pkcs1") == 0) {
|
|
|
|
info->supported_ops |= KEYCTL_SUPPORTS_ENCRYPT;
|
|
|
|
if (pkey->key_is_private)
|
|
|
|
info->supported_ops |= KEYCTL_SUPPORTS_DECRYPT;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
tfm = crypto_alloc_akcipher(alg_name, 0, 0);
|
2023-07-03 17:18:08 +03:00
|
|
|
if (IS_ERR(tfm)) {
|
|
|
|
ret = PTR_ERR(tfm);
|
2023-06-15 18:28:55 +08:00
|
|
|
goto error_free_key;
|
2023-07-03 17:18:08 +03:00
|
|
|
}
|
2023-06-15 18:28:55 +08:00
|
|
|
|
|
|
|
if (pkey->key_is_private)
|
|
|
|
ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
|
|
|
|
else
|
|
|
|
ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
|
|
|
|
if (ret < 0)
|
|
|
|
goto error_free_tfm;
|
|
|
|
|
|
|
|
len = crypto_akcipher_maxsize(tfm);
|
2024-09-10 16:30:27 +02:00
|
|
|
info->max_sig_size = len;
|
|
|
|
info->max_data_size = len;
|
2023-06-15 18:28:55 +08:00
|
|
|
|
|
|
|
info->supported_ops = KEYCTL_SUPPORTS_ENCRYPT;
|
|
|
|
if (pkey->key_is_private)
|
|
|
|
info->supported_ops |= KEYCTL_SUPPORTS_DECRYPT;
|
|
|
|
}
|
2018-10-09 17:47:23 +01:00
|
|
|
|
|
|
|
info->key_size = len * 8;
|
|
|
|
info->max_enc_size = len;
|
|
|
|
info->max_dec_size = len;
|
2023-06-15 18:28:55 +08:00
|
|
|
|
2018-10-09 17:47:23 +01:00
|
|
|
ret = 0;
|
|
|
|
|
2023-06-15 18:28:55 +08:00
|
|
|
error_free_tfm:
|
|
|
|
if (issig)
|
|
|
|
crypto_free_sig(sig);
|
|
|
|
else
|
|
|
|
crypto_free_akcipher(tfm);
|
2019-04-11 18:51:17 +03:00
|
|
|
error_free_key:
|
2023-07-17 12:55:09 +00:00
|
|
|
kfree_sensitive(key);
|
2018-10-09 17:47:23 +01:00
|
|
|
pr_devel("<==%s() = %d\n", __func__, ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2018-10-09 17:47:38 +01:00
|
|
|
/*
|
|
|
|
* Do encryption, decryption and signing ops.
|
|
|
|
*/
|
|
|
|
static int software_key_eds_op(struct kernel_pkey_params *params,
|
|
|
|
const void *in, void *out)
|
|
|
|
{
|
|
|
|
const struct public_key *pkey = params->key->payload.data[asym_crypto];
|
|
|
|
char alg_name[CRYPTO_MAX_ALG_NAME];
|
2023-06-15 18:28:55 +08:00
|
|
|
struct crypto_akcipher *tfm;
|
|
|
|
struct crypto_sig *sig;
|
2019-04-11 18:51:17 +03:00
|
|
|
char *key, *ptr;
|
2023-06-15 18:28:55 +08:00
|
|
|
bool issig;
|
|
|
|
int ksz;
|
2018-10-09 17:47:38 +01:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
pr_devel("==>%s()\n", __func__);
|
|
|
|
|
2022-02-07 21:24:48 -08:00
|
|
|
ret = software_key_determine_akcipher(pkey, params->encoding,
|
2023-06-15 18:28:55 +08:00
|
|
|
params->hash_algo, alg_name,
|
|
|
|
&issig, params->op);
|
2018-10-09 17:47:38 +01:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
2019-04-11 18:51:17 +03:00
|
|
|
key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!key)
|
2023-06-15 18:28:55 +08:00
|
|
|
return -ENOMEM;
|
2019-04-11 18:51:17 +03:00
|
|
|
|
|
|
|
memcpy(key, pkey->key, pkey->keylen);
|
|
|
|
ptr = key + pkey->keylen;
|
|
|
|
ptr = pkey_pack_u32(ptr, pkey->algo);
|
|
|
|
ptr = pkey_pack_u32(ptr, pkey->paramlen);
|
|
|
|
memcpy(ptr, pkey->params, pkey->paramlen);
|
|
|
|
|
2023-06-15 18:28:55 +08:00
|
|
|
if (issig) {
|
|
|
|
sig = crypto_alloc_sig(alg_name, 0, 0);
|
2023-07-03 17:18:08 +03:00
|
|
|
if (IS_ERR(sig)) {
|
|
|
|
ret = PTR_ERR(sig);
|
2023-06-15 18:28:55 +08:00
|
|
|
goto error_free_key;
|
2023-07-03 17:18:08 +03:00
|
|
|
}
|
2023-06-15 18:28:55 +08:00
|
|
|
|
|
|
|
if (pkey->key_is_private)
|
|
|
|
ret = crypto_sig_set_privkey(sig, key, pkey->keylen);
|
|
|
|
else
|
|
|
|
ret = crypto_sig_set_pubkey(sig, key, pkey->keylen);
|
|
|
|
if (ret)
|
|
|
|
goto error_free_tfm;
|
|
|
|
|
2024-09-10 16:30:26 +02:00
|
|
|
ksz = crypto_sig_keysize(sig);
|
2023-06-15 18:28:55 +08:00
|
|
|
} else {
|
|
|
|
tfm = crypto_alloc_akcipher(alg_name, 0, 0);
|
2023-07-03 17:18:08 +03:00
|
|
|
if (IS_ERR(tfm)) {
|
|
|
|
ret = PTR_ERR(tfm);
|
2023-06-15 18:28:55 +08:00
|
|
|
goto error_free_key;
|
2023-07-03 17:18:08 +03:00
|
|
|
}
|
2023-06-15 18:28:55 +08:00
|
|
|
|
|
|
|
if (pkey->key_is_private)
|
|
|
|
ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
|
|
|
|
else
|
|
|
|
ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
|
|
|
|
if (ret)
|
|
|
|
goto error_free_tfm;
|
|
|
|
|
|
|
|
ksz = crypto_akcipher_maxsize(tfm);
|
|
|
|
}
|
2018-10-09 17:47:38 +01:00
|
|
|
|
2023-06-15 18:28:55 +08:00
|
|
|
ret = -EINVAL;
|
2018-10-09 17:47:38 +01:00
|
|
|
|
|
|
|
/* Perform the encryption calculation. */
|
|
|
|
switch (params->op) {
|
|
|
|
case kernel_pkey_encrypt:
|
2023-06-15 18:28:55 +08:00
|
|
|
if (issig)
|
|
|
|
break;
|
|
|
|
ret = crypto_akcipher_sync_encrypt(tfm, in, params->in_len,
|
|
|
|
out, params->out_len);
|
2018-10-09 17:47:38 +01:00
|
|
|
break;
|
|
|
|
case kernel_pkey_decrypt:
|
2023-06-15 18:28:55 +08:00
|
|
|
if (issig)
|
|
|
|
break;
|
|
|
|
ret = crypto_akcipher_sync_decrypt(tfm, in, params->in_len,
|
|
|
|
out, params->out_len);
|
2018-10-09 17:47:38 +01:00
|
|
|
break;
|
|
|
|
case kernel_pkey_sign:
|
2023-06-15 18:28:55 +08:00
|
|
|
if (!issig)
|
|
|
|
break;
|
|
|
|
ret = crypto_sig_sign(sig, in, params->in_len,
|
|
|
|
out, params->out_len);
|
2018-10-09 17:47:38 +01:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ret == 0)
|
2023-06-15 18:28:55 +08:00
|
|
|
ret = ksz;
|
2018-10-09 17:47:38 +01:00
|
|
|
|
2023-06-15 18:28:55 +08:00
|
|
|
error_free_tfm:
|
|
|
|
if (issig)
|
|
|
|
crypto_free_sig(sig);
|
|
|
|
else
|
|
|
|
crypto_free_akcipher(tfm);
|
2019-04-11 18:51:17 +03:00
|
|
|
error_free_key:
|
2023-07-17 12:55:09 +00:00
|
|
|
kfree_sensitive(key);
|
2018-10-09 17:47:38 +01:00
|
|
|
pr_devel("<==%s() = %d\n", __func__, ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2012-09-21 23:24:55 +01:00
|
|
|
/*
|
|
|
|
* Verify a signature using a public key.
|
|
|
|
*/
|
2016-02-02 10:08:53 -08:00
|
|
|
int public_key_verify_signature(const struct public_key *pkey,
|
2013-08-30 16:15:30 +01:00
|
|
|
const struct public_key_signature *sig)
|
2012-09-21 23:24:55 +01:00
|
|
|
{
|
2018-10-09 17:47:23 +01:00
|
|
|
char alg_name[CRYPTO_MAX_ALG_NAME];
|
2023-06-15 18:28:55 +08:00
|
|
|
struct crypto_sig *tfm;
|
2019-04-11 18:51:17 +03:00
|
|
|
char *key, *ptr;
|
2023-06-15 18:28:55 +08:00
|
|
|
bool issig;
|
2017-12-08 15:13:29 +00:00
|
|
|
int ret;
|
2016-03-03 21:49:27 +00:00
|
|
|
|
|
|
|
pr_devel("==>%s()\n", __func__);
|
|
|
|
|
2016-02-02 10:08:53 -08:00
|
|
|
BUG_ON(!pkey);
|
2013-08-30 16:15:30 +01:00
|
|
|
BUG_ON(!sig);
|
2016-02-02 10:08:53 -08:00
|
|
|
BUG_ON(!sig->s);
|
2012-09-21 23:24:55 +01:00
|
|
|
|
2022-02-07 21:24:47 -08:00
|
|
|
/*
|
|
|
|
* If the signature specifies a public key algorithm, it *must* match
|
|
|
|
* the key's actual public key algorithm.
|
|
|
|
*
|
|
|
|
* Small exception: ECDSA signatures don't specify the curve, but ECDSA
|
|
|
|
* keys do. So the strings can mismatch slightly in that case:
|
|
|
|
* "ecdsa-nist-*" for the key, but "ecdsa" for the signature.
|
|
|
|
*/
|
|
|
|
if (sig->pkey_algo) {
|
|
|
|
if (strcmp(pkey->pkey_algo, sig->pkey_algo) != 0 &&
|
|
|
|
(strncmp(pkey->pkey_algo, "ecdsa-", 6) != 0 ||
|
|
|
|
strcmp(sig->pkey_algo, "ecdsa") != 0))
|
|
|
|
return -EKEYREJECTED;
|
|
|
|
}
|
|
|
|
|
2022-02-07 21:24:48 -08:00
|
|
|
ret = software_key_determine_akcipher(pkey, sig->encoding,
|
2023-06-15 18:28:55 +08:00
|
|
|
sig->hash_algo, alg_name,
|
|
|
|
&issig, kernel_pkey_verify);
|
2018-10-09 17:47:23 +01:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2016-03-03 21:49:27 +00:00
|
|
|
|
2023-06-15 18:28:55 +08:00
|
|
|
tfm = crypto_alloc_sig(alg_name, 0, 0);
|
2016-03-03 21:49:27 +00:00
|
|
|
if (IS_ERR(tfm))
|
|
|
|
return PTR_ERR(tfm);
|
|
|
|
|
2019-04-11 18:51:17 +03:00
|
|
|
key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
|
|
|
|
GFP_KERNEL);
|
2023-07-03 17:18:08 +03:00
|
|
|
if (!key) {
|
|
|
|
ret = -ENOMEM;
|
2023-06-15 18:28:55 +08:00
|
|
|
goto error_free_tfm;
|
2023-07-03 17:18:08 +03:00
|
|
|
}
|
2019-04-11 18:51:17 +03:00
|
|
|
|
|
|
|
memcpy(key, pkey->key, pkey->keylen);
|
|
|
|
ptr = key + pkey->keylen;
|
|
|
|
ptr = pkey_pack_u32(ptr, pkey->algo);
|
|
|
|
ptr = pkey_pack_u32(ptr, pkey->paramlen);
|
|
|
|
memcpy(ptr, pkey->params, pkey->paramlen);
|
|
|
|
|
2018-10-09 17:47:31 +01:00
|
|
|
if (pkey->key_is_private)
|
2023-06-15 18:28:55 +08:00
|
|
|
ret = crypto_sig_set_privkey(tfm, key, pkey->keylen);
|
2018-10-09 17:47:31 +01:00
|
|
|
else
|
2023-06-15 18:28:55 +08:00
|
|
|
ret = crypto_sig_set_pubkey(tfm, key, pkey->keylen);
|
2016-03-03 21:49:27 +00:00
|
|
|
if (ret)
|
2019-04-11 18:51:17 +03:00
|
|
|
goto error_free_key;
|
2016-03-03 21:49:27 +00:00
|
|
|
|
2023-06-15 18:28:55 +08:00
|
|
|
ret = crypto_sig_verify(tfm, sig->s, sig->s_size,
|
|
|
|
sig->digest, sig->digest_size);
|
2012-09-21 23:24:55 +01:00
|
|
|
|
2019-04-11 18:51:17 +03:00
|
|
|
error_free_key:
|
2023-07-17 12:55:09 +00:00
|
|
|
kfree_sensitive(key);
|
2016-03-03 21:49:27 +00:00
|
|
|
error_free_tfm:
|
2023-06-15 18:28:55 +08:00
|
|
|
crypto_free_sig(tfm);
|
2016-03-03 21:49:27 +00:00
|
|
|
pr_devel("<==%s() = %d\n", __func__, ret);
|
2017-12-08 15:13:29 +00:00
|
|
|
if (WARN_ON_ONCE(ret > 0))
|
|
|
|
ret = -EINVAL;
|
2016-03-03 21:49:27 +00:00
|
|
|
return ret;
|
2013-08-30 16:15:30 +01:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(public_key_verify_signature);
|
|
|
|
|
|
|
|
static int public_key_verify_signature_2(const struct key *key,
|
|
|
|
const struct public_key_signature *sig)
|
|
|
|
{
|
2015-10-21 14:04:48 +01:00
|
|
|
const struct public_key *pk = key->payload.data[asym_crypto];
|
2013-08-30 16:15:30 +01:00
|
|
|
return public_key_verify_signature(pk, sig);
|
2012-09-21 23:24:55 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Public key algorithm asymmetric key subtype
|
|
|
|
*/
|
|
|
|
struct asymmetric_key_subtype public_key_subtype = {
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
.name = "public_key",
|
2014-09-02 13:52:10 +01:00
|
|
|
.name_len = sizeof("public_key") - 1,
|
2012-09-21 23:24:55 +01:00
|
|
|
.describe = public_key_describe,
|
|
|
|
.destroy = public_key_destroy,
|
2018-10-09 17:47:23 +01:00
|
|
|
.query = software_key_query,
|
2018-10-09 17:47:38 +01:00
|
|
|
.eds_op = software_key_eds_op,
|
2013-08-30 16:15:30 +01:00
|
|
|
.verify_signature = public_key_verify_signature_2,
|
2012-09-21 23:24:55 +01:00
|
|
|
};
|
|
|
|
EXPORT_SYMBOL_GPL(public_key_subtype);
|