linux-stable/kernel/cfi.c

102 lines
2.2 KiB
C
Raw Permalink Normal View History

add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* Clang Control Flow Integrity (CFI) error handling.
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
*
* Copyright (C) 2022 Google LLC
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
*/
#include <linux/cfi.h>
enum bug_trap_type report_cfi_failure(struct pt_regs *regs, unsigned long addr,
unsigned long *target, u32 type)
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
{
if (target)
pr_err("CFI failure at %pS (target: %pS; expected type: 0x%08x)\n",
(void *)addr, (void *)*target, type);
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
else
pr_err("CFI failure at %pS (no target information)\n",
(void *)addr);
if (IS_ENABLED(CONFIG_CFI_PERMISSIVE)) {
__warn(NULL, 0, (void *)addr, 0, regs, NULL);
return BUG_TRAP_TYPE_WARN;
}
return BUG_TRAP_TYPE_BUG;
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
}
#ifdef CONFIG_ARCH_USES_CFI_TRAPS
static inline unsigned long trap_address(s32 *p)
{
return (unsigned long)((long)p + (long)*p);
}
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
static bool is_trap(unsigned long addr, s32 *start, s32 *end)
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
{
s32 *p;
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
for (p = start; p < end; ++p) {
if (trap_address(p) == addr)
return true;
}
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
return false;
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
}
#ifdef CONFIG_MODULES
/* Populates `kcfi_trap(_end)?` fields in `struct module`. */
void module_cfi_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs,
struct module *mod)
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
{
char *secstrings;
unsigned int i;
mod->kcfi_traps = NULL;
mod->kcfi_traps_end = NULL;
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
secstrings = (char *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
for (i = 1; i < hdr->e_shnum; i++) {
if (strcmp(secstrings + sechdrs[i].sh_name, "__kcfi_traps"))
continue;
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
mod->kcfi_traps = (s32 *)sechdrs[i].sh_addr;
mod->kcfi_traps_end = (s32 *)(sechdrs[i].sh_addr + sechdrs[i].sh_size);
break;
}
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
}
static bool is_module_cfi_trap(unsigned long addr)
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
{
struct module *mod;
bool found = false;
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
rcu_read_lock_sched_notrace();
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
mod = __module_address(addr);
if (mod)
found = is_trap(addr, mod->kcfi_traps, mod->kcfi_traps_end);
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
rcu_read_unlock_sched_notrace();
return found;
}
#else /* CONFIG_MODULES */
static inline bool is_module_cfi_trap(unsigned long addr)
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
{
return false;
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
}
#endif /* CONFIG_MODULES */
extern s32 __start___kcfi_traps[];
extern s32 __stop___kcfi_traps[];
bool is_cfi_trap(unsigned long addr)
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
{
if (is_trap(addr, __start___kcfi_traps, __stop___kcfi_traps))
return true;
return is_module_cfi_trap(addr);
add support for Clang CFI This change adds support for Clang’s forward-edge Control Flow Integrity (CFI) checking. With CONFIG_CFI_CLANG, the compiler injects a runtime check before each indirect function call to ensure the target is a valid function with the correct static type. This restricts possible call targets and makes it more difficult for an attacker to exploit bugs that allow the modification of stored function pointers. For more details, see: https://clang.llvm.org/docs/ControlFlowIntegrity.html Clang requires CONFIG_LTO_CLANG to be enabled with CFI to gain visibility to possible call targets. Kernel modules are supported with Clang’s cross-DSO CFI mode, which allows checking between independently compiled components. With CFI enabled, the compiler injects a __cfi_check() function into the kernel and each module for validating local call targets. For cross-module calls that cannot be validated locally, the compiler calls the global __cfi_slowpath_diag() function, which determines the target module and calls the correct __cfi_check() function. This patch includes a slowpath implementation that uses __module_address() to resolve call targets, and with CONFIG_CFI_CLANG_SHADOW enabled, a shadow map that speeds up module look-ups by ~3x. Clang implements indirect call checking using jump tables and offers two methods of generating them. With canonical jump tables, the compiler renames each address-taken function to <function>.cfi and points the original symbol to a jump table entry, which passes __cfi_check() validation. This isn’t compatible with stand-alone assembly code, which the compiler doesn’t instrument, and would result in indirect calls to assembly code to fail. Therefore, we default to using non-canonical jump tables instead, where the compiler generates a local jump table entry <function>.cfi_jt for each address-taken function, and replaces all references to the function with the address of the jump table entry. Note that because non-canonical jump table addresses are local to each component, they break cross-module function address equality. Specifically, the address of a global function will be different in each module, as it's replaced with the address of a local jump table entry. If this address is passed to a different module, it won’t match the address of the same function taken there. This may break code that relies on comparing addresses passed from other components. CFI checking can be disabled in a function with the __nocfi attribute. Additionally, CFI can be disabled for an entire compilation unit by filtering out CC_FLAGS_CFI. By default, CFI failures result in a kernel panic to stop a potential exploit. CONFIG_CFI_PERMISSIVE enables a permissive mode, where the kernel prints out a rate-limited warning instead, and allows execution to continue. This option is helpful for locating type mismatches, but should only be enabled during development. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210408182843.1754385-2-samitolvanen@google.com
2021-04-08 18:28:26 +00:00
}
#endif /* CONFIG_ARCH_USES_CFI_TRAPS */