linux-stable/fs/bcachefs/super-io.c

1160 lines
28 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_update_interior.h"
#include "buckets.h"
#include "checksum.h"
#include "disk_groups.h"
#include "ec.h"
#include "error.h"
#include "io.h"
#include "journal.h"
#include "journal_seq_blacklist.h"
#include "replicas.h"
#include "quota.h"
#include "super-io.h"
#include "super.h"
#include "vstructs.h"
#include <linux/backing-dev.h>
#include <linux/sort.h>
static const struct blk_holder_ops bch2_sb_handle_bdev_ops = {
};
const char * const bch2_sb_fields[] = {
#define x(name, nr) #name,
BCH_SB_FIELDS()
#undef x
NULL
};
static const char *bch2_sb_field_validate(struct bch_sb *,
struct bch_sb_field *);
struct bch_sb_field *bch2_sb_field_get(struct bch_sb *sb,
enum bch_sb_field_type type)
{
struct bch_sb_field *f;
/* XXX: need locking around superblock to access optional fields */
vstruct_for_each(sb, f)
if (le32_to_cpu(f->type) == type)
return f;
return NULL;
}
static struct bch_sb_field *__bch2_sb_field_resize(struct bch_sb_handle *sb,
struct bch_sb_field *f,
unsigned u64s)
{
unsigned old_u64s = f ? le32_to_cpu(f->u64s) : 0;
unsigned sb_u64s = le32_to_cpu(sb->sb->u64s) + u64s - old_u64s;
BUG_ON(get_order(__vstruct_bytes(struct bch_sb, sb_u64s)) >
sb->page_order);
if (!f && !u64s) {
/* nothing to do: */
} else if (!f) {
f = vstruct_last(sb->sb);
memset(f, 0, sizeof(u64) * u64s);
f->u64s = cpu_to_le32(u64s);
f->type = 0;
} else {
void *src, *dst;
src = vstruct_end(f);
if (u64s) {
f->u64s = cpu_to_le32(u64s);
dst = vstruct_end(f);
} else {
dst = f;
}
memmove(dst, src, vstruct_end(sb->sb) - src);
if (dst > src)
memset(src, 0, dst - src);
}
sb->sb->u64s = cpu_to_le32(sb_u64s);
return u64s ? f : NULL;
}
void bch2_sb_field_delete(struct bch_sb_handle *sb,
enum bch_sb_field_type type)
{
struct bch_sb_field *f = bch2_sb_field_get(sb->sb, type);
if (f)
__bch2_sb_field_resize(sb, f, 0);
}
/* Superblock realloc/free: */
void bch2_free_super(struct bch_sb_handle *sb)
{
if (sb->bio)
kfree(sb->bio);
if (!IS_ERR_OR_NULL(sb->bdev))
blkdev_put(sb->bdev, sb->holder);
kfree(sb->holder);
free_pages((unsigned long) sb->sb, sb->page_order);
memset(sb, 0, sizeof(*sb));
}
int bch2_sb_realloc(struct bch_sb_handle *sb, unsigned u64s)
{
size_t new_bytes = __vstruct_bytes(struct bch_sb, u64s);
unsigned order = get_order(new_bytes);
struct bch_sb *new_sb;
struct bio *bio;
if (sb->sb && sb->page_order >= order)
return 0;
if (sb->have_layout) {
u64 max_bytes = 512 << sb->sb->layout.sb_max_size_bits;
if (new_bytes > max_bytes) {
pr_err("%pg: superblock too big: want %zu but have %llu",
sb->bdev, new_bytes, max_bytes);
return -ENOSPC;
}
}
if (sb->page_order >= order && sb->sb)
return 0;
if (dynamic_fault("bcachefs:add:super_realloc"))
return -ENOMEM;
if (sb->have_bio) {
unsigned nr_bvecs = 1 << order;
bio = bio_kmalloc(nr_bvecs, GFP_KERNEL);
if (!bio)
return -ENOMEM;
bio_init(bio, NULL, bio->bi_inline_vecs, nr_bvecs, 0);
if (sb->bio)
kfree(sb->bio);
sb->bio = bio;
}
new_sb = (void *) __get_free_pages(GFP_NOFS|__GFP_ZERO, order);
if (!new_sb)
return -ENOMEM;
if (sb->sb)
memcpy(new_sb, sb->sb, PAGE_SIZE << sb->page_order);
free_pages((unsigned long) sb->sb, sb->page_order);
sb->sb = new_sb;
sb->page_order = order;
return 0;
}
struct bch_sb_field *bch2_sb_field_resize(struct bch_sb_handle *sb,
enum bch_sb_field_type type,
unsigned u64s)
{
struct bch_sb_field *f = bch2_sb_field_get(sb->sb, type);
ssize_t old_u64s = f ? le32_to_cpu(f->u64s) : 0;
ssize_t d = -old_u64s + u64s;
if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d))
return NULL;
if (sb->fs_sb) {
struct bch_fs *c = container_of(sb, struct bch_fs, disk_sb);
struct bch_dev *ca;
unsigned i;
lockdep_assert_held(&c->sb_lock);
/* XXX: we're not checking that offline device have enough space */
for_each_online_member(ca, c, i) {
struct bch_sb_handle *sb = &ca->disk_sb;
if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d)) {
percpu_ref_put(&ca->ref);
return NULL;
}
}
}
f = bch2_sb_field_get(sb->sb, type);
f = __bch2_sb_field_resize(sb, f, u64s);
if (f)
f->type = cpu_to_le32(type);
return f;
}
/* Superblock validate: */
static inline void __bch2_sb_layout_size_assert(void)
{
BUILD_BUG_ON(sizeof(struct bch_sb_layout) != 512);
}
static const char *validate_sb_layout(struct bch_sb_layout *layout)
{
u64 offset, prev_offset, max_sectors;
unsigned i;
if (!uuid_equal(&layout->magic, &BCACHE_MAGIC) &&
!uuid_equal(&layout->magic, &BCHFS_MAGIC))
return "Not a bcachefs superblock layout";
if (layout->layout_type != 0)
return "Invalid superblock layout type";
if (!layout->nr_superblocks)
return "Invalid superblock layout: no superblocks";
if (layout->nr_superblocks > ARRAY_SIZE(layout->sb_offset))
return "Invalid superblock layout: too many superblocks";
max_sectors = 1 << layout->sb_max_size_bits;
prev_offset = le64_to_cpu(layout->sb_offset[0]);
for (i = 1; i < layout->nr_superblocks; i++) {
offset = le64_to_cpu(layout->sb_offset[i]);
if (offset < prev_offset + max_sectors)
return "Invalid superblock layout: superblocks overlap";
prev_offset = offset;
}
return NULL;
}
const char *bch2_sb_validate(struct bch_sb_handle *disk_sb)
{
struct bch_sb *sb = disk_sb->sb;
struct bch_sb_field *f;
struct bch_sb_field_members *mi;
const char *err;
u32 version, version_min;
u16 block_size;
version = le16_to_cpu(sb->version);
version_min = version >= bcachefs_metadata_version_new_versioning
? le16_to_cpu(sb->version_min)
: version;
if (version >= bcachefs_metadata_version_max ||
version_min < bcachefs_metadata_version_min)
return "Unsupported superblock version";
if (version_min > version)
return "Bad minimum version";
if (sb->features[1] ||
(le64_to_cpu(sb->features[0]) & (~0ULL << BCH_FEATURE_NR)))
return "Filesystem has incompatible features";
block_size = le16_to_cpu(sb->block_size);
if (!is_power_of_2(block_size) ||
block_size > PAGE_SECTORS)
return "Bad block size";
if (bch2_is_zero(sb->user_uuid.b, sizeof(sb->user_uuid)))
return "Bad user UUID";
if (bch2_is_zero(sb->uuid.b, sizeof(sb->uuid)))
return "Bad internal UUID";
if (!sb->nr_devices ||
sb->nr_devices <= sb->dev_idx ||
sb->nr_devices > BCH_SB_MEMBERS_MAX)
return "Bad number of member devices";
if (!BCH_SB_META_REPLICAS_WANT(sb) ||
BCH_SB_META_REPLICAS_WANT(sb) >= BCH_REPLICAS_MAX)
return "Invalid number of metadata replicas";
if (!BCH_SB_META_REPLICAS_REQ(sb) ||
BCH_SB_META_REPLICAS_REQ(sb) >= BCH_REPLICAS_MAX)
return "Invalid number of metadata replicas";
if (!BCH_SB_DATA_REPLICAS_WANT(sb) ||
BCH_SB_DATA_REPLICAS_WANT(sb) >= BCH_REPLICAS_MAX)
return "Invalid number of data replicas";
if (!BCH_SB_DATA_REPLICAS_REQ(sb) ||
BCH_SB_DATA_REPLICAS_REQ(sb) >= BCH_REPLICAS_MAX)
return "Invalid number of data replicas";
if (BCH_SB_META_CSUM_TYPE(sb) >= BCH_CSUM_OPT_NR)
return "Invalid metadata checksum type";
if (BCH_SB_DATA_CSUM_TYPE(sb) >= BCH_CSUM_OPT_NR)
return "Invalid metadata checksum type";
if (BCH_SB_COMPRESSION_TYPE(sb) >= BCH_COMPRESSION_OPT_NR)
return "Invalid compression type";
if (!BCH_SB_BTREE_NODE_SIZE(sb))
return "Btree node size not set";
if (!is_power_of_2(BCH_SB_BTREE_NODE_SIZE(sb)))
return "Btree node size not a power of two";
if (BCH_SB_GC_RESERVE(sb) < 5)
return "gc reserve percentage too small";
if (!sb->time_precision ||
le32_to_cpu(sb->time_precision) > NSEC_PER_SEC)
return "invalid time precision";
/* validate layout */
err = validate_sb_layout(&sb->layout);
if (err)
return err;
vstruct_for_each(sb, f) {
if (!f->u64s)
return "Invalid superblock: invalid optional field";
if (vstruct_next(f) > vstruct_last(sb))
return "Invalid superblock: invalid optional field";
}
/* members must be validated first: */
mi = bch2_sb_get_members(sb);
if (!mi)
return "Invalid superblock: member info area missing";
err = bch2_sb_field_validate(sb, &mi->field);
if (err)
return err;
vstruct_for_each(sb, f) {
if (le32_to_cpu(f->type) == BCH_SB_FIELD_members)
continue;
err = bch2_sb_field_validate(sb, f);
if (err)
return err;
}
return NULL;
}
/* device open: */
static void bch2_sb_update(struct bch_fs *c)
{
struct bch_sb *src = c->disk_sb.sb;
struct bch_sb_field_members *mi = bch2_sb_get_members(src);
struct bch_dev *ca;
unsigned i;
lockdep_assert_held(&c->sb_lock);
c->sb.uuid = src->uuid;
c->sb.user_uuid = src->user_uuid;
c->sb.version = le16_to_cpu(src->version);
c->sb.nr_devices = src->nr_devices;
c->sb.clean = BCH_SB_CLEAN(src);
c->sb.encryption_type = BCH_SB_ENCRYPTION_TYPE(src);
c->sb.encoded_extent_max= 1 << BCH_SB_ENCODED_EXTENT_MAX_BITS(src);
c->sb.time_base_lo = le64_to_cpu(src->time_base_lo);
c->sb.time_base_hi = le32_to_cpu(src->time_base_hi);
c->sb.time_precision = le32_to_cpu(src->time_precision);
c->sb.features = le64_to_cpu(src->features[0]);
c->sb.compat = le64_to_cpu(src->compat[0]);
for_each_member_device(ca, c, i)
ca->mi = bch2_mi_to_cpu(mi->members + i);
}
/* doesn't copy member info */
static void __copy_super(struct bch_sb_handle *dst_handle, struct bch_sb *src)
{
struct bch_sb_field *src_f, *dst_f;
struct bch_sb *dst = dst_handle->sb;
unsigned i;
dst->version = src->version;
dst->version_min = src->version_min;
dst->seq = src->seq;
dst->uuid = src->uuid;
dst->user_uuid = src->user_uuid;
memcpy(dst->label, src->label, sizeof(dst->label));
dst->block_size = src->block_size;
dst->nr_devices = src->nr_devices;
dst->time_base_lo = src->time_base_lo;
dst->time_base_hi = src->time_base_hi;
dst->time_precision = src->time_precision;
memcpy(dst->flags, src->flags, sizeof(dst->flags));
memcpy(dst->features, src->features, sizeof(dst->features));
memcpy(dst->compat, src->compat, sizeof(dst->compat));
for (i = 0; i < BCH_SB_FIELD_NR; i++) {
if (i == BCH_SB_FIELD_journal)
continue;
src_f = bch2_sb_field_get(src, i);
dst_f = bch2_sb_field_get(dst, i);
dst_f = __bch2_sb_field_resize(dst_handle, dst_f,
src_f ? le32_to_cpu(src_f->u64s) : 0);
if (src_f)
memcpy(dst_f, src_f, vstruct_bytes(src_f));
}
}
int bch2_sb_to_fs(struct bch_fs *c, struct bch_sb *src)
{
struct bch_sb_field_journal *journal_buckets =
bch2_sb_get_journal(src);
unsigned journal_u64s = journal_buckets
? le32_to_cpu(journal_buckets->field.u64s)
: 0;
int ret;
lockdep_assert_held(&c->sb_lock);
ret = bch2_sb_realloc(&c->disk_sb,
le32_to_cpu(src->u64s) - journal_u64s);
if (ret)
return ret;
__copy_super(&c->disk_sb, src);
ret = bch2_sb_replicas_to_cpu_replicas(c);
if (ret)
return ret;
ret = bch2_sb_disk_groups_to_cpu(c);
if (ret)
return ret;
bch2_sb_update(c);
return 0;
}
int bch2_sb_from_fs(struct bch_fs *c, struct bch_dev *ca)
{
struct bch_sb *src = c->disk_sb.sb, *dst = ca->disk_sb.sb;
struct bch_sb_field_journal *journal_buckets =
bch2_sb_get_journal(dst);
unsigned journal_u64s = journal_buckets
? le32_to_cpu(journal_buckets->field.u64s)
: 0;
unsigned u64s = le32_to_cpu(src->u64s) + journal_u64s;
int ret;
ret = bch2_sb_realloc(&ca->disk_sb, u64s);
if (ret)
return ret;
__copy_super(&ca->disk_sb, src);
return 0;
}
/* read superblock: */
static const char *read_one_super(struct bch_sb_handle *sb, u64 offset)
{
struct bch_csum csum;
size_t bytes;
reread:
bio_reset(sb->bio, sb->bdev, REQ_OP_READ|REQ_SYNC|REQ_META);
sb->bio->bi_iter.bi_sector = offset;
bch2_bio_map(sb->bio, sb->sb, PAGE_SIZE << sb->page_order);
if (submit_bio_wait(sb->bio))
return "IO error";
if (!uuid_equal(&sb->sb->magic, &BCACHE_MAGIC) &&
!uuid_equal(&sb->sb->magic, &BCHFS_MAGIC))
return "Not a bcachefs superblock";
if (le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_min ||
le16_to_cpu(sb->sb->version) >= bcachefs_metadata_version_max)
return "Unsupported superblock version";
bytes = vstruct_bytes(sb->sb);
if (bytes > 512 << sb->sb->layout.sb_max_size_bits)
return "Bad superblock: too big";
if (get_order(bytes) > sb->page_order) {
if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s)))
return "cannot allocate memory";
goto reread;
}
if (BCH_SB_CSUM_TYPE(sb->sb) >= BCH_CSUM_NR)
return "unknown csum type";
/* XXX: verify MACs */
csum = csum_vstruct(NULL, BCH_SB_CSUM_TYPE(sb->sb),
null_nonce(), sb->sb);
if (bch2_crc_cmp(csum, sb->sb->csum))
return "bad checksum reading superblock";
sb->seq = le64_to_cpu(sb->sb->seq);
return NULL;
}
int bch2_read_super(const char *path, struct bch_opts *opts,
struct bch_sb_handle *sb)
{
u64 offset = opt_get(*opts, sb);
struct bch_sb_layout layout;
const char *err;
__le64 *i;
int ret;
pr_verbose_init(*opts, "");
memset(sb, 0, sizeof(*sb));
sb->mode = BLK_OPEN_READ;
sb->have_bio = true;
sb->holder = kmalloc(1, GFP_KERNEL);
if (!sb->holder)
return -ENOMEM;
if (!opt_get(*opts, noexcl))
sb->mode |= BLK_OPEN_EXCL;
if (!opt_get(*opts, nochanges))
sb->mode |= BLK_OPEN_WRITE;
sb->bdev = blkdev_get_by_path(path, sb->mode, sb->holder, &bch2_sb_handle_bdev_ops);
if (IS_ERR(sb->bdev) &&
PTR_ERR(sb->bdev) == -EACCES &&
opt_get(*opts, read_only)) {
sb->mode &= ~BLK_OPEN_WRITE;
sb->bdev = blkdev_get_by_path(path, sb->mode, sb->holder, &bch2_sb_handle_bdev_ops);
if (!IS_ERR(sb->bdev))
opt_set(*opts, nochanges, true);
}
if (IS_ERR(sb->bdev)) {
ret = PTR_ERR(sb->bdev);
goto out;
}
err = "cannot allocate memory";
ret = bch2_sb_realloc(sb, 0);
if (ret)
goto err;
ret = -EFAULT;
err = "dynamic fault";
if (bch2_fs_init_fault("read_super"))
goto err;
ret = -EINVAL;
err = read_one_super(sb, offset);
if (!err)
goto got_super;
if (opt_defined(*opts, sb))
goto err;
pr_err("error reading default superblock: %s", err);
/*
* Error reading primary superblock - read location of backup
* superblocks:
*/
bio_reset(sb->bio, sb->bdev, REQ_OP_READ|REQ_SYNC|REQ_META);
sb->bio->bi_iter.bi_sector = BCH_SB_LAYOUT_SECTOR;
/*
* use sb buffer to read layout, since sb buffer is page aligned but
* layout won't be:
*/
bch2_bio_map(sb->bio, sb->sb, sizeof(struct bch_sb_layout));
err = "IO error";
if (submit_bio_wait(sb->bio))
goto err;
memcpy(&layout, sb->sb, sizeof(layout));
err = validate_sb_layout(&layout);
if (err)
goto err;
for (i = layout.sb_offset;
i < layout.sb_offset + layout.nr_superblocks; i++) {
offset = le64_to_cpu(*i);
if (offset == opt_get(*opts, sb))
continue;
err = read_one_super(sb, offset);
if (!err)
goto got_super;
}
ret = -EINVAL;
goto err;
got_super:
err = "Superblock block size smaller than device block size";
ret = -EINVAL;
if (le16_to_cpu(sb->sb->block_size) << 9 <
bdev_logical_block_size(sb->bdev))
goto err;
ret = 0;
sb->have_layout = true;
out:
pr_verbose_init(*opts, "ret %i", ret);
return ret;
err:
bch2_free_super(sb);
pr_err("error reading superblock: %s", err);
goto out;
}
/* write superblock: */
static void write_super_endio(struct bio *bio)
{
struct bch_dev *ca = bio->bi_private;
/* XXX: return errors directly */
if (bch2_dev_io_err_on(bio->bi_status, ca, "superblock write error: %s",
bch2_blk_status_to_str(bio->bi_status)))
ca->sb_write_error = 1;
closure_put(&ca->fs->sb_write);
percpu_ref_put(&ca->io_ref);
}
static void read_back_super(struct bch_fs *c, struct bch_dev *ca)
{
struct bch_sb *sb = ca->disk_sb.sb;
struct bio *bio = ca->disk_sb.bio;
bio_reset(bio, ca->disk_sb.bdev, REQ_OP_READ|REQ_SYNC|REQ_META);
bio->bi_iter.bi_sector = le64_to_cpu(sb->layout.sb_offset[0]);
bio->bi_end_io = write_super_endio;
bio->bi_private = ca;
bch2_bio_map(bio, ca->sb_read_scratch, PAGE_SIZE);
this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_sb],
bio_sectors(bio));
percpu_ref_get(&ca->io_ref);
closure_bio_submit(bio, &c->sb_write);
}
static void write_one_super(struct bch_fs *c, struct bch_dev *ca, unsigned idx)
{
struct bch_sb *sb = ca->disk_sb.sb;
struct bio *bio = ca->disk_sb.bio;
sb->offset = sb->layout.sb_offset[idx];
SET_BCH_SB_CSUM_TYPE(sb, c->opts.metadata_checksum);
sb->csum = csum_vstruct(c, BCH_SB_CSUM_TYPE(sb),
null_nonce(), sb);
bio_reset(bio, ca->disk_sb.bdev, REQ_OP_WRITE|REQ_SYNC|REQ_META);
bio->bi_iter.bi_sector = le64_to_cpu(sb->offset);
bio->bi_end_io = write_super_endio;
bio->bi_private = ca;
bch2_bio_map(bio, sb,
roundup((size_t) vstruct_bytes(sb),
bdev_logical_block_size(ca->disk_sb.bdev)));
this_cpu_add(ca->io_done->sectors[WRITE][BCH_DATA_sb],
bio_sectors(bio));
percpu_ref_get(&ca->io_ref);
closure_bio_submit(bio, &c->sb_write);
}
int bch2_write_super(struct bch_fs *c)
{
struct closure *cl = &c->sb_write;
struct bch_dev *ca;
unsigned i, sb = 0, nr_wrote;
const char *err;
struct bch_devs_mask sb_written;
bool wrote, can_mount_without_written, can_mount_with_written;
int ret = 0;
lockdep_assert_held(&c->sb_lock);
closure_init_stack(cl);
memset(&sb_written, 0, sizeof(sb_written));
le64_add_cpu(&c->disk_sb.sb->seq, 1);
if (test_bit(BCH_FS_ERROR, &c->flags))
SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 1);
for_each_online_member(ca, c, i)
bch2_sb_from_fs(c, ca);
for_each_online_member(ca, c, i) {
err = bch2_sb_validate(&ca->disk_sb);
if (err) {
bch2_fs_inconsistent(c, "sb invalid before write: %s", err);
ret = -1;
goto out;
}
}
if (c->opts.nochanges)
goto out;
for_each_online_member(ca, c, i) {
__set_bit(ca->dev_idx, sb_written.d);
ca->sb_write_error = 0;
}
for_each_online_member(ca, c, i)
read_back_super(c, ca);
closure_sync(cl);
for_each_online_member(ca, c, i) {
if (!ca->sb_write_error &&
ca->disk_sb.seq !=
le64_to_cpu(ca->sb_read_scratch->seq)) {
bch2_fs_fatal_error(c,
"Superblock modified by another process");
percpu_ref_put(&ca->io_ref);
ret = -EROFS;
goto out;
}
}
do {
wrote = false;
for_each_online_member(ca, c, i)
if (!ca->sb_write_error &&
sb < ca->disk_sb.sb->layout.nr_superblocks) {
write_one_super(c, ca, sb);
wrote = true;
}
closure_sync(cl);
sb++;
} while (wrote);
for_each_online_member(ca, c, i) {
if (ca->sb_write_error)
__clear_bit(ca->dev_idx, sb_written.d);
else
ca->disk_sb.seq = le64_to_cpu(ca->disk_sb.sb->seq);
}
nr_wrote = dev_mask_nr(&sb_written);
can_mount_with_written =
bch2_have_enough_devs(__bch2_replicas_status(c, sb_written),
BCH_FORCE_IF_DEGRADED);
for (i = 0; i < ARRAY_SIZE(sb_written.d); i++)
sb_written.d[i] = ~sb_written.d[i];
can_mount_without_written =
bch2_have_enough_devs(__bch2_replicas_status(c, sb_written),
BCH_FORCE_IF_DEGRADED);
/*
* If we would be able to mount _without_ the devices we successfully
* wrote superblocks to, we weren't able to write to enough devices:
*
* Exception: if we can mount without the successes because we haven't
* written anything (new filesystem), we continue if we'd be able to
* mount with the devices we did successfully write to:
*/
if (bch2_fs_fatal_err_on(!nr_wrote ||
(can_mount_without_written &&
!can_mount_with_written), c,
"Unable to write superblock to sufficient devices"))
ret = -1;
out:
/* Make new options visible after they're persistent: */
bch2_sb_update(c);
return ret;
}
void __bch2_check_set_feature(struct bch_fs *c, unsigned feat)
{
mutex_lock(&c->sb_lock);
if (!(c->sb.features & (1ULL << feat))) {
c->disk_sb.sb->features[0] |= cpu_to_le64(1ULL << feat);
bch2_write_super(c);
}
mutex_unlock(&c->sb_lock);
}
/* BCH_SB_FIELD_journal: */
static int u64_cmp(const void *_l, const void *_r)
{
u64 l = *((const u64 *) _l), r = *((const u64 *) _r);
return l < r ? -1 : l > r ? 1 : 0;
}
static const char *bch2_sb_validate_journal(struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_journal *journal = field_to_type(f, journal);
struct bch_member *m = bch2_sb_get_members(sb)->members + sb->dev_idx;
const char *err;
unsigned nr;
unsigned i;
u64 *b;
journal = bch2_sb_get_journal(sb);
if (!journal)
return NULL;
nr = bch2_nr_journal_buckets(journal);
if (!nr)
return NULL;
b = kmalloc_array(sizeof(u64), nr, GFP_KERNEL);
if (!b)
return "cannot allocate memory";
for (i = 0; i < nr; i++)
b[i] = le64_to_cpu(journal->buckets[i]);
sort(b, nr, sizeof(u64), u64_cmp, NULL);
err = "journal bucket at sector 0";
if (!b[0])
goto err;
err = "journal bucket before first bucket";
if (m && b[0] < le16_to_cpu(m->first_bucket))
goto err;
err = "journal bucket past end of device";
if (m && b[nr - 1] >= le64_to_cpu(m->nbuckets))
goto err;
err = "duplicate journal buckets";
for (i = 0; i + 1 < nr; i++)
if (b[i] == b[i + 1])
goto err;
err = NULL;
err:
kfree(b);
return err;
}
static const struct bch_sb_field_ops bch_sb_field_ops_journal = {
.validate = bch2_sb_validate_journal,
};
/* BCH_SB_FIELD_members: */
static const char *bch2_sb_validate_members(struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_members *mi = field_to_type(f, members);
struct bch_member *m;
if ((void *) (mi->members + sb->nr_devices) >
vstruct_end(&mi->field))
return "Invalid superblock: bad member info";
for (m = mi->members;
m < mi->members + sb->nr_devices;
m++) {
if (!bch2_member_exists(m))
continue;
if (le64_to_cpu(m->nbuckets) > LONG_MAX)
return "Too many buckets";
if (le64_to_cpu(m->nbuckets) -
le16_to_cpu(m->first_bucket) < BCH_MIN_NR_NBUCKETS)
return "Not enough buckets";
if (le16_to_cpu(m->bucket_size) <
le16_to_cpu(sb->block_size))
return "bucket size smaller than block size";
if (le16_to_cpu(m->bucket_size) <
BCH_SB_BTREE_NODE_SIZE(sb))
return "bucket size smaller than btree node size";
}
return NULL;
}
static const struct bch_sb_field_ops bch_sb_field_ops_members = {
.validate = bch2_sb_validate_members,
};
/* BCH_SB_FIELD_crypt: */
static const char *bch2_sb_validate_crypt(struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_crypt *crypt = field_to_type(f, crypt);
if (vstruct_bytes(&crypt->field) != sizeof(*crypt))
return "invalid field crypt: wrong size";
if (BCH_CRYPT_KDF_TYPE(crypt))
return "invalid field crypt: bad kdf type";
return NULL;
}
static const struct bch_sb_field_ops bch_sb_field_ops_crypt = {
.validate = bch2_sb_validate_crypt,
};
/* BCH_SB_FIELD_clean: */
void bch2_sb_clean_renumber(struct bch_sb_field_clean *clean, int write)
{
struct jset_entry *entry;
for (entry = clean->start;
entry < (struct jset_entry *) vstruct_end(&clean->field);
entry = vstruct_next(entry))
bch2_bkey_renumber(BKEY_TYPE_BTREE, bkey_to_packed(entry->start), write);
}
int bch2_fs_mark_dirty(struct bch_fs *c)
{
int ret;
/*
* Unconditionally write superblock, to verify it hasn't changed before
* we go rw:
*/
mutex_lock(&c->sb_lock);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
c->disk_sb.sb->features[0] |= 1ULL << BCH_FEATURE_new_extent_overwrite;
c->disk_sb.sb->features[0] |= 1ULL << BCH_FEATURE_extents_above_btree_updates;
c->disk_sb.sb->features[0] |= 1ULL << BCH_FEATURE_btree_updates_journalled;
ret = bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return ret;
}
static void
entry_init_u64s(struct jset_entry *entry, unsigned u64s)
{
memset(entry, 0, u64s * sizeof(u64));
/*
* The u64s field counts from the start of data, ignoring the shared
* fields.
*/
entry->u64s = u64s - 1;
}
static void
entry_init_size(struct jset_entry *entry, size_t size)
{
unsigned u64s = DIV_ROUND_UP(size, sizeof(u64));
entry_init_u64s(entry, u64s);
}
struct jset_entry *
bch2_journal_super_entries_add_common(struct bch_fs *c,
struct jset_entry *entry,
u64 journal_seq)
{
unsigned i;
percpu_down_read(&c->mark_lock);
if (!journal_seq) {
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
bch2_fs_usage_acc_to_base(c, i);
} else {
bch2_fs_usage_acc_to_base(c, journal_seq & JOURNAL_BUF_MASK);
}
{
struct jset_entry_usage *u =
container_of(entry, struct jset_entry_usage, entry);
entry_init_size(entry, sizeof(*u));
u->entry.type = BCH_JSET_ENTRY_usage;
u->entry.btree_id = FS_USAGE_INODES;
u->v = cpu_to_le64(c->usage_base->nr_inodes);
entry = vstruct_next(entry);
}
{
struct jset_entry_usage *u =
container_of(entry, struct jset_entry_usage, entry);
entry_init_size(entry, sizeof(*u));
u->entry.type = BCH_JSET_ENTRY_usage;
u->entry.btree_id = FS_USAGE_KEY_VERSION;
u->v = cpu_to_le64(atomic64_read(&c->key_version));
entry = vstruct_next(entry);
}
for (i = 0; i < BCH_REPLICAS_MAX; i++) {
struct jset_entry_usage *u =
container_of(entry, struct jset_entry_usage, entry);
entry_init_size(entry, sizeof(*u));
u->entry.type = BCH_JSET_ENTRY_usage;
u->entry.btree_id = FS_USAGE_RESERVED;
u->entry.level = i;
u->v = cpu_to_le64(c->usage_base->persistent_reserved[i]);
entry = vstruct_next(entry);
}
for (i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry *e =
cpu_replicas_entry(&c->replicas, i);
struct jset_entry_data_usage *u =
container_of(entry, struct jset_entry_data_usage, entry);
entry_init_size(entry, sizeof(*u) + e->nr_devs);
u->entry.type = BCH_JSET_ENTRY_data_usage;
u->v = cpu_to_le64(c->usage_base->replicas[i]);
unsafe_memcpy(&u->r, e, replicas_entry_bytes(e),
"embedded variable length struct");
entry = vstruct_next(entry);
}
percpu_up_read(&c->mark_lock);
return entry;
}
void bch2_fs_mark_clean(struct bch_fs *c)
{
struct bch_sb_field_clean *sb_clean;
struct jset_entry *entry;
unsigned u64s;
mutex_lock(&c->sb_lock);
if (BCH_SB_CLEAN(c->disk_sb.sb))
goto out;
SET_BCH_SB_CLEAN(c->disk_sb.sb, true);
c->disk_sb.sb->compat[0] |= 1ULL << BCH_COMPAT_FEAT_ALLOC_INFO;
c->disk_sb.sb->compat[0] |= 1ULL << BCH_COMPAT_FEAT_ALLOC_METADATA;
c->disk_sb.sb->features[0] &= ~(1ULL << BCH_FEATURE_extents_above_btree_updates);
c->disk_sb.sb->features[0] &= ~(1ULL << BCH_FEATURE_btree_updates_journalled);
u64s = sizeof(*sb_clean) / sizeof(u64) + c->journal.entry_u64s_reserved;
sb_clean = bch2_sb_resize_clean(&c->disk_sb, u64s);
if (!sb_clean) {
bch_err(c, "error resizing superblock while setting filesystem clean");
goto out;
}
sb_clean->flags = 0;
sb_clean->read_clock = cpu_to_le16(c->bucket_clock[READ].hand);
sb_clean->write_clock = cpu_to_le16(c->bucket_clock[WRITE].hand);
sb_clean->journal_seq = cpu_to_le64(journal_cur_seq(&c->journal) - 1);
/* Trying to catch outstanding bug: */
BUG_ON(le64_to_cpu(sb_clean->journal_seq) > S64_MAX);
entry = sb_clean->start;
entry = bch2_journal_super_entries_add_common(c, entry, 0);
entry = bch2_btree_roots_to_journal_entries(c, entry, entry);
BUG_ON((void *) entry > vstruct_end(&sb_clean->field));
memset(entry, 0,
vstruct_end(&sb_clean->field) - (void *) entry);
if (le16_to_cpu(c->disk_sb.sb->version) <
bcachefs_metadata_version_bkey_renumber)
bch2_sb_clean_renumber(sb_clean, WRITE);
bch2_write_super(c);
out:
mutex_unlock(&c->sb_lock);
}
static const char *bch2_sb_validate_clean(struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_clean *clean = field_to_type(f, clean);
if (vstruct_bytes(&clean->field) < sizeof(*clean))
return "invalid field crypt: wrong size";
return NULL;
}
static const struct bch_sb_field_ops bch_sb_field_ops_clean = {
.validate = bch2_sb_validate_clean,
};
static const struct bch_sb_field_ops *bch2_sb_field_ops[] = {
#define x(f, nr) \
[BCH_SB_FIELD_##f] = &bch_sb_field_ops_##f,
BCH_SB_FIELDS()
#undef x
};
static const char *bch2_sb_field_validate(struct bch_sb *sb,
struct bch_sb_field *f)
{
unsigned type = le32_to_cpu(f->type);
return type < BCH_SB_FIELD_NR
? bch2_sb_field_ops[type]->validate(sb, f)
: NULL;
}
void bch2_sb_field_to_text(struct printbuf *out, struct bch_sb *sb,
struct bch_sb_field *f)
{
unsigned type = le32_to_cpu(f->type);
const struct bch_sb_field_ops *ops = type < BCH_SB_FIELD_NR
? bch2_sb_field_ops[type] : NULL;
if (ops)
pr_buf(out, "%s", bch2_sb_fields[type]);
else
pr_buf(out, "(unknown field %u)", type);
pr_buf(out, " (size %llu):", vstruct_bytes(f));
if (ops && ops->to_text)
bch2_sb_field_ops[type]->to_text(out, sb, f);
}